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Rapid advances in data collection and processing capabilities have
allowed for the use of increasingly complex models that give rise
to nonconvex optimization problems. These formulations, however,
can be arbitrarily difficult to solve in general, in the sense that even
simply verifying that a given point is a local minimum can be NP-
hard [1]. Still, some relatively simple algorithms have been shown
to lead to surprisingly good empirical results in many contexts of
interest. Perhaps the most prominent example is the success of
the backpropagation algorithm for training neural networks. Sev-
eral recent works have pursued rigorous analytical justification for
this phenomenon by studying the structure of the nonconvex op-
timization problems and establishing that simple algorithms, such
as gradient descent and its variations, perform well in converging
towards local minima and avoiding saddle-points. A key insight in
these analyses is that gradient perturbations play a critical role in
allowing local descent algorithms to efficiently distinguish desirable
from undesirable stationary points and escape from the latter. In
this article, we cover recent results on second-order guarantees for
stochastic first-order optimization algorithms in centralized, feder-
ated, and decentralized architectures.

1. Learning through optimization

A key desirable feature of automated learning algorithms is the ability to

learn models directly from data with minimal need for direct intervention

by the designer. This is generally achieved by parameterizing a family of

models of sufficient explanatory power through a set of parameters w ∈ RM

and subsequently searching for the choice of wo that fits the data “well”, in

∗This article provides an overview and summary of results from [2, 3, 4] along
with some extensions.
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the sense that:

(1) wo � argminw∈RMExQ(w;x)

In this formulation, the loss function Q(w;x) denotes a measure of fit of
the model w for the random data x. Hence, the desired model wo is defined
as the one that results in the smallest expected risk, where the expectation
is taken with respect to the distribution of the data x. As we illustrate in a
number of examples in the sequel, a vast majority of inference problems fit
into the general framework (1).

Example 1 (Loss functions for supervised learning). In the supervised
learning setting, the data x � {h,γ} can be decomposed into a feature
vector h ∈ RM1 and a label γ. When the target variable γ ∈ RM2 is con-
tinuous, this is typically an estimation problem with the objective being to
construct an estimator γ̂(w;h) such that the error γ̂(w;h) − γ is small in
some sense with high probability. One popular choice for the loss function
Q(w;h,γ) in this case is the squared error loss:

(2) Q(w;h,γ) = ‖γ̂(w;h)− γ‖2

On the other hand, when γ is scalar and discrete as in the binary case
γ ∈ {−1, 1}, the problem becomes a (binary) classification problem, with
the objective being to find a classifier γ̂(w;h) such that with high probability
sign {γ̂(w;h)} = γ. An example of a popular choice for the loss function in
this case is the logistic loss:

(3) Q(w;h,γ) = log
(
1 + e−γγ̂(w;h)

)
We note that while the choice of the loss function is generally informed

by the distribution of the target variable γ, such as whether it is continuous
or discrete, we still need to specify the dependence of Q(w;h,γ) on w. Since
in both examples (2) and (3), the loss depends on w through γ̂(w;h), we
can describe this dependence by parameterizing γ̂(w;h) through w.

Example 2 (Modeling for supervised learning). The most immediate pa-
rametrization of γ̂(w;h) corresponds to the set of linear mappings:

(4) γ̂(w;h) � hTw

Combining the linear model (4) with the quadratic loss (2) results in the
minimum mean-square error estimator, while (4) with (3) leads to the lo-
gistic regression solution, both of which are convex optimization problems
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with efficient solution methods [5]. While convexity of the resulting prob-
lem (1) is an appealing property to have, the evident drawback of the linear
parametrization (4) is its limited expressive power. Only mappings that cor-
respond to linear combinations of the elements of the feature vector are
captured by (4), while non-linear interactions are beyond the scope of this
model. For this reason, recent years have seen an increased interest in the
utilization of neural networks, which are nested models of the form [6]:

(5) γ̂(w;h) � WLσ (WL−1σ (. . . σ (W1h)))

where the
{
W� ∈ RM�,1×M�,2

}
denote matrices of appropriate dimensions and

σ(·) denotes an element-wise activation function (usually nonlinear in form).
We can collect in w all parameters W�, i.e., w � col {vec {W�}} and again
recover an instance of (1) for both the quadratic (2) and logistic (3) losses.
Models of the form (5), particularly for a suitable size L and dimensions
M�,1,M�,2 of hidden layers, are able to model well non-linear classification
functions γ̂(w;h). However, note that any choice L ≥ 2 will generally result
in a nonconvex loss surface (1). This necessitates the development of perfor-
mance guarantees of algorithms for algorithms solving (1) under nonconvex
environments.

Example 3 (Unsupervised learning). Not all learning problems present
themselves as supervised problems where the objective is to learn a mapping
from feature to label. One such example is in the design of recommender
systems where users are implicitly clustered and receive recommendations
based on the preferences of “similar” other users. A popular approach on this
setting revolves around matrix factorization [7]. One such implementation
results in:

(6) Q(w;x) � ‖X −W1W
T
2 ‖2 + ρ

(
‖W1‖2 + ‖W2‖2

)
where x � vec {X}, w � col {vec {W1} , vec {W2}} and ρ > 0 denotes the
regularization weights. The matrices W1,W2 are generally chosen to be tall,
so that W1W

T
2 has low rank, and (6) pursues a low-rank approximation

of X.

2. Centralized stochastic optimization

From examples 1–3 we conclude that a large number of learning problems,
including linear as well as non-linear regression and classification problems,
and unsupervised formulations, can be recovered by specializing the general
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stochastic optimization problem (1). The task of designing an effective learn-
ing method then boils down to two related decisions: (a) the choice of the
learning architecture, which determines the form of the loss Q(w;x), and
(b) the choice of the optimization strategy, which given realizations of the
random variable x yields a high-quality estimate for wo. For the remainder
of this article we will consider the architecture, and hence Q(w;x), fixed and
will focus on the latter challenge, namely providing performance guarantees
for the quality of the estimate of wo produced by the optimization algorithm
for general nonconvex problems. We let:

(7) J(w) � ExQ(w;x)

2.1. Notions of optimality

Loosely speaking, the objective of any (stochastic) optimization algorithm
is to produce “high-quality” estimates for the minimizer wo in (1). When
the risk J(w) � ExQ(w;x) is strongly-convex there is little ambiguity in the
quantification of the quality of an estimate, since for strongly-convex costs
with constant ν we have [8, Sec. 9.1.2]:

(8)
ν

2
‖w − wo‖2 ≤ J(w)− J(wo) ≤ 1

2ν
‖∇J(w)‖2

If the risk additionally has δ-Lipschitz gradients, we similarly have [8, Sec.
9.1.2]:

(9)
1

2δ
‖∇J(w)‖2 ≤ J(w)− J(wo) ≤ δ

2
‖w − wo‖2

By inspecting these two inequalities we conclude that all three measures of
optimality, namely the squared deviation from the minimizer ‖w − wo‖2,
the excess risk J(w)− J(wo), and the squared gradient norm ‖∇J(w)‖2 are
essentially equivalent up to constants that depend on the strong-convexity
and Lipschitz parameters δ and ν, respectively. This means that, as long as
the problem is reasonably well-conditioned, meaning that the fraction δ

ν does
not grow too large, the choice of the performance measure is not particularly
relevant, since high performance in one measure necessarily implies high
performance in both other measures. In other words, any point w ∈ RM

with a small gradient norm ‖∇J(w)‖2, for strongly-convex problems, will
essentially be globally optimal in the sense that both the excess risk J(w)−
J(wo) and distance to the minimizer ‖w − wo‖2 will be small.

In the nonconvex setting considered here, and hence in the absence of (8),
this is no longer the case as we illustrate in the sequel.
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Definition 1 (O(μ)-first-order stationarity). A point w ∈ RM is O(μ)-first-

order stationary if:

(10) ‖∇J(w)‖2 ≤ O(μ)

These points are technically only approximately first-order stationary, since

exact first-order stationarity would require ∇J(w) = 0. Since we gener-

ally refer to O(μ)-first-order stationarity throughout this manuscript, we will

drop “approximate” for convenience whenever it is clear from context.

In light of relation (9), for costs with δ-Lipschitz gradients, O(μ)-first-

order stationarity is a necessary condition to ensure J(w) − J(wo) ≤ O(μ)

and ‖w−wo‖2 ≤ O(μ). However, unless the cost is assumed to additionally

be strongly convex, Definition 1 is not sufficient to guarantee that the point

w has small excess risk J(w) − J(wo) or small distance to the minimizer

‖w − wo‖2, since establishing sufficiency requires (8) which only holds for

strongly-convex costs. In fact, the set of O(μ)-first-order stationary points

for nonconvex risk functions includes the set of local minima, maxima as well

as saddle-points. Nevertheless, many studies of local descent algorithms in

nonconvex environments establish performance guarantees by showing that

the limiting points of the algorithm are approximately first-order station-

ary using variations of Definition 1 in both the single-agent and multi-agent

settings [9, 10, 11, 12, 13, 14, 15, 16]. These results are reassuring, as first-

order stationarity is a necessary condition for local optimality, and hence

any algorithm that does not produce a first-order stationary point will nec-

essarily not produce a point with small excess risk, or small distance to the

minimizer. Nevertheless, these results cannot ensure that the limiting first-

order stationary point does not correspond to a saddle-point, which have

been identified as a bottleneck in many nonconvex problems of interest [17].

This observation, following the works [18, 19, 20] motivates us to consider a

stronger notion of optimality.

To formulate it, note that our objective is to converge towards points

w ∈ RM that are local minima and hence satisfy:

(11) J(w) ≤ J(w +Δw)

for all small Δw ∈ RM . In other words, we would like to avoid approaching

points w where there exists Δw ∈ RM such that:

(12) J(w) > J(w +Δw)
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By introducing the second-order Taylor expansion around w, we can write:

J(w)− J(w +Δw) ≈ −∇J(w)TΔw −ΔwT∇2J(w)Δw

≈ −ΔwT∇2J(w)Δw(13)

where we dropped the linear term ∇J(w)TΔw since, at first-order station-
ary points, ∇J(w) ≈ 0. Hence, we shall say that w is second-order locally
optimal according to its second-order Taylor expansion if, and only if,

(14) ΔwT∇2J(w)Δw ≥ 0

This requirement is equivalent to λmin

(
∇2J(w)

)
≥ 0. We emphasize that w

is second-order locally optimal, since expression (13) is only an approxima-
tion of J(w)−J(w+Δw) based on derivatives up to second-order. Therefore,
approaching points w where λmin(∇2J(w)) ≥ 0 is desirable. Another way to
see this is to note that we also have from (13):

J(w) ≈ J(w +Δw)−ΔwT∇2J(w)Δw

≤ J(w +Δw)− λmin

(
∇2J(w)

)
‖Δw‖2(15)

where equality holds whenever Δw is the eigenvector of ∇2J(w) correspond-
ing to λmin

(
∇2J(w)

)
, i.e., ∇2J(w)Δw = λmin

(
∇2J(w)

)
Δw. It follows that

whenever λmin

(
∇2J(w)

)
is negative, the larger its magnitude is, the less

locally optimal w is. In other words, points w with significantly negative
λmin

(
∇2J(w)

)
are highly undesirable limiting points of a local descent al-

gorithm. Motivated by this discussion, we define the set of τ -second-order
stationary points.

Definition 2 (τ -second-order stationarity). A point w ∈ RM is τ -second-
order stationary if it is O(μ)-first-order stationary following Definition 1
and additionally, for some τ > 0,

(16) λmin

{
∇2J(w)

}
> −τ

where λmin

{
∇2J(w)

}
denotes the smallest eigenvalue of the Hessian matrix

∇2J(w).

We will be focusing on the case when τ is small. Intuitively, points w
that satisfy condition (16) are either local minima (e.g., when all eigenvalues
of the Hessian matrix are positive) or they are weak saddle-points that are
close to local minima (when the smallest eigenvalue is negative but only



Second-order guarantees in nonconvex optimization 359

by a small amount). Returning to (15), we find that every τ -second-order
stationary point w satisfies:

(17) J(w) ≤ J(w +Δw) + τ‖Δw‖2

Note that, as τ → 0, the definition of τ -second-order stationarity corre-
sponds to the definition of local optimality (11). The freedom to set any
τ > 0, rather than requiring τ → 0, allows us to set an expectation of local
optimality in the sense of (17). This quantity does not appear as a param-
eter of any of the algorithms presented in this work, but does appear in the
expressions on the convergence time (Theorems 2 and 6) as O(1/τ) meaning
that a higher expectation of local optimality requires longer running time of
the algorithms, which conforms with intuition. We conclude that, while for
non-zero τ not all τ -second-order stationary points are locally optimal, any
τ -second-order stationary is almost locally optimal for small τ in the sense
of (17).

The set of second-order stationary points in Definition 2 is a subset of the
set of first-order stationary points in Definition 1. Every second-order sta-
tionary point is also first-order stationary, but the additional restriction (16)
allows for the exclusion of certain, undesirable, stationary points that do not
satisfy (17), such as local maxima and saddle-points. Specifically, by choos-
ing τ small enough, we are able to exclude any first-order stationary point
where the smallest eigenvalue of the Hessian is negative and bounded away
from zero. These points, which correspond to the complement of Definition 2,
are frequently referred to as strict saddle-points in the literature due to the
requirement for the smallest eigenvalue to be strictly negative.

Definition 3 (τ -strict saddle-points). A point w ∈ RM is a τ -strict saddle-
point if it is O(μ)-first-order stationary following Definition 1 and addition-
ally:

(18) λmin

{
∇2J(w)

}
≤ −τ

Note that the only difference to Definition 2 is the reversal of inequality (16)
to (18). As such, the set of τ -strict saddle-points is precisely the complement
of the set of τ -second-order stationary points in the set of first-order station-
ary points.

Note that, depending on the choice of the parameter τ , not all saddle-
points of the cost J(w) need to be τ -strict saddle-points. If J(w) happens
to have a saddle-point with −τ ≤ λmin

(
∇2J(w)

)
< 0, then this particular
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saddle-point would not be τ -strict, and in fact would fall under Definition 2

of a τ -second-order stationary point. Nevertheless, so long as τ is small, such

saddle-points can intuitively be viewed as “weak” saddle-points, in the sense

that they are almost locally optimal according to (17).

Under this formal definition, the set of strict saddle-points includes local

maxima as well. In fact, if all eigenvalues of ∇2J(w) at a first-order station-

ary point w were bounded from above by −τ , then w would be a local maxi-

mum. The set of strict saddle-points, however, is larger than the set of local

maxima, since only one eigenvalue of the Hessian at strict saddle-points is

required to be bounded from above by −τ , while other eigenvalues are unre-

stricted. Hence, the incorporation of second-order information in the defini-

tion of stationarity allows us to distinguish between τ -second-order station-

ary points and τ -strict saddle-points and allows for the exclusion of points

with significant local descent direction from the set of potentially optimal

points. Furthermore, for many loss functions commonly found in machine

learning, such as tensor decomposition [19], matrix completion [21], low-rank

recovery [22] and some deep learning formulations [23], all saddle-points and

local maxima have been shown to have a significant negative eigenvalue in

the Hessian, and can hence be excluded from the set of second-order sta-

tionary points for sufficiently small, but finite, τ . For such risk functions, all

τ -second-order stationary points for some small, but finite, τ correspond to

local, or even global, minima.

This observation has motivated a number of works to pursue higher-order

stationarity guarantees of local descent algorithms by means of second-order

information [18, 24, 25], intermediate searches for the negative curvature di-

rection [26, 27, 28], perturbations in the initialization [20, 29, 30] or to the

update direction [31, 19, 32, 33, 34, 35, 36, 2, 3, 4], both in the centralized

and decentralized setting. Our focus in this manuscript will be on strategies

that exploit the presence of perturbations in the update direction to escape

from saddle-points. The motivation for this is two-fold. First, in large-scale

and online learning problems, the evaluation of exact descent directions is

generally infeasible, making the utilization of stochastic gradients, and hence

the introduction of stochastic perturbations a necessity. Second, as we shall

see, perturbations to the gradient direction can be shown to be sufficient

to guarantee efficient escape from saddle-points, meaning that the escape-

time can be bounded by quantities that scale favorably with problem dimen-

sions and parameters, resulting in simple, yet effective solutions for escaping

saddle-points and guaranteeing second-order stationarity without the need

to significantly alter the operation of the algorithm.
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Figure 1: A visual representation of the space decomposition introduced in
Definitions 1 through 3 on a sample risk surface with two local minimizers
and one saddle-point. The risk surface is depicted in Figure (a). Points in
space colored teal H and yellow M in Figures (b) and (c) are all 0.1 and
0.01-first-order stationary respectively according to Definition 1. As such,
first-order convergence guarantees can only guarantee that the algorithm
does not return points in the complement of G, marked in purple, where
the norm of the gradient is large. In contrast, we further decompose the set
of first-order stationary points into the set of strict saddle-points (set H in
teal) and second-order stationary points (set M, yellow), establish descent
for points in H (teal), and conclude return of second-order stationary points
in M (yellow). Reduction of the step-size parameter μ results in contraction
of the set of approximate second-order stationary points around the true
local minimizers as is observed from Figure (b) to Figure (c).

2.2. Stochastic gradient descent

One popular first-order approach to pursuing a minimizer for problem (1)

can be obtained means of gradient descent, resulting in the recursion:

(19) wi = wi−1 − μ∇J(wi−1)

The limitation of this recursion lies in the fact that evaluation of the ex-

act gradient of J(wi−1) requires statistical information about the random

variable x in light of:

(20) ∇J(wi−1) � ∇ (ExQ(w;x))

The most common remedy for this challenge is to instead employ a stochastic

approximations of the gradient ∇J(wi−1) based on realizations of the ran-

dom variable x available at time i. We denote a general stochastic gradient
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approximation by ∇̂J(·) and iterate:

(21) wi = wi−1−μ∇̂J(wi−1)

Observe that we now denote wi in bold font to emphasize the fact that, by
utilizing a stochastic approximation ∇̂J(·) based on realizations of the ran-
dom variable x in place of the true gradient ∇J(·) based on the distribution
of x, the resulting iterates wi will become stochastic themselves. We will
leave the actual specification of the approximation ∇̂J(wi−1) for the ex-
amples and describe performance guarantees under general approximations
satisfying fairly general modeling conditions.

2.3. Modeling conditions

We begin by introducing smoothness conditions on both the gradient and
Hessian of the risk J(·).
Assumption 1 (Lipschitz gradients). The gradient ∇J(·) is Lipschitz,
namely, there exists δ > 0 such that for any x, y:

(22) ‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖

Assumption 2 (Lipschitz Hessians). The risk J(·) is twice-differentiable
and there exists ρ ≥ 0 such that:

(23) ‖∇2J(x)−∇2J(y)‖ ≤ ρ‖x− y‖

Condition (22) appears commonly in the study of first-order optimal-
ity guarantees of (stochastic) gradient algorithms [9, 10, 5]. The Lipschitz
condition on the Hessian matrix is not necessary to establish performance
bounds in the (strongly-)convex case or first-order stationarity, but can be
used to more accurately quantify deviations around the minimizer in steady-
state [5], or to establish the escape from saddle-points [19, 32, 35, 3, 4].
The second set of conditions below establishes bounds on the quality of the
stochastic gradient approximation ∇̂J(·). We define the stochastic gradient
noise process:

(24) si(wi−1) � ∇J(wi−1)− ∇̂J(wi−1)

Assumption 3 (Gradient noise process). The gradient noise process (24)
is unbiased with a relative bound on its fourth-moment:

E {si(wi−1)|wi−1} = 0(25)
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E
{
‖ si(wi−1)‖4|wi−1

}
≤ β4‖∇J(wi−1)‖4 + σ4(26)

for some non-negative constants β4, σ4.

Relation (25) requires that the gradient approximation ∇̂J(·) be unbi-
ased. Condition (26) imposes a bound on the fourth moment of the gra-
dient noise, but allows for this bound to grow with the norm of the gra-
dient ‖∇J(wi−1)‖4. Note that, in light of Jensen’s inequality and sub-
additivity of the square root, condition (26) implies and is slightly stronger
than:

(27) E
{
‖ si(wi−1)‖2|wi−1

}
≤ β2‖∇J(wi−1)‖2 + σ2

Condition (27) is sufficient to establish limiting first-order stationarity [10],
while the fourth-moment condition (26) will allow us to more carefully ana-
lyze the dynamics of (21) around first-order stationary points and establish
escape from saddle-points, resulting in second-order guarantees. We also
impose conditions on the covariance of the gradient noise.

Assumption 4 (Lipschitz covariances). The gradient noise process has a
Lipschitz covariance matrix, i.e.,

(28) Rs(wi−1) � E
{
si(wi−1)si(wi−1)

T|wi−1

}
satisfies

(29) ‖Rs(x)−Rs(y)‖ ≤ βR‖x− y‖γ

for all x, y, some βR ≥ 0 and 0 < γ ≤ 4.

Note from the definition of the gradient noise covariance (28), that the
distribution of the gradient noise process is a function of the iterate wi−1.
This, of course, is natural since the gradient noise is defined in (24) as the
difference between the true and the approximate gradient at the current
iterate. The fact that the perturbations introduced into the stochastic re-
cursion (21) are not necessarily identically distributed over time introduces
challenges in the study of their cumulative effect. Thankfully, the gradient
noise processes induced by most constructions for ∇̂J(·) and losses Q(·, ·) of
interest have a covariance with a Lipschitz-type property (29). This condi-
tion ensures that the covariance Rs(wi−1) is sufficiently smooth over local-
ized regions in space, resulting in essentially identically distributed gradient
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noise perturbations in the short-term and a tractable analysis. It has also
been exploited to derive accurate steady-state performance expressions in
the strongly-convex setting [5].

In contrast to Assumption 3, which bounds the perturbations induced
by employing stochastic gradient approximations from above, we will also
be imposing a lower bound on the stochastic gradient noise.

Assumption 5 (Gradient noise in strict saddle-points). Suppose w is an
approximate strict-saddle point following Definition 3. Introduce the eigen-
decomposition of the Hessian matrix as ∇2J(w) = V ΛV T and partition:

(30) V =
[
V ≥0 V <0

]
, Λ =

[
Λ≥0 0
0 Λ<0

]
where Λ≥0 ≥ 0 and Λ<0 < 0. Then, we assume that:

(31) λmin

((
V <0

)T
Rs (w)V

<0
)
≥ σ2

�

for some σ2
� > 0.

If we construct a local Taylor approximation around the strict saddle-
points w, we have:

J(w +Δw) ≈ J(w) +∇J(w)TΔw +ΔwT∇2J(w)Δw

≈ J(w) + ΔwT∇2J(w)Δw(32)

since at strict saddle-points ∇J(w) ≈ 0 and, hence, the linear term van-
ishes. For every Δw in the range of V <0, i.e., Δw � V <0x, we then have

ΔwT∇2J(w)Δw = xT
(
V <0

)T∇2J(w)V <0x < 0 by definition of V <0, and
hence J(w + Δw) < J(w). We conclude that the space spanned by V <0

corresponds to the local descent directions around the strict saddle-point w.
Hence, condition (31) imposes a lower bound on the gradient noise com-
ponent in the local descent direction (spanned by V <0) in the vicinity of
saddle-points. It is a notable deviation from the assumptions typically im-
posed in the convex setting. While Assumptions 1–4 are for example all lever-
aged in deriving steady-state performance expressions in [5] under an addi-
tional strong-convexity condition, Assumption 5 is unique to the study of
the behavior of stochastic gradient-type algorithms in the vicinity of saddle-
points [35, 3, 4] in nonconvex optimization. It may be particularly surprising
since the presence of perturbations in the dynamics of gradient-type algo-
rithms are generally understood to be negative side-effects of the utilization
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Figure 2: A visual illustration of Assumption 5, which imposes a lower bound
on the alignment between gradient noise and the local descent direction.
Examples of a probability density function of the gradient noise si(wi−1)
(top) and risk function J(w) (bottom) are shown in the left and middle
columns, respectively. The risk J(w) exhibits a strict saddle-point at w = 0.
The local descent direction, which corresponds to V >0 in (31) is emphasized
as a red arrow in the middle column. Assumption 5 requires some alignment
between the local descent direction V >0 of the risk (middle bottom) and
the probability density function of the gradient noise process (middle top).

The quantity
(
V <0

)T
Rs (w)V

<0 in condition (31) in this two-dimensional
example corresponds precisely to the variance of the gradient noise after
projecting si(wi−1) onto the local descent direction V >0, shown in the right
column.

of stochastic gradient approximations and result in deterioration of perfor-

mance, which is generally true for (strongly) convex objectives. When gener-

alizing to nonconvex objectives, as recent analysis has shown [19, 32, 35, 3, 4],

the persistent presence of gradient perturbations allows the algorithm to ef-

ficiently escape from saddle-points, which are unstable to gradient perturba-

tions, and arrive at local minima, which tend to be more stable to the same

types of perturbations. In this sense, condition (31) allows the algorithm to

distinguish stable local minima from unstable saddle-points, both of which

are first-order stationary points.
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As we will see in the examples in the sequel, and the following Section 3,
the formulation (21) under the modeling conditions 1–5 is sufficiently general
to capture a plethora of first-order stochastic algorithms for the minimization
of (7).

Example 4 (Stochastic gradient descent). Suppose we have access to a
realization of the data xi at time i. We can construct a stochastic gradient
approximation as:

(33) ∇̂J
SGD

(wi−1) � ∇Q(wi−1;xi)

Then, condition (25) follows immediately by definition of (33), while (26)
can be verified for a number of choices of the loss function Q(w;x) and data
distributions of x. We shall denote the resulting constants:

(34) E
{
‖ sSGD

i (wi−1)‖4|wi−1

}
≤ β4

SGD‖∇J(wi−1)‖4 + σ4
SGD

Example 5 (Mini-batch stochastic gradient descent). Suppose we instead
have access to a collection of B independent samples {xb,i}Bb=1 at time i
and the computational capacity to compute B gradient operations at every
iteration. We can then construct the mini-batch gradient approximation:

(35) ∇̂J
B−SGD

(wi−1) �
1

B

B∑
b=1

∇Q(wi−1;xb,i)

It again follows that ∇̂J
B−SGD

(wi−1) satisfies (25). For the fourth-order
moment can verify by induction over B that:

E

{∥∥∥sB−SGD
i (wi−1)

∥∥∥4 |wi−1

}
≤ CB

(
β4
SGD

B2
‖∇J(wi−1)‖4 +

σ4
SGD

B2

)
(36)

in terms of the constants β4
SGD and σ4

SGD of the single-element stochastic
gradient algorithm in example 4, as well as the constant:

(37) CB � 3− 2

B
≤ 3

We observe a B2-fold decrease in the mean-fourth moment, which implies a
B-fold reduction in the second-order moment and complies with our intuition
about variance reduction by averaging. For the gradient noise covariance we
have:

(38) RB−SGD
s (wi−1) =

1

B
RSGD

s (wi−1)
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Example 6 (Perturbed stochastic gradient descent). In the absence of prior
knowledge that there is a gradient noise component in the descent direction
for every strict saddle-point (Assumption 5), one can always guarantee con-
dition (31) to hold by adding a small perturbation term vi with positive-
definite covariance matrix Rv � EvvT > 0 as done in [19, 34] to construct:

(39) ∇̂J
P−SGD

(wi−1) � ∇̂J
SGD

(wi−1) + vi = ∇Q(wi−1;xi) + vi

For the gradient noise covariance we then have:

(40) RP−SGD
s (wi−1) = RSGD

s (wi−1) +Rv > 0

and hence Assumption 5 is guaranteed to hold. More elaborate constructions,
such as only adding an additional perturbation when the iterate wi−1 is
suspected to be near a first-order stationary point (as done in [32]) are also
possible.

2.4. Second-order guarantee

Due to space limitations, we will only outline the main results that lead to a
second-order guarantee for the stochastic approximation algorithm (21) and
refer the reader to [2] for a thorough derivation of the result. We begin by
formalizing the space decomposition into first and second-order stationary
points as well as strict saddle-points.

Definition 4 (Sets). To simplify the notation in the sequel, we introduce
the following sets:

G �
{
w : ‖∇J(w)‖2 ≥ μ

c2
c1

(
1 +

1

π

)}
(41)

GC �
{
w : ‖∇J(w)‖2 < μ

c2
c1

(
1 +

1

π

)}
(42)

H �
{
w : w ∈ GC , λmin

(
∇2J(w)

)
≤ −τ

}
(43)

M �
{
w : w ∈ GC , λmin

(
∇2J(w)

)
> −τ

}
(44)

where τ is a small positive parameter, c1 and c2 are constants:

c1 � 1− μ
δ

2

(
1 + β2

)
= O(1)(45)

c2 �
δ

2
σ2 = O(1)(46)
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and 0 < π < 1 is a parameter to be chosen. Note that GC = H ∪ M. For
brevity, we also define the probabilities πG

i � Pr {wi ∈ G}, πH
i � Pr{wi ∈ H}

and πM
i � Pr{wi ∈ M}. Then, for all i, we have πG

i + πH
i + πM

i = 1.

The set GC formalizes the set of O(μ)-first-order stationary points in
Definition 1 by setting the constant multiplying the step-size μ to c2

c1

(
1 + 1

π

)
where c1, c2 are problem-dependent constants. The set M then corresponds
to the set of second-order stationary points in Definition 2 while H denotes
the set of strict saddle-points in Definition 3. For a visualization, we refer
the reader back to Fig. 1.

Points in both G and H are “undesirable” limiting points in the sense
that they have local directions of descent. Our objective is to show that
for iterates within both sets, algorithm (21) will continue to descend along
the risk (7) by taking local gradient steps. The two sets G and H are distin-
guished by the fact that for points in G, the gradient norm ‖∇J(w)‖2 is large
enough for a single (stochastic) gradient step to be sufficient to guarantee
descent in expectation. Points in H (i.e., strict saddle-points) on the other
hand are more challenging since the gradient norm is so small that a single
gradient step is no longer sufficient to guarantee descent.

Theorem 1 (Descent in the large-gradient regime [2]). For sufficiently small
step-sizes:

(47) μ ≤ 2

δ (1 + β2)

and when the gradient at wi is sufficiently large, i.e., wi ∈ G, the stochas-
tic gradient recursion (21) yields descent in expectation in one iteration,
namely,

E {J(wi+1)|wi ∈ G} ≤ E {J(wi)|wi ∈ G} − μ2 c2
π

(48)

We also establish the following technical result, which bounds the negative
effect of the gradient noise close to local minima w ∈ M:

E {J(wi+1)|wi ∈ M} ≤ E {J(wi)|wi ∈ M}+ μ2c2(49)

In the vicinity of strict saddle-points H, a more detailed analysis is nec-
essary. Here, it is not the gradient step that ensures descent, but rather the
cumulative effect of the gradient noise perturbations to the gradient update.
The definition of a strict saddle-point (43) ensures that there is a direction of
negative curvature in the local risk surface, while Assumption 5 guarantees
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that with some probability the iterate wi is perturbed towards the descent

direction. Together, these conditions allow the algorithm to escape along the

descent direction with high probability in a finite number of iterations. This

intuition is formalized by constructing a local short-term model based on a

local quadratic approximation of the risk surface with identically distributed

gradient perturbations and exploiting the smoothness conditions 2 and 4 to

bound the approximation error [2, Lemma 3].

Theorem 2 (Descent through strict saddle-points [2]). Beginning at a strict

saddle-point wi ∈ H and iterating for is iterations after i with

is =
log
(
2M σ2

σ2
�
+ 1 +O(μ)

)
log(1 + 2μτ)

≤ O

(
1

μτ

)
(50)

guarantees

E {J(wi+is)|wi ∈ H} ≤ E {J(wi)|wi ∈ H} − μ

2
Mσ2 + o(μ)(51)

Theorem 2 ensures that, even when the norm of the gradient is too small

to carry sufficient information about the descent direction, the gradient noise

along with the negative local curvature of the risk surface around strict

saddle-points is sufficient to guarantee descent in is iterations, where the

escape-time scales favorably with problem parameters. For example, the

escape time scales logarithmically with the problem dimension M , implying

that we can expect fast evasion of saddle-points even in high dimensions.

Having established descent both in the large-gradient regime and strict-

saddle point regime, we can combine the results to conclude eventual second-

order stationarity.

Theorem 3 (Second-order guarantee for stochastic gradient descent [2]).

Suppose J(w) ≥ Jo. Then, for sufficiently small step-sizes μ, we have with

probability 1 − π, that wio ∈ M, i.e., ‖∇J(wio)‖2 ≤ O(μ) and

λmin

(
∇2J(wio)

)
≥ −τ in at most io iterations, where

io ≤ (J(w0)− Jo)

μ2c2
is,(52)

the quantity J(w0) − Jo denotes the sub-optimality at the initialization w0

and is denotes the escape time from Theorem 2.
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3. Federated learning

In many large-scale applications, data is not available at a central proces-
sor, but is instead collected and processed at distributed locations. In this
section, we consider a multi-agent setting with a collection of K agents and
a central node for parameter aggregation. We associate with each agent its
own risk (1), indexed by k:

(53) Jk(w) � Exk
Qk(w;xk)

and would like to pursue the minimizer of:

(54) J(w) �
K∑
k=1

pkJk(w)

where pk > 0 denote positive weights, normalized to add up to one with-
out loss of generality, i.e.,

∑K
k=1 pk = 1. The problem of distributed min-

imization of (54) in the presence of a centralized processor, but without
the aggregation of raw data xk,i can be achieved using primal and primal-
dual approaches [37, 38]. More recently, federated learning has emerged as
a framework for the solution of (54) under considerations of asynchrony,
heterogeneity, communication and computational restrictions and privacy
concerns as they are encountered in practical applications [39]. We show
in the sequel that a version of the federated averaging algorithm [39] can
be interpreted as the construction of a particular choice for the stochastic
gradient approximation ∇̂J(·), and hence second-order guarantees can be
obtained directly by specializing the results from Section 2. As a baseline,
consider the true gradient update to (54), which takes the form:

(55) wi = wi−1 − μ∇J(wi−1) = wi−1 − μ

K∑
k=1

pk∇Jk(wi−1)

Just like its single-agent counter-part (19), recursion (55) has the drawback
of requiring statistical information about xk to evaluate the expectations
in (53). Additionally, (55) requires full and synchronous participation of all
agents k at every iteration by providing (or approximating) the local gradi-
ent ∇Jk(wi−1). The former issue can be addressed by employing stochastic
gradient approximations based on realizations of data from the distribution
of xk,i, while the latter issue can be relaxed by allowing for partial partici-
pation of agents. To this end, at every iteration i, we sample L agent-indices
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without replacement from the set {1, . . . ,K} to form L. We introduce the
participation indicator function:

(56) 1k,i =

{
1, if k ∈ L at iteration i,

0, otherwise.

Then, at every iteration, the global model wi−1 is broadcast to participating
agents, which collect local data {xk,i,b}Bb=1 and perform the update:

(57) wk,i = wi−1−μK1k,i
pk
B

B∑
b=1

∇Qk(wi−1;xk,i,b)

The central processor can then aggregate the intermediate estimates from
the participating agents and compute:

(58) wi =
1

L

K∑
k=1

1k,iwk,i

Due to the presence of the indicator function 1k,i, the aggregation step (58)
only requires exchanges with participating agents. Steps (57) and (58) can
be combined into:

(59) wi = wi−1−μ
K

L

K∑
k=1

1k,i
pk
B

B∑
b=1

∇Qk(wi−1;xk,b,i)

We argue in the sequel that the approximation:

(60) ∇̂J(wi−1) �
K

L

K∑
k=1

1k,i
pk
B

B∑
b=1

∇Qk(wi−1;xk,b,i)

can be viewed as an instance of the stochastic approximation introduced
in Section 2 and hence the results from the single-agent analysis apply. In
addition to assuming each Jk(·) satisfies Assumptions 1–5, we will impose
the following bound on the agent heterogeneity [36, 3].

Assumption 6 (Bounded gradient disagreement). For each pair of agents
k and �, the gradient disagreement is bounded, namely, for any x ∈ RM :

(61) ‖∇Jk(x)−∇J�(x)‖ ≤ G



372 Stefan Vlaski and Ali H. Sayed

Relation (61) ensures that the disagreement on the local descent direc-
tion for any pair of agents is bounded, and is weaker than the more common
assumption of uniformly bounded absolute gradients. From Jensen’s inequal-
ity, we similarly bound the deviation from the aggregate gradient:

‖∇Jk(x)−∇J(x)‖ =

∥∥∥∥∥
N∑
�=1

p� (∇Jk(x)−∇J�(x))

∥∥∥∥∥
≤

N∑
�=1

p� ‖∇Jk(x)−∇J�(x)) ‖ ≤ G(62)

Example 7 (Federated averaging as a centralized stochastic gradient ap-
proximation). We define the local gradient approximation:

∇̂Jk(wi−1) �
K

L

1k,i

B

B∑
b=1

∇Qk(wi−1;xk,b,i)(63)

sk,i(wi−1) � ∇̂Jk(wi−1)−∇Jk(wi−1)(64)

We then have:

E
{
∇̂Jk(wi−1)|wi−1

}
� K

L

E {1k,i}
B

B∑
b=1

E {∇Qk(wi−1;xk,b,i)|wi−1}

=
K

L

L

K

1

B

B∑
b=1

∇Jk(wi−1) = ∇Jk(wi−1)(65)

where we used the fact that E {1k,i} = L
K . For the aggregate risk we then

find:

E
{
∇̂J(wi−1)|wi−1

}
=

K∑
k=1

pk E
{
∇̂Jk(wi−1)|wi−1

}
(65)
= ∇J(wi−1)(66)

For the fourth-order moment we have:

E
{
‖ si(wi−1)‖4|wi−1

}
= E

⎧⎨⎩
∥∥∥∥∥

K∑
k=1

pk sk,i(wi−1)

∥∥∥∥∥
4

|wi−1

⎫⎬⎭
(a)

≤
K∑
k=1

pk E
{
‖sk,i(wi−1)‖4|wi−1

}
(67)
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where (a) follows from the convexity of ‖ · ‖4 and Jensen’s inequality. For

the local gradient noise terms we have:

E
{
‖sk,i(wi−1)‖4|wi−1

}
= E

⎧⎨⎩
∥∥∥∥∥KL 1k,i

B

B∑
b=1

∇Qk(wi−1;xk,b,i)−∇Jk(wi−1)

∥∥∥∥∥
4

|wi−1

⎫⎬⎭
= E

{∥∥∥∥∥KL 1k,i

(
1

B

B∑
b=1

∇Qk(wi−1;xk,b,i)−∇Jk(wi−1)

)

+

(
K

L
1k,i − 1

)
∇Jk(wi−1)

∥∥∥∥∥
4

|wi−1

}
(a)

≤ 8
K4

L4
E
{
14
k,i

}
· E

⎧⎨⎩
∥∥∥∥∥ 1B

B∑
b=1

∇Qk(wi−1;xk,b,i)−∇Jk(wi−1)

∥∥∥∥∥
4

|wi−1

⎫⎬⎭
+ 8E

∥∥∥∥KL 1k,i − 1

∥∥∥∥4 ‖∇Jk(wi−1)‖4

(b)
= 8

K4

L4

L

K
· E

⎧⎨⎩
∥∥∥∥∥ 1B

B∑
b=1

∇Qk(wi−1;xk,b,i)−∇Jk(wi−1)

∥∥∥∥∥
4

|wi−1

⎫⎬⎭
+ 8

(
L

K

K − L

L
+

K − L

K

)
‖∇Jk(wi−1)‖4

(36)

≤
(
8
K3

L3
CB

β4
SGD

B2
+ 16

K − L

K

)
‖∇Jk(wi−1)‖4 + 8

K3

L3
CB

σ4
SGD

B2

=

(
8
K3

L3
CB

β4
SGD

B2
+ 16

K − L

K

)
‖∇Jk(wi−1)−∇J(wi−1) +∇J(wi−1)‖4

+ 8
K3

L3
CB

σ4
SGD

B2

(c)

≤
(
64

K3

L3
CB

β4
SGD

B2
+ 128

K − L

K

)(
‖∇J(wi−1)‖4 +G4

)
+ 8

K3

L3
CB

σ4
SGD

B2

(d)

≤ β4
Fed‖∇J(wi−1)‖4 + σ4

Fed

(68)

where (a) follows from Jensen’s inequality ‖a + b‖4 ≤ 8‖a‖4 + 8‖b‖4, (b)
follows from Pr {1k,i = 1} = L

K , (c) again follows from Jensen’s inequality
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along with Assumption 6 and in (d) we defined:

β4
Fed � 64

K3

L3
CB

β4
SGD

B2
+ 128

K − L

K
(69)

σ4
Fed �

(
64

K3

L3
CB

β4
SGD

B2
+ 128

K − L

K

)
G4 + 8

K3

L3
CB

σ4
SGD

B2
(70)

For the aggregate gradient noise term we then have similarly from (67):

E
{
‖sk,i(wi−1)‖4|wi−1

}
≤ β4

Fed‖∇J(wi−1)‖4 + σ4
Fed(71)

and hence the federated learning algorithm (59) satisfies Assumption 3.

3.1. Second-order guarantees for federated averaging

Having established in Example 7 that the federated averaging algorithm (59)
satisfies Assumption 3 with constants (69)–(70), we can specialize Theorem 3
to recover second-order guarantees for (59).

Corollary 1 (Second-order guarantee for federated averaging). Suppose
J(w) ≥ Jo. Then, for sufficiently small step-sizes μ, the federated averaging
algorithm (59) with probability 1− π generates a point wio ∈ M with:

‖∇J(wio)‖2 ≤ O
(
μσ2

Fed

)
(72)

and λmin

(
∇2J(wio)

)
≥ −τ in at most io iterations, where

io ≤ (J(w0)− Jo)

μ2c2π
is,(73)

the quantity J(w0) − Jo describes the initial sub-optimality, and is denotes
the escape time from Theorem 2:

(74) is =
log
(
2M σ2

Fed

σ2
Fed,�

+ 1 +O(μ)
)

log(1 + 2μτ)
≤ O

(
1

μτ

)
The constant σ2

Fed is the dominant constant determining the level of
accuracy guaranteed by the result in Corollary 1. Its expression in (70)
quantifies the dependence on the various federated learning parameters such
as the participation rate L

K and the local mini-batch sizes B.



Second-order guarantees in nonconvex optimization 375

Figure 3: A sample network with an emphasis on the neighborhood Nk

of node k. Node k can aggregate information from only its neighbors in
Nk, with a�k denoting the weight given by node k to information from �.
Double-arrows indicate the asymmetric flow of information, since we allow
for a�k �= ak�.

4. Decentralized learning

While fusion-center based approaches, such as (59), are an effective approach

to learning from distributed data sources xk without the need to exchange

raw data, and instead relying solely on the exchange of local models wk,i,

they have the drawback of nevertheless requiring some form of central aggre-

gation. In this section, we relax this requirement. We continue to consider

a collection of K agents, and continue to pursue solutions to (54), repeated

here for reference:

(75) J(w) �
K∑
k=1

pkJk(w)

In contrast to the federated learning framework, which allows for the cen-

tral aggregation of (a subset of) intermediate parameter estimates, we now

consider the agents to be connected via a graph topology, restricting the

flow of information. A sample graph is provided in Fig. 3. It is then nat-

ural to ask whether the collection of agents can still pursue a solution

of (75) despite being restricted to performing only local computations and

exchanges of information over neighborhoods. The answer is indeed affirma-

tive, so long as the network linking the agents is connected, allowing for

information to diffuse through the entire network through repeated local
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aggregations. The solution can then be pursued through a plethora of de-
centralized strategies, including primal [40, 41, 5, 42, 43, 44, 12, 45, 46] and
(primal-)dual [47, 48, 49, 50, 51, 52, 53] frameworks. A detailed discussion
of the properties of these strategies, primarily studied in the convex setting,
is beyond the scope of this work. We will instead focus on the diffusion
strategy [42, 5, 43], and discuss its second-order guarantees in nonconvex
environments. The diffusion strategy takes the form:

φk,i = wk,i−1−μ∇̂Jk(wk,i−1)(76a)

wk,i =

N∑
�=1

a�kφ�,i(76b)

Note that the strategy has an “adapt-then-combine” form where in step
(76a), agent k takes a local descent step using the approximation

∇̂Jk(wk,i−1) based on its locally available data to generate an intermediate
estimate φk,i. The adaptation step is followed by a combination step where
agent k performs a convex combination of the intermediate estimates φ�,i

using the weights a�k to form wk,i. We shall make the following assumption
on the combination weights.

Assumption 7 (Strongly-connected graph). The graph described by the
weighted combination matrix A = [a�k] is strongly-connected [5]. This means
that there exists a path with nonzero weights between any two agents in the
network and, moreover, at least one agent has a nontrivial self-loop, akk > 0.
The combination weights satisfy:

(77) a�k ≥ 0,
∑
�∈Nk

a�k = 1, a�k = 0 if � /∈ Nk

where the symbol Nk denotes the set of neighbors of agent k.

Relation (77) ensures that (76b) indeed carries the interpretation of a
convex combination, and can be evaluated by collecting intermediate esti-
mates φ�,i only from nodes in the immediate neighborhood � ∈ Nk. Strong
connectivity of the graph on the other hand, in light of the Perron-Frobenius
theorem [54, 55, 5], ensures that the combination matrix A has a single eigen-
value at one with all other eigenvalues strictly within the unit circle. The
right eigenvalue of A, denoted by p can be normalized so that its elements
are strictly positive and add up to one [5]:

(78) Ap = p, 1Tp = 1, pk > 0
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where the {pk} denote the individual entries of the Perron vector, p. In
the strongly-convex case, it is well known that the diffusion strategy (76a)–
(76b) converges to the minimizer of (75) in the mean-square sense where the
weights pk in (75) correspond to the entries of the Perron vector p in (78) of
the combination matrix A [42, 5]. It is common to choose A to be symmetric,
resulting in pk = 1

K for all k and equal contribution of all nodes in (75).
Allowing for more general left- instead of only doubly-stochastic matrices
provides the designer with the additional flexibility to, for example, assign
larger weight to nodes with higher quality of data, a fact that has been
exploited both in the strongly-convex [5] and nonconvex [56] setting. In both
cases these strategies exploit that for any connected graph, a combination
matrix satisfying Assumption 7 can be designed in a decentralized manner
to have an arbitrary p as its Perron vector Ap = p [5, Eq. (8.96)].

5. Network dynamics

The fact that p corresponds to a right eigenvector of the combination matrix
A implies for the weighted centroid wc,i �

∑K
k=1 pk wk,i [44, 5]:

(79) wc,i = wc,i−1−μ

K∑
k=1

pk∇̂Jk(wk,i−1)

Examination of (79) shows that wc,i evolves almost according to a (stochas-
tic) gradient recursion relative to the aggregate cost (75) with the subtle

difference that the gradient approximations ∇̂Jk(wk,i−1) are evaluated at
the local iterates wk,i−1 instead of the centroid wc,i−1. Nevertheless, as long
as the collection of iterates wk,i−1 do not deviate too much from each other,

and hence from the (weighted) average wc,i =
∑K

k=1 pk wk,i, one would ex-
pect the evolution of (79) to carry similar performance guarantees to the
single-agent and federated solutions (21) and (59), respectively. This has
been rigorously established in the strongly-convex case [5, 44, 57]. In this
work, we present more recent extensions to nonconvex risks and second-order
guarantees.

Theorem 4 (Network disagreement (4th order) [3]). Suppose each local

Jk(·) and stochastic gradient approximation ∇̂Jk(·) satisfy Assumptions 1–6
with β = 0. Furthermore, assume the combination matrix A satisfies As-
sumption 7 with Jordan decomposition A = VεJV

−1
ε :

(80) Vε =
[
p VR

]
, J =

[
1 0
0 Jε

]
, V −1

ε =

[
1T

V T
L

]
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Collect the iterates wk,i across the network into Wi � col {w1,i, . . . ,wK,i}.
Then, the network disagreement is bounded after sufficient iterations i ≥ io
by:

E

∥∥∥Wi−
(
1pT ⊗ I

)
Wi

∥∥∥4≤μ4‖VL‖4
∥∥JT

ε

∥∥4
(1− ‖JT

ε ‖)
4 ‖V

T
R‖

4
N2
(
G4 + σ4

)
+ o(μ4)

(81)

where VL ⊗ IM , VR = VR ⊗ IM and

(82) io =
log
(
o(μ4)

)
log (‖JT

ε ‖)

and o(μ4) denotes a term that is higher in order than μ4.

To develop some intuition about the implications of (81), observe that
we can bound:

1

N

K∑
k=1

E ‖wk,i−wc,i ‖2 =
1

N
E

∥∥∥Wi−
(
1pT ⊗ I

)
Wi

∥∥∥2
(a)

≤ 1

N

√
E ‖Wi− (1pT ⊗ I)Wi‖4

(b)

≤ μ2‖VL‖2
∥∥JT

ε

∥∥2
(1− ‖JT

ε ‖)
2 ‖V

T
R‖

2
N
(
G2 + σ2

)
+ o(μ2)(83)

where (a) follows from Jensen’s inequality along with convexity of ‖ · ‖2 and
(b) follows from sub-additivity of the square root

√
a+ b ≤ √

a +
√
b. We

hence conclude that (83) bounds the average deviation of the local iterates
wk,i from the centroid wc,i in the mean-square sense by a term that is
on the order of μ2, which is small enough to be negligible for sufficiently
small step-sizes μ. This allows us to derive essentially the same performance
guarantees for the network centroidwc,i as for the centralized recursion (21),
after accounting for the small and controllable deviation (83). We make a
minor adjustment to the space decomposition from Definition 4.

Definition 5 (Sets). We continue with the decomposition into G, H and M
from relations (41)–(44) in Definition 4 and only adjust expression (45) for
c1 to:

c1 �
1

2
(1− 2μδ) = O(1)(84)
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and 0 < π < 1 is a parameter to be chosen. Note that GC = H ∪ M. We

also define the probabilities πG
i � Pr {wc,i ∈ G}, πH

i � Pr {wc,i ∈ H} and

πM
i � Pr {wc,i ∈ M}. Then for all i, we have πG

i + πH
i + πM

i = 1.

Note that the only difference between Definitions 4 and 5 is in the def-

inition of c1 in (45) and (84). This variation is motivated by the technical

details of the arguments leading to the descent relations that follow, but

ultimately does not change the implications of the result. We then obtain

the decentralized versions to the centralized descent Theorems 1 through 3,

established in [3, 4].

Theorem 5 (Descent relation [3]). Beginning at wc,i−1 in the large gradient

regime G, we can bound:

E {J(wc,i)|wc,i−1 ∈ G}

≤ E {J(wc,i−1)|wc,i−1 ∈ G} − μ2 c2
π

+
O(μ3)

πG
i−1

(85)

as long as πG
i−1 = Pr {wc,i−1 ∈ G} �= 0 where the relevant constants are listed

in Definition 5. On the other hand, beginning at wc,i−1 ∈ M, we can bound:

E {J(wc,i)|wc,i−1 ∈ M}

≤ E {J(wc,i−1)|wc,i−1 ∈ M}+ μ2c2 +
O(μ3)

πM
i−1

(86)

as long as πM
i−1 = Pr {wc,i−1 ∈ M} �= 0.

Theorem 6 (Descent through strict saddle-points [4]). Suppose

Pr {wc,i ∈ H} �= 0, i.e., wc,i is approximately stationary with significant

negative eigenvalue. Then, iterating for is iterations after i with

is =
log
(
2M σ2

σ2
�
+ 1
)

log(1 + 2μτ)
≤ O

(
1

μτ

)
(87)

guarantees

E {J(wc,i+is)|wc,i ∈ H}

≤ E {J(wc,i)|wc,i ∈ H} − μ

2
Mσ2 + o(μ) +

o(μ)

πH
i

(88)



380 Stefan Vlaski and Ali H. Sayed

Theorem 7 (Second-order guarantee for diffusion [4]). For sufficiently small
step-sizes μ, we have with probability 1 − π, that wc,io ∈ M, i.e.,
‖∇J(wc,io)‖2 ≤ O(μ) and λmin

(
∇2J(wc,io)

)
≥ −τ in at most io iterations,

where

io ≤ (J(wc,0)− Jo)

μ2c2
is + o(μ−1)(89)

and is denotes the escape time from Theorem 6, i.e.,

is =
log
(
2M σ2

σ2
�
+ 1
)

log(1 + 2μτ)
≤ O

(
1

μτ

)
(90)

Comparing Theorems 5–7 to Theorems 1–3 we note that the descent and
second-order stationarity guarantees for the network centroid wc,i generated
by the diffusion algorithm (76a)–(76b) are essentially the same as those for
the ordinary stochastic gradient descent recursion (21) after adjusting the
constants to account for the decentralized nature. Theorem 4, on the other
hand, ensures that all iterates wk,i will closely track the network centroid
wc,i after sufficient iterations, and hence each agent k in the network with
inherit the second-order guarantees of wc,i.

6. Simulation example

We illustrate the theoretical results in this work on a simple example, mo-
tivated by neural network learning and used as a benchmark in [3, 4, 2].
Given a feature vector h ∈ RM and binary label γ ∈ {0, 1}, we model a
learning rule γ̂ (h; ·) through a neural network with one linear hidden layer
and a logistic activation function at the output layer, taking the form:

(91) γ̂ (h;w1,W2) �
1

1 + e−wT
1W2h

where w1 ∈ RN ,W2 ∈ RN×M denote the model parameters. We employ the
cross-entropy loss:

Q(w1,W2;h,γ) = −γ log (γ̂(h;w1,W2))− (1− γ) log (1− γ̂(h;w1,W2))
(92)

The risk obtained after taking expectations and adding regularization is:

(93) J(w1,W2) � EQ(w1,W2;h,γ) +
ρ

2
‖w1‖2 +

ρ

2
‖W2‖2
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This risk function is nonconvex, and for M = N = 1 has two local min-
ima in the positive and negative quadrants, respectively with a single strict
saddle-point at w1 = W2 = 0. This risk surface was used in Figures 1
and 2 to illustrate the modeling conditions for the theorems in this work.
We now illustrate the practical performance of the centralized strategy (21),
the federated algorithm (59), as well as the decentralized diffusion strat-
egy (76a)–(76b) and verify that the second-order guarantees established in
Theorems 3 and 7 indeed hold.

We consider a collection of K = 50 agents, each sampling independent
pairs {hk,γ(k)} once per iteration. Although it is not a requirement of the
analysis, for simplicity, we consider in this example a homogeneous data
setting, where pairs {hk,γ(k)} are identically distributed for all agents and
Jk(w1,W2) = J(w1,W2) for all k. The agents are linked by a random graph
with mixing rate ρ

(
A− 1pT

)
= 0.956 with combination weights giving equal

weight to all neighbors. We collect w � col {w1, vec {W2}}. For the central-
ized solution (21), the stochastic gradient approximation is constructed by
aggregating data from all agents:

(94) ∇̂J(w) �
K∑
k=1

pk∇Q(w;hk,γ(k)) + ρw + v · col {1, 1}

where the random perturbation v ∼ N (0, 1) was added to ensure that As-
sumption 5 holds. For the federated implementation (59), each of the L = 10
participating agents at each iteration construct:

(95) wk,i = wi−μKpk1k,i ((∇Q(w;hk,γ(k)) + ρw + v · col {1, 1}))

The intermediate estimates wk,i are then fused according to (58). For the
decentralized implementation, each agent constructs:

(96) ∇̂Jk(w) � ∇Q(w;hk,γ(k)) + ρw + v · col {1, 1}

and then updates according to (76a)–(76b). All iterates for all three strate-
gies are initialized at {0.8,−0.8}. As predicted by the theoretical results,
all three strategies are able to escape the saddle-point at w1 = W2 = 0.
Detailed performance is shown in Fig. 4.

7. Conclusion

In this manuscript we presented recent results from [2, 3, 4] establishing
second-order guarantees for stochastic descent algorithms in centralized,
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Figure 4: (left) Evolution of the gradient norm. (right) Evolution of the iter-
ates. Around iteration 200, all three algorithms approach the saddle-point,
where the norm of the gradient drops and the evolution slows. Due to the
presence of gradient perturbations, all three algorithms are able to escape
from the saddle-point and eventually reach a local minimum. The decen-
tralized solution (76a)–(76b) closely tracks the centralized algorithm (21),
while the federated algorithm (59) exhibits slightly higher variance due to
the scaled step-size to account for partial agent participation.

federated, and decentralized settings. Two key conclusions emerge. First,
we found that in all cases, simple first-order descent algorithms are able to
yield second-order optimal solutions, which exclude saddle-points and corre-
spond to local or even global minima in many problems of interest, so long
as their recursions are subjected to sufficient perturbations. These perturba-
tions are critical in ensuring that the recursions do not spend extraordinary
amounts of time near saddle-points, where the progress of unperturbed gra-
dient recursions is slow [29]. Second, under a reasonable bound on agent het-
erogeneity, we found that for sufficiently small step-sizes, the performance
guarantees of the decentralized strategy essentially match those for the cen-
tralized framework, implying that even in the absence of central aggregation
of data or parameter estimates, decentralized strategies can yield compet-
itive performance in terms of their second-order guarantees, a fact that is
well established for strongly-convex costs, but only recently has received
attention in the nonconvex setting.
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