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3D facial landmark detection based on differential
cylindrical projection and multi-task learning

Takuma Terada, Ryusuke Kimura, and Yen-Wei Chen

Facial landmark detection is a fundamental step for face and ex-
pression recognition, and identification of personal attributes, anal-
ysis of race, and personal authentication. Numerous methods have
been proposed for 2D facial landmark detection. However, 3D land-
mark detection is still a challenging task. In this paper, we propose
a 3D facial landmark detection method based on differential cylin-
drical projection and multi-task learning. We first transform the
3D image to a 2D gray-scale image using cylindrical projection.
We further enhance edges and facial parts (i.e. eyes, nose, mouth),
which are useful for landmark detection, by using differentiation of
the transformed 2D gray-scale image. Then we applied a convolu-
tional neural network to detect the landmarks in the transformed
2D gray-scale image (differential cylindrical projection). Finally,
we transformed the detected landmarks back to the original 3D
image. Furthermore, we propose to use multi-task learning based
on multi-labels pertaining to gender and age to improve detection
accuracy. The code is available at: https://github.com/RU-IIPL/
landmark detection.

1. Introduction

3D facial data is more useful and more accurate for measurement of facial
features than 2D facial data in many applications such as facial recognition
and facial analysis [1, 2, 3]. In our previous studies, we used 3D facial data
to identify the relationship between facial shape and genetic factors, based
on the assumption that facial shape features can help classify individuals
based on their place of birth, as observed between individuals from Hondo
and Ryukyu in Japan [4, 5, 6].

Facial landmark detection and facial alignment are fundamental pre-
processing in such applications [7, 8, 9]. Many landmark detection methods
have been proposed for 2D facial images [12, 13, 14, 15, 16, 17]. Recently, the
high-level feature representation of deep convolutional neural networks (DC-
NNs) has achieved great successes in the 2D landmark detection [16, 17].
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On the other hand, there are a few researches on 3D landmark detection

[18, 19, 20, 21]. Segundo [10] proposed a process of detecting facial land-

marks and Nair [11] proposed to align the 3D data using the Point Distri-

bution Model. However, when using 3D facial images alone, it is difficult to

detect facial landmarks in detail.

Inspired by current achievements of DCNN for 2D facial landmark detec-

tion, we propose a DCNN-based landmark detection method for 3D facial

images. We first transform the 3D image to a 2D gray-scale image using

cylindrical projection. We further enhance edges and facial parts (i.e. eyes,

nose, mouth), which are useful for landmark detection, by using differen-

tiation of the transformed 2D gray-scale image. Afterwards we applied a

convolutional neural network (CNN)-based multi-task learning approach to

detect the landmarks in the transformed 2D gray-scale image (differential

cylindrical projection). Finally, we transformed the detected landmarks back

to the original 3D image. The overview of our proposed method is shown in

Fig. 1.

The rest of this paper is organized as follows. In Section 2, we present a

review of the related work. The proposed method is presented in Section 3.

Experiments are presented in Section 4; our conclusion is given in Section 5.

2. Related work

In this section, we present some of the most relevant methods related to our

work on facial landmark detection in 2D and 3D images.

2.1. Landmark detection for 2D images

Active shape model [12] and active appearance model [13] proposed by

Cootes are widely used for localization of facial landmarks in facial shape

or facial appearance. Some extended models, such as the deformable part

model [14], are also proposed for facial landmark detection. However, in such

model-based approaches, fitting the model with original image is a challeng-

ing task.

Recently, deep learning techniques have achieved great success in nu-

merous computer vision tasks including facial landmark detection. Sun [16]

proposed a CNN-based cascade network for facial point detection. Zhan [17]

demonstrated that deep multi-task learning can significantly improve land-

mark detection accuracy.
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Figure 1: The overview of the proposed facial landmark detection approach
for 3D facial image. The method consisting of four steps: transforming the
3D image to a 2D image using cylindrical projection; differentiating the
transformed image using a sobel filter to enhance edges and facial parts
(i.e. eyes, nose, mouth); extracting facial landmarks on the transformed 2D
image using a DCNN; transforming the detected 2D landmarks back to the
original 3D space.

2.2. Landmark detection for 3D images

Compared with the numerous 2D facial landmark detection methods, there
are few 3D landmark detection methods. Böckeler [18] proposed an efficient
3D facial landmark detection algorithm with haar-like features [20] and an-
thropometric constraints, which generate a gradient image from depth data
[19]. In order to avoid false-positive detection, the landmark detection is
based on pre-defined sub-regions, such as the eye and mouth. However, it is
not easy to define the accurate sub-regions automatically. Whitmarsh [21]
proposed a 3D facial model for landmark detection on 3D face scans. The
method is a 3D model-based approach, fitting the model with the original
3D scan is still a challenging task.

In our previous work, we proposed a deep learning-based 3D facial land-
mark detection method [22], in which the 3D data was first transformed to
a 2D gray-scale image by cylindrical projection and then we used a deep
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convolutional neural networks to detect the landmarks on the transformed
2D images. Zhang et al. [23] also proposed a similar method for 3D facial
landmark detection, in which the transformed 2D image is called a position
map.

In this paper, we present an improved version of our previous work [22].
We further enhance edges and facial parts (i.e., eyes, nose, mouth), which
are useful for landmark detection, by using differentiation of the transformed
2D gray-scale image to improve the detection accuracy. We also show that
the landmark detection accuracy can be improved by using a multi-task
learning approach.

3. The proposed method

In this section, we describe details about the proposed method. As shown in
Fig. 1, the proposed method consists of four steps: (1) we first transform the
3D image to a 2D gray-scale image using a cylindrical projection method;
(2) we further enhance edges and facial parts (i.e. eyes, nose, mouth) by
using differentiation of the transformed 2D gray-scale image; (3) we applied
a convolutional neural network to detect the landmarks in the transformed
2D gray-scale image with a multi-task learning; (4) we transformed the de-
tected landmarks back to the original 3D image. Compared with the previous
method [22], our main improvements are steps 2 and 3. The comparison of
the proposed method with the previous method is shown in Fig. 2.

3.1. Data acquisition and preprocessing

3.1.1. 3D facial dataset Our dataset consists of 750 3D facial data ob-
tained from a 3D Mobile Scanner (ZScanner700CX), which are collected
by the University of the Ryukyus, Japan [4, 5, 6]. The 750 subjects are
Japanese including both males and females from 20s to 60s. The data distri-
bution is summarized in Table 1. The scanned data is a group of 3D surface
points (about 350K points) with three-dimensional coordinate (x, y, z) in
each point, primarily focused on the facial region. A rough alignment was
performed on each facial image manually so that the head was centered.
Several 3D facial images are shown in Fig. 4(a).

3.1.2. Cylindrical projection (transformation of 3D data to a 2D
gray-scale image) We first resample the 3D data and transform the re-
sampled 3D image to a 2D gray-scale image using cylindrical projection
method. And then perform the landmark detection on the transformed 2D
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Figure 2: The architectures of the conventional method [22] (a) and the
proposed method (b).

Table 1: Subject distribution of our dataset

Twenties Thirties Forties Fifties Sixties

Male 297 93 23 6 1
Female 254 63 10 3 0

gray-scale image. We convert the Cartesian coordinate to the cylindrical co-
ordinate as shown in Fig. 3. The cylindrical axis is the Cartesian z axis. The
cylindrical coordinate (ρ, θ, z) is shown in:

(1) (ρ, θ, z) =

⎧⎪⎪⎨
⎪⎪⎩

ρ =
√

x2 + y2

θ = tan−1 y

x
z = z

where ρ is a distance from the longitudinal axis, θ is the azimuthal angle
and z is the longitudinal axis position.

After cylindrical coordinate conversion, we resample 144,000 surface
points (400 points along z-axis and 360 points along θ). Regions such as



448 Takuma Terada et al.

Figure 3: Cylindrical projection and resampling.

the ears and neck are excluded from facial parts. If the process is unable to
obtain the corresponding points by sampling, we interpolate the same based
on points of the nearest neighbor. Thus, the 3D image (surface image) can
be represented as a 2D image ρ(θ, z) with a size of 360×400, and the distance
ρ is used by the pixel value of the 2D image. Some image samples converted
from the 3D to the 2D facial image are shown in Fig. 4. Figure 4(a) shows 3D
facial images and their transformed 2D images are shown in Fig. 4(b). We
attempt to extract the 2D landmarks from the transformed 2D image and
then transform the landmarks back to the 3D image. The transformation
from the 2D data to the 3D data is obtained using following equation:

(2) (x, y, z) =

⎧⎪⎨
⎪⎩

x = ρ cos θ

y = ρ sin θ

z = z

3.1.3. Differential image As shown in Fig. 4(b), the transformed 2D
image is not clear enough to extract landmarks compared with normal facial
images. To solve this problem, we propose to apply a differential filter to
enhance the edges and facial features in the transformed 2D image. The
differential image is obtained by the use of a Sobel filter for vertical derivative
approximations Gy. The filter uses a 3×3 kernel which is convolved with the
source image to calculate approximations of the derivatives. The filter can
be written by following equation:

Gy =

⎡
⎣

−1 −2 −1
0 0 0
1 2 1

⎤
⎦(3)
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Figure 4: (a) 3D images, (b) transformed 2D images and (c) their differential
images.

Differential images of the transformed 2D image (Fig. 3(b)) are shown
in Fig. 3(c). We can see that facial parts such as eyes, nose, mouth become
clearer and easier to recognize the landmarks.

Based on the 2D differential image, we manually annotated 14 landmarks
as shown in Fig. 7 (red points), which are used as ground truth for training.
Each landmark on the 2D transformed image has a pixel value ρ and coor-
dinates (θ, z). By using equation (2), we can easily obtain 3D coordinates of
the landmark on the 3D facial image.

3.1.4. Data augmentation In order to increase the number of samples,
we adopted various data augmentation strategies. The augmentation is in-
cluded a scaling, translation, flip of vertical axis and a combination of them.
In scaling, the image is resized by a combination of three different scaling
factors (0.9, 1.0, 1.1) in the horizontal and vertical axes. In translation, the
image is moved either along the horizontal or vertical axis by an amount
of width/10 or height/10. In flip, the image is flipped horizontally or verti-
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Figure 5: Examples of data augmentation. (a) original image, (b) its flipped
image, (c) images with different translations, (d) images with different scales.

cally. The number of images is expanded eight (23) times by the scaling, four

times by the translation and twice by the flip. In addition to above three

augmentations, we also use a combination of the scaling and flip to augment

the number of images for training. Example images of data augmentations

are shown in Fig. 5.

3.2. Facial landmark detection

We used a regression method for facial landmark detection, and adopted a

multi-task learning approach for improvement of detection accuracy.

3.2.1. The regression-based approach Assume the input image to the

network is I ∈ RW×H , and the output estimated position p ∈ RN×D, where

W ×H is the image size and N is the number of facial landmarks (N = 14).

D is the dimensionality of the transformed image (D = 2). So, the dimension

of the output p is 28. A regression function f , is given by the following

equation:

p = f(I,W)(4)

where W are trainable parameters of function f .
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The parameters W are optimized to minimize the error between esti-
mated position p̂ and ground truth p. The ground truth (correct coordinates
of the landmarks) are annotated manually on the 2D differential image. The
mean square error between p̂ and p is used as a loss function Lr as in:

Lr =
1

M

M∑
i=1

‖p̂i − pi‖2(5)

where M is number of training samples.

3.2.2. Multi-task learning In our dataset, each sample contains gender,
age and place of birth as meta-data in addition to 3D facial images. The
objective is to converge learning effectively by using these multiple labels.
As our second contribution, we proposed a multi-task learning approach to
improve the detection accuracy. In the proposed multi-task learning method,
there are following four tasks:

1. The first task is to estimate the 2D coordinates of the landmarks in
the projection space, which is the same as the single-task learning de-
scribed in Sec. 3.2.1. Since we have 14 landmarks, the output dimension
is 28.

2. The second task is to estimate the 3D coodinates of the landmarks in
the original 3D space. In this case, D = 3 and the output dimension
is 3×14 = 42.

3. The third task is gender classification, which is a two-class classifica-
tion. The output dimension is two (male or female).

4. The fourth task is age classification, which is a five-class (20s, 30s, 40s,
50s, and 60s) classification. The output dimension is five.

The cross-entropy loss Lc as shown in Equation (6) is used for classifica-
tion tasks, where p̂k

(i) is the predicted probability of sample i that belongs

to class k, y
(i)
k is equal to 1 if the target class of sample i is k. K is the

number of classes. K = 2 for the task 2 (gender classification) and K = 5
for the task 3 (age classification).

Lc = − 1

M

M∑
i=1

K∑
k=1

y
(i)
k log(p̂k

(i))(6)

In the multi-task learning, the loss functions Lm with the ratio of learn-
ing weight λ is given by the following equation:

Lm = λr(2d)Lr(2d) + λr(3d)Lr(3d) + λc(gen)Lc(gen) + λc(age)Lc(age)(7)
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Since the first two tasks are main tasks and the last two tasks are aux-
iliary tasks, we set both λr(2d) and λr(3d) as 1.0 and both λc(gen) and λc(age)

as 0.001 based on our experiments. The proposed network architecture for
multi-task learning is shown in Fig. 2(b). Note that the previous single task
learning method without differential image [22] is shown in Fig. 2(a)

4. Experiments

4.1. Implementation details

In order to validate the effectiveness of the proposed method, we conducted
computer experiments with our 3D facial dataset, described in Sec. 3.1. We
divided 750 samples into three groups (each group contains 250 facial data).
We used three-fold cross-validation to validate the detection accuracy. Two
groups (500 data) were used as training dataset and one group (250 data)
is used as test dataset. We repeat the experiment three times by changing
the test dataset. The input is the 2D transformed gray-scale image or its
differential image. The size of the input image is down-sampled to 90×100
from 360×400.

We used ResNet18 [24] as our baseline network. We also compared its
performance with other network architecture, i.e. ResNet34 [24] and and
SENet [25]. All methods were implemented using Tensorflow. We chose a
mini-batch size of 32 and training epochs of 50, and the parameters were
optimized using an Adagrad optimizer with an initial learning rate of 0.005
and the final learning rate of 0.003 (decay). We ran experiments on a GeForce
GTX 1080 GPU with 8 GB of Video Memory.

We projected the estimated landmarks from the 2D transformed image
to the original 3D image (Sec. 3.1.2), the distance (error) between the esti-
mated 3D landmark and the ground truth landmark is used for quantitative
evaluation of detection accuracy. The total mean error defined in Eqs. (8)
and (9) is used as a measure of detection accuracy.

TMD =
1

MN

M∑
m=1

N∑
n=1

Dmn(8)

Dmn =
√

(xmn − gxmn)2 + (ymn − gymn)2 + (zmn − gzmn)2(9)

where M and N are number of samples and nember of landmarks, respec-
tively. (x, y, z) and (gx, gy, gz) are 3D coordinates of the estimated landmark
and the ground truth landmark, respectively.
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Table 2: Comparison of different network architechers

Backbone Network ResNet18 ResNet34 SENet

Total Mean Error (pixel) 4.2 ± 2.5 4.2 ± 2.8 5.3 ± 3.4

Table 3: Comparison of the proposed methods with conventional method.
“x” is indication of whether the method is applied. The total mean error is
represented by mean± SD

Method Differential Image Multi-task Learning Total mean Error
(pixels)

CM [22] 5.5 ± 2.9
PM1 x 5.2 ± 2.6
PM2 x 4.4 ± 2.5
PM3 x x 4.2 ± 2.5

We performed experiments with following four different projection-based

methods and compared their performance: 1) CM, the conventional method

(single task learning and without differential image) [22], which can be con-

sidered as a baseline of this paper. 2) PM1, the proposed method 1 (single

task learning, but with differential image). 3) PM2, the proposed methods

(multi-task learning, but without differential image). Note that PM3 is our

final proposed method. PM1 and PM2 are used to show the effectiveness of

the proposed differential image and multi-task learning, respectively.

4.2. Results and discussion

Firstly, we compared the performance of the proposed method (PM3) with

different network architectures in Table 2. As shown in Table 2, both

ResNet18 and ResNet34 achieved better performance than SENet, but no

statistically significant difference between ResNet18 and ResNet34. Though

ResNet34 has a deeper network architecture than ResNet18, its performance

was restricted by the limited training samples. Since ResNet18 has the sim-

plest architecture and the comparable performance as ResNet34, we use it

as our backbone network in further experiments (Table 3, Figs. 6 and 7).

Note that the proposed method can be combined with any state-of-the-art

backbone networks.

In order to make a quantitative evaluation, we summarized the mean

error (the average distance over testing samples) for each landmark between

the detected result and the ground truth in Fig. 6. The total mean error

over all 14 landmarks are summarized in Table 3.
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Figure 6: The result of facial landmarks detection related each facial part
with the conventional method [22] and proposed methods.

We can see that the detection accuracy (total mean error) can be signif-
icantly improved from 5.5 ± 2.9 (pixels) to 5.2 ± 2.6 (pixels) and 4.4 ± 2.5
(pixels) by using the differential image and multi-task learning, respectively.
If we combine both to detect the landmarks, the accuracy (total mean error)
can be improved to 4.2 ± 2.5 (pixels). To test the statistical significance of
the detection accuracy differences between the proposed methods and con-
ventional method, we used the distance (error) for each landmark in each
sample to employ t-test. The result of t-test confirmed the statistically signif-
icant (p-value < 0.05) superior performance of all proposed methods (PM1,
PM2, PM3) against CM. We also confirmed the statistically significant (p-
value < 0.05) superior performance of PM3 against PM1 and PM2, respec-
tively. It means that using both differential image and multi-task learning
is more effective than using only differential image or multi-task learning.

Qualitative landmark detection examples are shown in Fig. 7, which are
displayed on the 2D transformed image, the differential image and their
original 3D image. Green points are automatically detected landmarks by
the conventional method and the proposed methods. Red points are ground
truth (manually annotated landmarks on the 2D image). We can see that
3D landmarks are almost accurately detected by the proposed methods.

5. Conclusions

In this paper, we proposed a facial landmark detection method for 3D fa-
cial images based on a combination of differential cylindrical projection and
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Figure 7: Qualitative landmark detection examples. Landmarks (green) in
2D and 3D images detected by the conventional method, the proposed
method 1, the proposed method 2 and the proposed method 3 vs. ground
truth (red).

multi-task learning. The effectiveness of the proposed method was validated
by experiments. The proposed method achieved statistically significant su-
perior perfomance compared with the conventional projection-based method
[22]. The detection accuracy (total mean error) was improved from 5.5 (pix-
els) to 4.2 (pixels). As future works, we are going to modify the fixed sobel
filter by learning an adaptive filter (adding a learnable layer as a learnable
filter after the input layer) that is optimized for enhanced landmarks in the
transformed 2D image. We are also going to add a self-attention module to
automatically identify and enhance the useful features.

We should also note that the proposed method needs to transform the
3D point sets to a 2D image by cylindrical projection as a preprocessing,
which is a time-consuming process. We are also going to combine the ideas
of differentiation and multi-task learning with PointNet [26] or its improved
version of PointNet++ [27], which can use 3D point sets directly for classi-
fication and segmentation, to improve the detection efficiency.
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