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Deep learning has remarkably improved the performance of many
tasks in the computer vision community including 3D reconstruc-
tion. In this paper, we survey both classical and latest works of 3D
reconstruction via deep learning. We divide all surveyed methods
into three categories on the ground of the input modality: single
RGB image based, multiple RGB images based and sketch based.
Representations of output 3D shapes and specific goals of tasks are
also taken into consideration in our classification. In addition, we
overview datasets as well as evaluation metrics commonly used in
current works. Finally, a discussion about potential directions of
future research is provided.

1. Introduction

3D reconstruction is to represent 3D shapes of objects in given input. It
is a fundamental challenge in wide applications ranging from remote sens-
ing, navigation, 3D animation, medical assisting, and so on. Traditionally,
mainstream methods of single image 3D reconstruction are based on certain
assumptions of lighting and reflectance, thus are highly susceptible to the
albedo, illumination, texture of the input. These methods capture shading,
repetitive texture features from input images, while some others capture
geometry information including contours, vertical and horizontal lines, van-
ishing points to reconstruct 3D shapes of the objects. And some use shooting
lights to estimate the distance between viewpoint and the surface actively.
However, these methods are very limited. With the development of deep
learning techniques, both of the performance and the efficiency of 3D re-
construction have been remarkably improved. Early deep learning based
methods take corresponding 3D groundtruths as supervisions, which are
labor-intensive and difficult to get. Therefore, weaker supervisions project-
ing 3D information to 2D space are proposed to take place of 3D supervision.
Including silhouette, depth maps, normal maps, etc., differentiable 2D su-
pervisions are used to back-propagate the gradients from 2D loss functions
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in the networks. Furthermore, there are self-supervision methods minimiz-
ing the distance between 2D projections of reconstruction results and input
images. And based on generative adversarial networks, some works are capa-
ble to reconstruct 3D shapes in an unsupervised manner. As for multi-view
3D reconstruction, photometric stereo and SFM (shape from motion) tech-
niques are used to align the input images from different views previously.
However, these methods are rather restricted in reconstructing objects in
free views efficiently and accurately. Neural networks are first used to help
alignment, but later they are used to reconstruct full shapes directly from
input images. And the proposal of end-to-end structure has improved the
efficiency of reconstruction frameworks. In addition, to deal with non-rigid
object reconstructions, techniques of SFM, NRSFT (non-rigid shape from
template) and prior models are employed in frameworks. In general, though
3D reconstruction technology has experienced a long development, the per-
formance as well as the generalization capability has not reached saturation
yet.

There are several crucial variations in the taxonomy of 3D reconstruction
works, such as input modality, shape representation and network architec-
ture. Basically, the input can be divided into two modalities: RGB image
and sketch. Depth are considered as another modality in some literatures.
However, depth based methods either take depth as an additional input or
an intermediate of networks [1, 2, 3, 4], or focus on other tasks like segmen-
tation and filling missing parts [5, 6, 7]. Therefore, in this paper, we only
survey methods based on RGB image and sketch, without discussing depth
input separately.

Due to its high availability in daily life, RGB image input has been
deeply explored by the community. Among methods based on RGB input,
some take a single image as the input of a network [8, 9, 10], while some
others take a sequence of images [11, 12, 13], in forms of video frames and
images of different viewpoints, as the input. Meanwhile, early sketch based
methods usually take edge maps or standardized line-drawings as input,
while thanks to the rise of end-to-end framework, hand-painted sketches that
are more available to those non-professionals have been researched recently.
To deal with the absence of information in sketch input, prior knowledge and
generative adversarial networks are leveraged in these methods [14, 15, 16].

In addition to input, the representation of 3D shapes is of importance in
reconstruction tasks. The representation impacts the architecture design as
well as the performance of networks. Volumetric methods [17, 18, 19, 20, 2]
represent 3D shapes by voxels in 3D grids. With a similarity of pixels in 2D
images, volumetric networks can be easily extended from 2D convolutions.
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However, it may lead to high memory consumption. Point cloud is a com-
mon representation of 3D shapes which is more memory saving. Point cloud
based methods [21, 22] represent shapes by vertices in 3D coordinates. By
implementing mappings onto the point clouds and dividing points into faces,
meshes can be transformed from point clouds. Mesh based methods [23, 9]
directly generalize meshes from input through mappings, despite suffering
from topology and computation issues. Moreover, occupancy grids [24], oc-
tree [25, 26], parameters [27] and signed distance field (SDF) are also taken
as representations of networks to reconstruct 3D shapes.

As for architecture, MLP (Multi-Layer Perceptron) is commonly used
in initial methods based on neural networks. CNNs (Convolutional Neural
Networks) are widely applied in reconstruction tasks for its appropriateness
of dealing with 2D information. RNNs (Recurrent Neural Networks) are
specifically employed for capturing sequential features in the input; while
GANs (Generative Adversarial Networks) contribute to predicting missing
information and improving the generalization ability of networks. Besides,
recent works use GCNs (Graph Convolutional Networks) in some specific
issues (e. g. face reconstructions) due to its suitability of dealing with non-
Euclidean structure data.

In this paper, a comprehensive survey of 3D reconstruction using deep
learning techniques is presented. We generally survey the reconstruction
methods according to the input modality of networks, and organize each
section under internal logic. The rest of this article is organized as follows.
Section 2 includes common datasets and evaluation metrics used for 3D
reconstruction. Section 3 surveys reconstruction methods based on single
image input, while Section 4 focuses on multiple images. Section 5 reviews
sketch based reconstructions. Finally, Section 6 discusses existing challenges
of current works and potential directions of future researches.

2. Overview

2.1. Common dataset

This section reviews existing popular datasets used for 3D reconstruction.
ShapeNet [28] is a large-scale repository of shapes containing more

than 50,000 CAD models organized in 55 classes. Annotations of semantic
categories and attributes are also provided.

Pascal 3D+ [29] contains 12 classes of 3D rigid objects, with more than
3,000 objects per category. The dataset can be used for 3D object detection
and pose estimation. Besides, it can be used as baselines for the community.
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ObjectNet3D [30] consists of 100 categories and 90,127 images. Both
3D pose and shape annotations are provided for each 2D object in the im-
ages. It can also be used in proposal generation, 2D object detection and 3D
pose estimation tasks.

KITTI [31] is a challenging dataset containing raw data captured by
two video cameras and a laser scanner from rural areas and highways. It can
be taken as real-world computer vision benchmarks in stereo, optical flow,
visual odometry, 3D object detection and 3D tracking tasks.

Besides, there are some datasets used for specific reconstruction tasks, in-
cluding BU-3DFE, Bosphorus, MICC, AFLW2000-3D for human face tasks
and HumanEva [32] and Human3.6M [33] for human body tasks.

2.2. Metric

Common evaluation metrics used in 3D reconstruction are introduced as
follows. Voxel IoU, MSE and cross-entropy loss are commonly used metrics
in evaluating reconstruction performance of voxel representation.

MSE Mean Square Error (MSE) is the distance between a reconstructed
3D voxel shape and corresponding groundtruth.

(1) MSE =

∑n
i=1 |pi − gi|2

n

where pi ∈ [0, 1] denotes the predicted output at voxel i in a grid space, gi
is the corresponding groundtruth occupancy, and n is the total number of
the voxels. Lower values indicate better reconstruction results.

Voxel IoU Intersection-over-Union (IoU) is commonly used in object de-
tection tasks to measure the accuracy of a detecting algorithm. Extended to
3D reconstruction, Voxel IoU evaluates the accuracy of reconstructed shapes
in voxel representation.

(2) Voxel IoU =

∑n
i=1 I(pi > t)I(gi)∑n

i=1 I(I(pi > t)) + I(gi))

where I(·) is an indicator function and t ∈ [0, 1] is a specified voxelization
threshold. Higher values indicate better reconstruction results.

As for point cloud and mesh representation, we can evaluate the perfor-
mance in several distance metrics between the reconstructed result and its
groundtruth.
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Average Euclidean Distance The average Euclidean distance is a basic met-
ric in both 2D and 3D space. For point clouds, it is calculated by averaging
the distance between each pair of corresponding points; while for meshes
having faces information, the average Euclidean distance can be calculated
along the normal as well.

Chamfer Distance Chamfer distance calculates the sum of distances be-
tween closest point pairs. The original asymmetric form is shown in equa-
tion (3).

(3) CD(P, P̂ ) =

∑
pi∈P minp̂i∈P̂ ‖pi − p̂i‖

|P |

where P, P̂ are two point clouds. This formula can be extended into a sym-
metric form:

(4) CDsym(P, P̂ ) = CD(P, P̂ ) + CD(P̂ , P )

Besides, ‖·‖ can be changed to ‖·‖2 (Euclidean distance) and other forms.

EMD Earth mover’s distance (EMD) measures the distance between two
probability distributions over a region in statistics. It is also used in image
and singal processing tasks to quantitatively describe the difference.

(5) EMD(P, P̂ ) = minφ:P→P̂

∑

pi∈P
‖pi − φ(pi)‖2

where φ(·) is a bijection from P to P̂ .

F-Score Given a threshold distance d, F-Score can be calculated from
precision and recall of two point clouds. Particularly, precision is the
percentage of reconstructed points lying within distance d to points on
groundtruth surfaces. In reverse, recall is the percentage of groundtruth
points lying within distance d to points on reconstructed surfaces.

(6) F =

(
1 + β2

)
Precision ∗Recall

β2 ∗ Precision+Recall

where we use β to balance the weights of precision and recall. When β = 1,
the formula becomes

(7)
2

F1
=

1

Precision
+

1

Recall
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Table 1: Compare single image based methods over representation, target,
supervision and architecture. GT: groundtruth

Ref Representation Target Supervision Architecture
[8] voxel object 2D GT, 3D GT CNN
[10] voxel object 3D GT GAN
[1] voxel novel object 3D GT CNN
[20] voxel object with pose bounding box,

silhouette
GAN

[34] voxel human body 3D scan, prior model CNN
[2] point cloud object depth CNN
[22] point cloud object coarse points CNN
[35] point cloud object foreground mask CNN
[9] mesh object ellipsoid mesh GCN
[36] mesh multiple human

(non-rigid)
prior model CNN

[37] mesh face caricature
(non-rigid)

prior model CNN

3. Single image reconstruction

In the past decades, single image based 3D reconstruction has developed
from extracting geometry and texture features from limited types of images,
to learning parameters of neural networks to estimate 3D shapes. Great
improvements have been demonstrated in computational efficiency, recon-
struction performance and generalization capability of 3D reconstruction.

The earliest deep learning based methods require real 3D shapes of tar-
get objects as supervision, which is very difficult to get at that time. Some
researchers render images from CAD models to extend datasets, however
problems occur that such synthesized data lead to lacks of generalization
and authenticity in the reconstruction results. Some researchers take 2D
and 2.5D projections of groundtruths as supervision and minimized repro-
jection losses during the learning process, such as contour, surface normal,
etc. Later, methods that compare projections of the reconstructed results
with the input to minimize the difference achieve to work with less supervi-
sion.

There are many factors influence both the procedure and the result of
reconstruction. Table 1 shows the comparison between methods on 3D rep-
resentation, reconstruction target, training supervision and network archi-
tecture. Despite having availability to 2D convolution, voxel representation
shares a common challenge of high cost in memory, thus are limited in the
scale of grids.



3D reconstruction using deep learning: a survey 395

Figure 1: The architecture of Ref. [19].

3.1. Voxel representation

Voxel is one of the earliest 3D representations, which is very suitable for con-

volutional operations. Training their networks with 3D supervision, Zhang

et al. [1] orderly predict a depth from given image under the same view

and estimate a single-view spherical map from the depth. Then they use a

voxel refinement network to integrate two projections and output a final re-

construction result. This work achieves generalizable and high-quality single

image 3D reconstruction. Instead of requiring 3D groundtruth, some others

using less supervision in the learning procedure. MarrNet [8] takes depth,

normal map and silhouette as intermediate results to reconstruct 3D voxel

shapes and use a reprojection consistency loss in the following procedure

to estimate 3D shapes. Similarly, Yan et al. [19] propose a novel projec-

tion loss to learn 2D observation without 3D groundtruths. As shown in

Figure 1, they use a 2D convolutional encoder, a 3D up-convolutional de-

coder and a perspective transformer network to reconstruct 3D voxels. They

achieved state-of-the-art performance at that time. Different from the above

works, Zhu et al. [20] reconstruct pose-aware 3D shapes from a single nat-

ural image. They refer to TL-embedding Network [38] and 3D-VAE-GAN

[39] to construct the network, and minimize the reprojection loss over re-

projected and ground truth silhouettes. Wu et al. [10] propose a framework

that combines adversarial and volumetric convolutional networks to gen-

erate voxels from a probabilistic latent space in an unsupervised manner.

They improve the generalization ability of the network, which is also studied

in Refs. [21, 3, 10]. More recently, a lateset work TetraTSDF [34] proposes

a tetrahedral volumetric representation of the human body and a method

to retrieve detailed 3D body shapes wearing loose clothes from single 2D

images. Based on the skinned multi-person linear model (SMPL) [40], they

dilate, coarsen, up-sample and finally tetrahedralize the template model to
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build a dense outer shell which is able to reconstruct details in lower resolu-
tions compared with using standard rectangular voxels. To build the training
data, pose and shape parameters of the outer shell are fitted to 3D scans
and dense truncated signed distance fields (TSDF) are later produced by
calculating TSDF values at the summits of each tetrahedra. While training,
a novel part connection network of multiple feature layers is implemented
to address the large memory consuming.

For multiple objects reconstruction [41, 42], CoReNet [43] jointly recon-
structs multiple objects from a single image via a coherent reconstruction
network. Going through a 2D encoder and a 3D decoder successively, all ob-
jects detected in the input image are represented in a single consistent 3D
coordinate without intersection. And a ray-traced skip connection is intro-
duced to ensure the physical accuracy. Specifically, they use a hybrid volume
representation, in a maximum scale of grids of 1283.

3.2. Point cloud representation

Point cloud is a sparse and memory saving representation compared with
voxels. In early methods that take point clouds as the output of deep learn-
ing networks, Fan et al. [44] propose PointOutNet to reconstruct objects
from single image. As shown in Figure 2, PointOutNet has a convolution
encoder and two parallel predictor branches. The encoder takes in an image
and a random vector that perturbs the prediction. And one of the branches is
a fully-connected branch that captures complicated structures and another
is a deconvolution branch that generates point coordinates. This network
well exploits geometric continuity and is capable to generate smooth ob-
jects. Meanwhile, Lin et al. [2] utilize 2D convolutional operations to achieve
higher efficiency. First, they use a generator to predict 3D structures at novel
viewpoints from single image. They later use a pseudo-renderer to synthe-
size depth images of corresponding views, which are further used for joint
2D projection optimization. They predict denser point clouds of higher ac-
curacy.

More recently, Zhang et al. [22] retrieve a nearest 3D shape as an extra
input of the reconstruction network to generate fine-grained point clouds.
They introduce an attention based 2D-3D fusion module into the network to
integrate 2d and 3d features adaptively. Navaneet et al. [35] reconstruct point
clouds from images of a certain category with corresponding foreground
masks of each object. Based on an encoder-to-decoder structure, they use a
geometric loss and a pose cycle consistency loss to train the networks in a
self-supervised manner. They also achieve a multi-view and pose supervised
approach in this work.
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Figure 2: The architecture of Ref. [44].

3.3. Mesh representation

Previously, Kato et al. [45] reconstruct meshes from low-resolution images
by employing an integrated mesh rendering network. They minimize the
difference on 2D silhouettes between reconstructed objects and correspond-
ing groundtruths. Pan et al. [23] propose ResMeshNet, a stacked framework
consists of multiple MLP blocks, to reconstruct 3D meshes from single im-
age. Specifically, they employ a shortcut connection between two blocks to
retain the geometrical consistency. However, this work has difficulties in re-
constructing smooth results with correct triangulation. To achieve higher
fidelity, Pix2Mesh [9] uses a cascaded, graph-based convolutional network
to reconstruct 3D meshes of rigid objects. The network captures perceptual
features from the input image and deforms an ellipsoid progressively into
the output geometry.

In addition to forementioned works, some others aim to reconstruct in-
herent deformations in non-rigid objects. Tasks of non-rigid reconstruction
from single image usually require extra information of target objects, which
can be either predicted during the process, or given as prior knowledge, such
as skeleton structures and parameterized models.

Estimating poses and shapes of a human mesh from RGB images has
extensive applications in daily life. Zeng et al. [36] propose a model-free
method to establish dense correspondence between output mesh and local
image features using a novel UV map. Jiang et al. [46] coherently reconstruct
poses and shapes of multi-person in a single image based on zeng’s work.
Based on a prior model, Geo-PIFu [47] uses a deep implicit function to
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represent clothed body shapes. It preserves global shape regularity as well
as details of clothes by aligning and fusing local geometry and pixel features.
And the forementioned work TetraTSDF [34] is able to reconstruct both
poses and details of the human body dressed in loose clothes. On the other
hand, Zhang et al. [37] address a quite different issue. Given a caricature,
they detect 2D landmarks on the faces and use them to generate exaggerate,
distorted face shapes. They are capable to reconstruct face shapes from
caricatures through a nonlinear parametric model.

3.4. Other representation

Other than the representations mentioned above, 2.5D [3, 48] representa-
tion as well as occupancy grid [25, 26] and implicit surface [49, 50] based
volumetric representation are also utilized to represent reconstructed 3D
shapes.

Depth Liu ei al. [48] generate depth maps of input images through recur-
rent attentional networks and recognize interested objects from the depths
using CNN. Zhou et al. [3] utilize mirror planes to predict depth maps of
self-symmetry objects by finding corresponding pixel pairs in the image.
They introduce cost volumes into the reconstruction procedure to preserv-
ing the geometry and simultaneously generate confidence vector and depth
estimation. Wu et al. [51] also leverage symmetry in their work and achieve
unsupervised single image reconstruction. Assuming that the object in an
input image is horizontally symmetric, they use an autoencoder to estimate
the light direction, symmetric depth maps and albedos of a frontal view and
predict a canonical like of the input object through these results, followed
by transforming the canonical image into the actual view to evaluate the
difference.

Implicit Surface OccNet [49] implicitly represents 3D shapes as the contin-
uous decision boundary of a deep network classifier and achieves relatively
higher resolution and lower memory occupation. UCLID-Net [50] proposes
a multi-layer network architecture to extract geometry features and repre-
sents 3D shapes in an Euclidean preserving latent space. Michalkiewicz et al.
[52] use a CNN based decoder to predict SDF representations from a latent
space. Later, it is demonstrated that adopting principal component analysis
on SDF in reconstruction process allows higher resolution and quality [53].
SPSG [54] leverages 2D view-guided synthesis in reconstructing 3D objects
of TSDF from incomplete single RGB-D scan. This network is capable to
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reconstruct geometry and color respectively in a self-supervised way. Similar
with SPSG in reconstructing both shapes and colors, Im2Avatar [55] repre-
sents 3D shapes in occupancy grids and colors in volumes. Recently, TSDF
based representations (e.g., combined with volume or octree [34, 56]) have
shown an advantage in dealing with interference (e.g., overlap and noise)
and modeling continuous surfaces efficiently.

In general, reconstruction 3D objects from single image is challenging
due to inherent ambiguity and self-occlusion in single view input. Although
both performance and efficiency have been improved greatly over the past
few years, more research is needed in reconstructions from single image.

4. Multiple image reconstruction

When images of different views are taken as input of networks, the inherent
ambiguity of the object keeps reducing and obscured parts are supplemented.

Traditionally, there are two main types of multi-view reconstruction.
One is to reconstruct a still object from images of two or more views, while
the other is to reconstruct the 3D shape of a moving object from a video
or multiple frames. Both of these methods estimate camera pose and cor-
responding shape from an image and align the partial 3D shapes into a
full one. Therefore, the difficulty lies in pose estimating and 3D alignment.
Deep learning techniques are first introduced into multi-image reconstruc-
tion to address this issue. Later, deep neural networks are used to directly
generate 3D shapes from input images. And the employment of end-to-end
structure greatly reduce the time consume of the reconstruction process.
Table 2 shows the comparison between multiple image based reconstruction
methods in input modality, 3D representation and reconstruction target.

4.1. Rigid reconstruction

Previously, Xie et al. [17] propose an encoder-decoder structure framework
Pix2Vox++ based on RNNs to generate a coarse volume for each input im-
age. As shown in Figure 3, They fuse all the coarse volumes through a multi-
scale context-aware fusion module and adopt a refiner to correct the fused
volume. Inspired by the standard LSTM framework, 3D-R2N2 [24] outputs
3D shapes in occupancy grids with the only supervision of bounding box.
It unifies single and multi-view reconstruction in an encoder-LSTM-decoder
structure. The 3D convolutional LSTM updates hidden representations se-
lectively through input gates and forget gates. It effectively handles the
self-occlusion and incrementally refines the reconstruction result as more
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Table 2: Compare multi-image based methods over representation, input
and target

Ref Representation Input Target
[17] voxel image(s) object
[24] voxel image(s) object
[57] voxel images object
[11] voxel images object
[58] point cloud image(s) novel object
[12] point cloud images object
[27] mesh image(s) face parameters
[59] mesh images object (pose) hand (pose, shape)
[13] SDF images objects
[54] TSDF RGBD scan objects
[56] TSDF depth maps object

Figure 3: The architecture of Ref. [17].

observations being taken in. However, despite capability to retain previous
observations, methods based on such structure may fail when given similar
images and are limited to retain features in early inputs.

Given a RGB video, FroDO [13] use a coarse-to-fine framework to re-
construct multiple 3D meshes with sparse point clouds and precomputed
camera poses. The network consists a CNN based encoder to predict a 64D
parameter for each different object detected in the image sequence, as well
as two decoders to predict object shapes as points and SDF. The final re-
constructed result is incrementally generated through refining and fusion
processes. Cascaded coarse-to-fine structure is a reasonable choice to recon-
struct high-resolution geometries with low memory consuming. Cao et al.
[56] use cascaded, multi-stage networks to infer missing surface areas and
refine geometric details from incomplete and noisy depth maps. They first
integrate raw depth scans into a TSDF volume, followed by implement-
ing two 3D fully convolutional networks to respectively regress a complete
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low-resolution TSDF and infer detailed high-resolution patches to refine the

regressed TSDF. Note that they substitute modified networks in OctNet [25]

for convolution and pooling layers in UNet [60] to store TSDF volumes in

the structure of octree.

To address alignment without 3D supervisions, Banani et al. [11] propose

learning two networks: one is to estimate the 3D shape of an object from

two images of different viewpoints with corresponding pose vectors, and

predict the object’s appearance from a third view; and the other evaluates

the misalignment of two views. While testing, they predict a transformation

that best aligns the bottleneck features of two input images. Their networks

also work on generalizing unseen objects.

Moreover, there are some specific tasks focusing on reconstructing build-

ings [61, 62, 63], large-scale scenes [64, 65, 66] and reconstructing under dy-

namic views [67, 68, 69]. Researchers use scanners, depth cameras and other

devices to generate point clouds and depth maps separately over frames.

Difficulties usually lie in distance standardizing and camera pose estimation

[70, 71].

4.2. Non-rigid reconstruction

As for non-rigid reconstruction, Zuo et al. [72] utilize the SMPL model to

build up a human avatar from a sparse RGBD video. They perform an initial

pairwise alignment over every adjacent two frames of the video and generate

a full 3D shape through a global non-rigid registration procedure. Besides,

they also present a texture mapping method to texture the reconstructed

human meshes by deforming textures captured from several frames. Differ-

ently, Ref. [72, 73] aim to track the motion of human and dynamic objects.

It is noticeable that tasks of hand-object image reconstruction can be

quite different. For one hand, when the hand is interacting with the object

(like grab and hold), there is probably large occlusion in the images. Works

[74, 75] focus on interaction tasks and are able to reconstruction shapes

and poses of hands. For the other hand, the poses of hand and object are

intrinsically relevant. Some researchers [76, 77, 78] benefit from training to

learn poses of hands and objects jointly. And a recent work [59] introduces a

novel photometric loss into a single feed-forward neural network to estimate

poses and shapes of both hands and objects jointly.

Furthermore, face reconstruction [79, 80] is common filed in non-rigid

3D reconstruction as well. Compared with MultiViewFace [27] that recon-

structs a face mesh from multi-view images based on RNN, DeepFaceFlow
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[79] predicts 3D flows of human faces using convolutional networks. They re-
construct dense high-quality dynamic face shapes with 3d groundtruth scans
from pairs of frames in monocular facial videos. And for real-time recon-
structing, Thomas [80] proposes a detailed 3D face animating system based
on a RGBD camera. They implement rigid reconstruction on the first neutral
face frame to reconstruct face shapes in the blendshape representation and
track the deformation of shape and texture in the following frames. They
overcome the lack of geometry details by augmenting blendshape meshes
with a pair of deviation and color images.

Generally, among rigid object and scene reconstruction, current works
mainly focus on improving the resolution of reconstruction results and en-
hancing network generalization capability. As for the reconstruction of non-
rigid objects, due to their internal structure variability, prior knowledge are
employed to estimate deformation of templates and parameters of models.
Consequently, such methods are capable to reconstruct 3D representations of
average shape, but are limited in reconstructing details and characteristics.

5. Sketch reconstruction

Sketch is another type of input in 3D reconstructions, which contains least
information for human to perceive full 3D shapes, such as edge map, binary
silhouette, line drawing and so on. 3D reconstruction based on sketch input
has been studied in past several years. Due to lacks of visual information,
previous works usually require additional supervision, including surface nor-
mal and multiple viewpoints, during the learning procedure.

Delanoy et al. [15] learn 3D voxels from edge maps of multiple views. The
network first predicts an initial reconstruction via a single-view CNN and re-
fines the output with the increment of edge maps from different viewpoints.
Xin et al. [81] predict editable 3D shapes of cuboids and cylinders from gen-
erated instance masks with semantic labels. They uses an instance-aware
segmentation network and a deformable convolutional network to predict
labeled part-level masks from RGB images. Similarly with Ref. [45], their
editing is implemented on 2D supervision by adjusting the extracted trajec-
tory axis on these masks.

However, these works take only professional, accurate sketches as in-
put. To adjust the network for input with more geometrical distortion,
Wang et al. [16] propose a framework to reconstruct 3D volumes with poses
from single freehand sketch. They employ a generative model to synthesize
sketches from object images as training data. And a standardization module
is adopted to transform sketch styles and enhance the generalization ability
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of the network. Furthermore, some works are proposed to reduce the su-
pervision. PrGANs [14] learns a probabilistic distribution over 3D shapes
from a collection of 2D binary sketches of a certain category in an unsu-
pervised manner. Based on GANs, it consists of a generator to generate 3D
voxels, a projection module to render2D binary sketches from certain view,
and a discriminator to classify whether a binary image is real. With a sim-
ilar architecture of 3D-GAN [10], PrGANs achieves better reconstruction
performance but fails to capture concave interior structures.

Notablely, human related freehand sketch is getting its popularity dur-
ing recent years in both 2D [82, 83, 84, 85, 86] and 3D reconstruction
[87, 88, 89, 90]. Early in 2009, Sketch2Photo [82] was proposed to gener-
ate photo-realistic pictures from single sketch image. Han et al. [87] propose
a CNN based modeling system to reconstruct 3D meshes from single free-
hand caricature through a bilinear model of shape and expression variations.
The framework also supports gesture based user interactions to further ma-
nipulate the face models. Later, the framework is further extended [89] to
exaggerate faces in 3D meshes. Given a face photo, the new framework is
able to reconstruct a 3D face mesh and edit it to approximate a freehand
caricature.

In this section, we discuss about the 3D reconstruction methods based
on undistorted and freehand sketches. Targets of sketch based reconstruc-
tions are generally objects with strong geometric features. Techniques of
variational auto-encoders and generative networks are commonly employed
to address the issue of cue deficiency. Noticeably, freehand sketch, especially
sketch of human faces, has gained popularity during the past several years.
These methods usually rely on prior models and generative adversarial net-
works to obtain plausible results. Generally, reconstructing credible shapes
from freehand sketch needs further research in the future.

6. Conclusions

In this paper, we provide a comprehensive survey of deep learning based 3D
reconstruction. We review extensive methods in the last decade and cate-
gorize them according to different input modalities: single image, multiple
images and sketch input. Each category is organized under well-designed
structure. In addition to the taxonomy, advantages and limitations are also
discussed in each category. Moreover, we focus on latest works to follow the
current progress and mainstream of the community.

The representation of reconstructed shapes also infects the architecture
of networks. Voxel representation suffers a limitation of low resolution due
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to its high memory consume; and point cloud representation lacks details

and characteristics especially in tasks requiring prior models. Furthermore,

in order to handle with the lack of training data, some researchers adopt

methods of 2D and weaker supervision to avoid using 3D groundtruth; while

to reconstruct objects from unseen categories, some researchers adjust the

architectures to enhance the generalization ability of the networks. More

researches are needed to further study the forementioned issues.

Meanwhile, in order to make reconstruction tasks more accessible to

non-professionals, sketch input has been increasingly popular. We consider

it a potential direction of future researches that to express the input with

less constrains in wider range of reconstruction tasks. In addition, there are

many special tasks in 3D reconstruction researches. Reconstructing shapes

with specific attributes is in demand, such as the identity and expression

attributions of human face, pose of human body, gesture in interaction tasks,

focus in medical field, etc. We therefore believe that approaches of more

universality and investigations on specific tasks are required in the future.
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