COMMUNICATIONS IN INFORMATION AND SYSTEMS
Volume 20, Number 3, 283-317, 2020

Data-driven symbol detection via model-based
machine learning”

NARIMAN FARSAD, NIR SHLEZINGER,
ANDREA J. GOLDSMITH, AND YONINA C. ELDAR

The design of symbol detectors in digital communication systems
has traditionally relied on statistical channel models that describe
the relation between the transmitted symbols and the observed
signal at the receiver. Here we review a data-driven framework to
symbol detection design which combines machine learning (ML)
and model-based algorithms. In this hybrid approach, well-known
channel-model-based algorithms such as the Viterbi method, BCJR
detection, and multiple-input multiple-output (MIMO) soft inter-
ference cancellation (SIC) are augmented with ML-based algo-
rithms to remove their channel-model-dependence, allowing the re-
ceiver to learn to implement these algorithms solely from data. The
resulting data-driven receivers are most suitable for systems where
the underlying channel models are poorly understood, highly com-
plex, or do not well-capture the underlying physics. Our approach
is unique in that it only replaces the channel-model-based compu-
tations with dedicated neural networks that can be trained from
a small amount of data, while keeping the general algorithm in-
tact. Our results demonstrate that these techniques can yield near-
optimal performance of model-based algorithms without knowing
the exact channel input-output statistical relationship and in the
presence of channel state information uncertainty.

1. 85th birthday tribute to Tom Kailath

It is our great pleasure to contribute this work in honor of Tom Kailath’s
85th birthday. Tom’s contributions are legendary, profoundly impacting the-
ory and practice across a breathtaking range of disciplines. In particular, he
laid the mathematical foundations for solving challenging problems across

*This work was supported in part by the US - Israel Binational Science Foun-
dation under grant No. 2026094, by the Israel Science Foundation under grant No.
0100101, by the Office of the Naval Research under grant No. 18-1-2191, and by
NSERC Discovery Grant and CFI John Evans Leaders Funds.

283

https://www.intlpress.com/site/pub/pages/journals/items/cis/_home/_main/index.php

284 Nariman Farsad et al.

communications, control, integrated circuits, and signal processing. More-
over, he illuminated threads and connections across these diverse fields, lead-
ing to much better fundamental understanding and insights within them.
Not satisfied with just developing theory, Tom also created technologies and
successful companies on the basis of his mathematical foundations, demon-
strating the importance of linking theory and practice while having transfor-
mational impact in both. Tom has also been a spectacular mentor and role
model for generations of students and colleagues. This work is contributed
in the spirit of Tom, coupling mathematical foundations within communica-
tion system design with the new tool of machine learning to improve overall
performance. Thanks Tom for all you have contributed to our profession,
and we wish you a very happy 85th birthday.

2. Introduction

In digital communication systems, the receiver is required to reliably re-
cover the transmitted symbols from the observed channel output. This task
is commonly referred to as symbol detection. Conventional symbol detec-
tion algorithms, such as those based on the maximum a-posteriori prob-
ability (MAP) rule, require complete knowledge of the underlying chan-
nel model and its parameters [1, 2]. Consequently, in some cases, conven-
tional methods cannot be applied, particularly when the channel model is
highly complex, poorly understood, or does not well-capture the underlying
physics of the system. Furthermore, when the channel models are known,
many detection algorithms rely on channel state information (CSI), i.e., the
instantaneous parameters of the channel model, for detection. Therefore,
conventional channel-model-based techniques require the instantaneous CSI
to be estimated. This process entails overhead, which decreases the data
rate. Moreover, inaccurate CSI estimation typically degrades the detection
performance.

An alternative data-driven approach to model-based algorithms uses
machine learning (ML). ML methods, and in particular, deep neural net-
works (DNNs), have been the focus of extensive research in recent years due
to their empirical success in various applications, including image processing
and speech processing [3]. ML schemes have several benefits over traditional
model-based approaches: First, ML methods are independent of the under-
lying stochastic model, and can operate efficiently in scenarios where this
model is unknown or its parameters cannot be accurately estimated. Sec-
ond, when the underlying model is extremely complex, ML algorithms have
demonstrated the ability to extract meaningful semantic information from

Data-driven symbol detection via model-based machine learning 285

the observed data [4], a task which is very difficult to carry out using model-
based methods. Finally, ML techniques often lead to faster inference com-
pared to iterative model-based approaches, even when the model is known
[5, 6].

Recent years have witnessed growing interest in the application of DNNs
for receiver design; see detailed surveys in [7, 8, 9, 10, 11]. Unlike model-
based receivers, which implement a specified detection rule, ML-based re-
ceivers learn how to map the channel outputs into the transmitted symbols
from training, namely, they operate in a data-driven manner. Broadly speak-
ing, previously proposed ML-based receivers can be divided into two main
categories: Conventional DNNs and unfolded networks [6]. The first group
replaces the receiver processing with a DNN architecture from established
methods in the ML literature. A-priori knowledge of the channel model is ac-
counted for in the selection of the network type, which is typically treated as
a black box. For example, recurrent neural networks (RNNs) were applied for
decoding sequential codes in [12]; the work [13] used sliding bi-directional
RNNs for intersymbol interference (ISI) channels; and the work [14] used
variational autoencoders for unsupervised equalization. Such DNNs, which
use conventional network architectures that are ignorant of the underlying
channel model, can typically operate reliably in various scenarios with or
without CSI and channel model knowledge, assuming that they were prop-
erly trained for the specific setup. Nonetheless, block box DNNs tend to have
a large number of parameters, and thus require large data sets to train [11],
limiting their application in dynamic environments, which are commonly
encountered in communications.

Unlike conventional DNNs, which utilize established architectures, in un-
folded receivers the network structure is designed following a model-based
algorithm. In particular, deep unfolding is a method for converting an itera-
tive algorithm into a DNN by designing each layer of the network to resem-
ble a single iteration [15, 6, 16]. The resulting DNN tends to demonstrate
improved convergence speed and robustness compared to the model-based
algorithm [5, 6]. In the context of symbol detection, the works [17, 18] de-
signed deep receivers by unfolding the projected gradient descent algorithm
for recovering the MAP solution, while [19] unfolded the approximate mes-
sage passing optimization scheme, and [20] proposed to recover signals ob-
tained from one-bit quantized measurements by unfolding gradient descent
optimization. Compared to conventional DNNs, unfolded networks are typ-
ically interpretable, and tend to have a smaller number of parameters, and
can thus be trained quicker [11]. However, these previously proposed re-

286 Nariman Farsad et al.

ceivers all assume linear channel models with Gaussian noise, in which CSI
is available [17, 18, 19, 20]. Consequently, these methods do not capture the
potential of ML in being independent of the model, and thus are applicable
only under specific setups.

In this work, we design and study ML-based symbol detection, focusing
and presenting some of our recent work in this area in a tutorial fashion
[21, 22, 23]. The main distinction between our approach and prior work is
using ML in conjunction with well-known detection algorithms in a hybrid
fashion. Specifically, our design is based on integrating ML methods into
established detection algorithms, allowing them to be learned from train-
ing and operate in a data-driven fashion. Our approach to symbol detec-
tion implements well-known channel-model-based algorithms such as the
Viterbi algorithm [24], the BCJR method [25], and multiple-input multiple-
output (MIMO) soft interference cancellation (SIC) [26], while only remov-
ing their channel-model-dependence by replacing the CSI-based computa-
tions with dedicated DNNs, i.e., we integrate ML into these channel-model-
based algorithms to to learn CSI.

We begin by presenting in detail our approach for combining ML and
model-based algorithms, and its relationship with deep unfolding. Then we
present two channel models to which we apply our approach for symbol
detection: First, we focus on finite-memory channels and present Viterbi-
Net [21] and BCJRNet [22], which are data-driven implementations of the
maximume-likelihood sequence detector and the MAP symbol detector for
this channel, respectively. We then focus on the multiuser MIMO chan-
nel and present DeepSIC [23], which learns to implement the iterative SIC
algorithm under this channel model. Our resulting receivers are shown to
approach the performance of their model-based counterparts without requir-
ing CSI and using relatively small training sets. We also observe that, in the
presence of CSI uncertainty, the performance of the model-based algorithms
is significantly degraded, while the combined ML and model-based approach
is capable of reliably detecting the symbols. Our results demonstrate the po-
tential gains of combining ML and model-based algorithms over both pure
model-based and pure ML-based methods.

The rest of this paper is organized as follows: In Section 3 we describe the
general hybrid ML approach. Section 4 focuses on finite-memory channels
and presents the ViterbiNet and the BCJRNet for these channels. Section 5
details the data-driven SIC algorithm, and Section 6 provides concluding
remarks.

Data-driven symbol detection via model-based machine learning 287

S Y (((’)) @
0+ a § - AE-

Transmitter Channel Receiver

Figure 1: Channel-model-based symbol detection illustration.

3. Model-based machine learning

In this section we present our proposed methodology for converting model-
based algorithms to data-driven techniques by integrating ML into them. We
focus here on the high-level rationale, while concrete examples for symbol
detection methods are presented in Sections 4-5. In particular, we first mo-
tivate the fusion of ML and channel-model-based symbol detection schemes
in Section 3.1. Then, in Section 3.2 we present how ML methods can be
combined with model-based algorithms.

3.1. Machine learning for symbol detection

Symbol detection is arguably the most basic problem in digital communi-
cations. Symbol detection refers to how the receiver recovers a set of trans-
mitted symbols denoted by S, which belong to some discrete constellation,
from its observed channel output denoted by Y. This problem has been
widely studied, and various algorithms with optimality guarantees and con-
trollable complexity measures have been proposed over decades of research,
depending on the statistical model relating Y and S, i.e., their conditional
distribution py g [1, Ch. 5]. The vast majority of these previously proposed
schemes are channel-model-based, namely, they require accurate prior knowl-
edge of py|g, and typically assume it takes some simplified form, e.g., that
of a linear channel with additive white Gaussian noise (AWGN). An illus-
tration of conventional channel-model-based symbol detection is depicted in
Fig. 1. As discussed in the introduction, these requirements limit the appli-
cation of conventional model-based schemes in complex environments, and
may entail substantial overhead due to the need to constantly estimate CSI
at the receiver.

Recent years have witnessed a dramatically growing interest in ML meth-
ods, and particularly, in DNNs. These data-driven trainable structures have
demonstrated unprecedented empirical success in various applications, in-
cluding computer vision and speech processing [3]. ML-driven techniques

288 Nariman Farsad et al.

have several key benefits over traditional model-based approaches: First, ML
methods are independent of the underlying stochastic model, and thus can
operate efficiently in scenarios where this model is unknown, or its parame-
ters cannot be accurately estimated [27, Ch. 1]. Second, when the underlying
model is extremely complex, ML algorithms have demonstrated the ability
to extract and disentangle the meaningful semantic information from the
observed data [4], a task which is very difficult to carry out using traditional
model-based approaches, even when the model is perfectly known. Specif-
ically, ML tools have empirically demonstrated the ability to disentangle
the relevant semantic information under complex analytically intractable
statistical relationships. Furthermore, DNN techniques tend to generalize
well, despite being over parameterized, and remain resilient under minor
non-adversarial parameter perturbations after training [28]. Finally, ML al-
gorithms often lead to faster inference compared to iterative model-based
approaches, even when the model is known [5].

Nonetheless, not every problem can and should be solved using DNNs.
While networks with a large set of parameters can realize a broad set of
functions, making them suitable for a wide range of tasks, a large data set
reflecting the task under which the system must operate is required to train
these networks. For example, symbol detection over wireless communication
channels is typically dynamic in nature. This implies that DNN-based sym-
bol detectors must be either trained anew for each channel realization, a task
which may be infeasible when large labeled sets are required for training,
or alternatively, that the data-driven receiver should be trained in advance
using samples corresponding to a large set of expected channel conditions.
In the latter, typically the resulting deep symbol detector is likely to achieve
reasonable but non-optimal performance when inferring using samples cor-
responding to each of channels condition.

Our goal is to allow model-based symbol detection schemes to be applied
in scenarios for which, due to either a complex statistical model or lack of
its knowledge, these methods cannot be applied directly. This is achieved
by combining ML and model-aware algorithms via model-based ML, as dis-
cussed in the sequel.

3.2. Combining ML and model-based algorithms

Here, we present our rationale for combining ML, and in particular DNNs,
with channel-model-based symbol detection algorithms. Consider a symbol
detection algorithm which produces an output vector S based on an observed
input vector Y. Particularly, we focus on channels in which, given prior

Data-driven symbol detection via model-based machine learning 289

Iterative optimization algorithm

Iterative procedure

Input y A
Input 4 Iterative

Output
Output P
> >

> t
processing

?
processing \ step > Stop criteria

A

Figure 2: Generic iterative algorithm illustration.

knowledge of py s, S can be recovered from Y with provable performance
and controllable complexity in an iterative fashion, e.g., via the Viterbi
detector [24] or the BCJR algorithm [25] for finite memory channels, or
via interference cancellation methods for MIMO channels [26]. This generic
family of iterative algorithms consists of some input and output processing
stages, with an intermediate iterative procedure. The latter can in turn be
divided into a channel-model-based computation, namely, a procedure that
is determined by py|g; and a set of generic mathematical manipulations. An
illustration of this generic algorithmic procedure is depicted in Fig. 2.

Here, we want to implement the aforementioned algorithm in a data-
driven manner. Possible motivations for doing so are that pgy is unknown,
costly to estimate accurately, or too complex to express analytically. A pow-
erful tool for learning to implement tasks from data samples are DNNs,
with their dramatic empirical success in applications such as computer vi-
sion, where the underlying model is very complex or poorly understood.
Modern ML suggests two main approaches for obtaining S from Y, as done
in the above model-based algorithm, using DNNs:

End-to-end networks Arguably the most common framework is to replace
the algorithm with some standard DNN architecture. A-priori knowledge of
the underlying model is accounted for in the selection of the network type,
which is typically treated as a black box. By providing the network with
sufficient samples from the joint distribution of the input and label, it should
be able to tune its parameters to minimize the loss function. If the network
is sufficiently parameterized, i.e., deep, its feasible loss-minimizing structure
is within close proximity of the optimal mapping from Y to S , which means
that a properly trained network can approach the performance of the model-
based algorithm. The main drawback of using end-to-end networks is that
learning a large number of parameters requires a large data set to train. Even
when a sufficiently large data set is available, the resulting long training
period limits the application of this approach in dynamic environments,
where the system has to be retrained often.

290 Nariman Farsad et al.

Deep unfolding

Iteration 1 Iteration 2 Iteration t

Output
Input Input eamed g Output P!
» N - I N »-
processing layer processing

Figure 3: Deep unfolding illustration.

ONeARY
g
1eanoy.

Iterative procedure

'\
Input / '-99""":0" Output
>l Input >/ computal - Generic =~ Output >
processing \ IOy computation processing
W 0RO A
Ny ¥

i |

Figure 4: Integrating ML into a model-based algorithm illustration.

Deep unfolding A possible method to design a DNN based on an iterative
model-based algorithm is to replace each iteration with a layer in the net-
work, where the design of each layer is inspired by the iterative procedure
[15, 6], as illustrated in Fig. 3. The main benefit of deep unfolding over
using end-to-end networks stems from the reduced complexity, as unfolded
networks typically have less parameters compared to conventional end-to-
end networks [11]. Furthermore, even when the model-based algorithm is
feasible, processing Y through a trained unfolded DNN is typically faster
than applying the iterative algorithm [5].

Here, we propose a new approach for realizing model-based algorithms of
the aforementioned iterative structure in a data-driven fashion. In particular,
we first identify the specific computations which depend on the underlying
statistical model pgy. Then we replace these computations with ML-based
techniques such as dedicated DNNs that can be trained from data. In various
algorithms, as shown in the following sections, this specific computation
often requires accurate knowledge of pgy to, e.g., compute a conditional
probability measure, or to estimate some parameter, both tasks which can
be accurately learned using relatively simple neural networks. An illustration
of this strategy is depicted in Fig. 4.

Despite their similarity in combining DNNs with model-based algo-
rithms, there is a fundamental difference between the proposed approach
and unfolding: The main rationale of unfolding is to convert each iteration of

Data-driven symbol detection via model-based machine learning 291

the algorithm into a layer, namely, to design a DNN in light of a model-based
algorithm, or alternatively, to integrate the algorithm into the DNN. We pro-
pose to implement the algorithm, while only removing its model-dependence
by replacing the model-based computations with dedicated DNNs, thus in-
tegrating ML into the algorithm.

4. Example 1: finite-memory channels

In this section, we present how the rationale for combining ML and model-
based algorithms detailed in the previous section can be applied for data-
driven symbol detection over finite-memory causal channels. We first present
the channel model in Section 4.1. Then, we propose the integration of DNNs
into two established detection methods for such channels: We begin with
the Viterbi algorithm [29], which implements the maximum likelihood se-
quence detector, proposing a receiver architecture referred to as ViterbiNet
in Section 4.2. ViterbiNet learns to implement the Viterbi algorithm from
labeled data. Then, we extend these ideas to propose the BCJRNet receiver
in Section 4.3. BCJRNet learns the factor graph representing the underlying
statistical model of the channel, which it uses to implement the symbol-level
MAP detector via the BCJR algorithm [25]. We numerically demonstrate
the performance of these ML-based receivers in Section 4.4.

4.1. System model

We consider the recovery of a block of ¢t symbols transmitted over a finite-
memory stationary causal channel. Let S[i] € S be the symbol transmitted
at time index i € {1,2,...,t} £ T, where each symbol is uniformly dis-
tributed over a set of m constellation points, thus |S| = m. We use Y[i] € Y
to denote the channel output at time index 4. Since the channel is causal and
has a finite memory, Y[i] is given by a stochastic mapping of SLZ 41, Where
[is the memory of the channel, assumed to be smaller than the blocklength,
i.e., I < t. The conditional probability density function (PDF') of the channel
output given its input thus satisfies

k2
k‘z - 3
(1) Pyt st (ykl\st) = HPY[Z'HSLLH (y[@]\SLH))
=k

for all k1, ks € T such that ky < ky. The fact that the channel is stationary
implies that for each y €), s € S!, the conditional PDF pyvsi ., (Wls)

i—14+1

292 Nariman Farsad et al.

S[i] Finite-memory causal channel Y[i] Deep symbol S[i]
Data p (Y[i]l S[i],....S[i-1+ 1]) Channel detector] recovered
symbols output symbols

Figure 5: System model.

does not depend on the index 4. An illustration of the system is depicted in
Fig. 5.

We focus on two main symbol detector algorithms designed for the finite
state channel model in (1): the Viterbi detector [24], and the BCJR detector
[25]. The Viterbi scheme implements maximum likelihood sequence detection
given by

2) &)= argen‘asaxpyqst (y'|s') = arg min —log py+ s+ (y'|s") .
St t

steSt

The BCJR receiver implements the MAP symbol detector given by

(3) S[k] = argmax pgpyy+ (sly’) = argmaxpgp ye(s,y'), keT.
seS seS

Over the next two sections we present ViterbiNet and BCJRNet, which

are two algorithms that learn to carry out Viterbi and BCJR detection,

respectively, in a data-driven manner, using ML tools.

4.2. ViterbiNet

First we present a data-driven framework for recovering S* from the channel
output Y based on maximum-likelihood sequence detection. In particular,
in our model the receiver assumes that the channel is stationary, causal, and
has finite memory [, namely, that the input-output statistical relationship
is of the form (1). The receiver also knows the constellation S. We do not
assume that the receiver knows the conditional PDF py 5., (yls), ie.,
the receiver does not have this CSI. As a preliminary step to designing
ViterbiNet, we review Viterbi detection.

4.2.1. The Viterbi Algorithm The following description of the Viterbi
algorithm is based on [2, Ch. 3.4]. Since the constellation points are equiprob-
able, the optimal decision rule in the sense of minimal probability of error
is the maximum likelihood decision rule in (2). By defining

A

(4) ci(s) £ —logpypsi ., (Wlills), se8,

Data-driven symbol detection via model-based machine learning 293

it follows from (1) that the log-likelihood in (2) can be written as
log pyt|s (y']s') = S (st ,.1), and the optimization problem (2) be-

comes

t
(5) &t (yt) = arg miani (52—l+1) .
steSt i—1

The optimization problem (5) can be solved recursively using dynamic
programming, by treating the possible combinations of transmitted symbols
at each time instance as states and iteratively updating a path cost for each
state. The resulting scheme, known as the Viterbi algorithm, is given below
as Algorithm 1.

Algorithm 1 The Viterbi Algorithm [24]
Input: Block of channel outputs y?, where ¢ > .

Initialization: Set k=1, and fix an initial path cost &y(3)=0, for each 5 € S'.
For each state 3 € S!, compute ¢ (3) = min (Gr_1 (u) + cx (3)).
ueStul=3"1
If k > 1, set (8), 1, :=(8%),, where 5} =arg I;llinék (8).
ses!
Set k:=k+ 1. If £ <t go to Step 3. ©
Output: decoded output &', where §§71+1 = 8.

The Viterbi algorithm has two major advantages: 1) The algorithm
solves (2) at a computational complexity that is linear in the blocklength ¢.
For comparison, the computational complexity of solving (2) directly grows
exponentially with ¢; 2) The algorithm produces estimates sequentially dur-
ing run-time. In particular, while in (2) the estimated output 5! is computed
using the entire received block y!, Algorithm 1 computes §[i] once y[i +1—1]
is received.

In order to implement Algorithm 1, one must compute ¢; (s) of (4) for
all i € T and for each s € S'. Consequently, the conditional PDF of the
channel, which we refer to as full CSI, must be explicitly known. As discussed
in the introduction, obtaining full CSI may be extremely difficult in rapidly
changing channels and may also require a large training overhead. In the
following we propose ViterbiNet, an ML-based detector based on the Viterbi
algorithm, that does not require CSI.

4.2.2. Integrating ML into the Viterbi Algorithm In order to in-
tegrate ML into the Viterbi Algorithm, we note that CSI is required in
Algorithm 1 only in Step 3 to compute the log-likelihood function ¢;(s).

294 Nariman Farsad et al.

tosi-14)
argmin
A
[Detay]« | GO
{e.(s)}) Update path cost
ks ses!

&)=, min_, (0.(w) 4 (5)
{El (s)}ks’

ML-based log likelihood
computation

(]

Figure 6: ViterbiNet Architecture.

Once ¢;(s) is computed for each s € S!, the Viterbi algorithm only requires
knowledge of the memory length [of the channel. This requirement is much
easier to satisfy compared to full CSI (e.g., by using an upper bound on
memory length).

Since the channel is stationary, it holds by (4) that if y[i] = y[k] then
ci(8) = cx(s), for each s € S', and i, k € T. Consequently, the log-likelihood
function ¢;(s) depends only on the values of y[i] and of s, and not on the time
index i. Therefore, to implement Algorithm 1 in a data-driven fashion, we
replace the explicit computation of the log-likelihood (4) with an ML-based
system that learns to evaluate the cost function from the training data.
In this case, the input of the system is y[i] and the output is an estimate
of c;(s), denoted ¢&(s), for each s € S'. The rest of the Viterbi algorithm
remains intact, and the detector implements Algorithm 1 using the learned
¢i(8). The proposed architecture is illustrated in Fig. 6.

A major challenge in implementing a network capable of computing ¢;(s)
from y[i] stems from the fact that, by (4), ¢;(s) represents the log-likelihood
of Y[i] = y[i] given S?_,,, = s. However, DNNs trained with the cross en-
tropy loss typically output the conditional distribution of S} ;.| = s given
Vil = yli], ie., pgi v (slyli]). Specifically, classification DNNs with in-
put Y[i] = y[i], which typically takes values in a discrete set, or alternatively,
is discretized by binning a continuous quantity as in [30], output the distri-
bution of the label S?_,.; conditioned on that input Y[i] = yli], and not
the distribution of the input conditioned on all possible values of the label
S, 41+ For this reason, the previous work [13] used a DNN to approxi-
mate the MAP detector by considering DSy (s\yf_l +1). The quantity

(ylills),

—1+1

needed for the Viterbi algorithm is the conditional PDF py;g:

i1

Data-driven symbol detection via model-based machine learning 295

(pfsioti)]_, {plais],

Combine

Finite mixture model
PDF estimator

Figure 7: ML-based likelihood computation.

and not the conditional distribution pg: |y(;(s[yli]). Note that while
>scsiPsi ., |vii (slyli) = 1, for the desired conditional PDF
Y sest Y| S (y[i]|]s) # 1 in general. Therefore, outputs generated us-
ing conventional DNNs with a softmax output layer are not applicable. The
fact that Algorithm 1 uses py(ys: ., (y[il|s) instead of pg: | vy (slyld]) al-
lows it to exploit the Markovian nature of the channel, induced by the finite
memory in (1), resulting in the aforementioned advantages of the Viterbi
algorithm.

To tackle this difficulty, we recall that by Bayes’ theorem, as the sym-
bols are equiprobable, the desired conditional PDF py; s: (y|s) can be
written as

—1+1

(6) pysi_,., Wls) =m'-psi_ v (sly) - oy (v)-

i—14+1
Therefore, given estimates of py;j(y[i]) and of pg: | v (slyli]) for each
s € 8!, the log-likelihood function ¢;(s) can be recovered using (6) and (4).

A parametric estimate of pg: |y} (s|yli]), denoted pg (s|y[i]), can be
reliably obtained from training data using standard classification DNNs with
a softmax output layer. The marginal PDF of Y[i] may be estimated from
the training data using conventional kernel density estimation methods. Fur-
thermore, the fact that Y[4] is a stochastic mapping of S!_, 1 implies that its
distribution can be approximated as a mixture model of m! kernel functions
[31]. Consequently, a parametric estimate of py;(yli]), denoted py, (yli]),
can be obtained from the training data using mixture density networks [32],
expectation minimization (EM)-based algorithms [31, Ch. 2|, or any other
finite mixture model fitting method. The resulting ML-based log-likelihood
computation is illustrated in Fig. 7.

296 Nariman Farsad et al.

4.3. BCJRNet

In this section, we expand the approach presented in the previous section
to factor graphs and detail how this strategy can be used to implement
BCJRNet, which is a data-driven channel-model-independent MAP sym-
bol detector for finite-memory channels. We first discuss how ML can be
incorporated into factor graphs, and then present the BCJRNet detector.

4.3.1. Learning factor graphs Factor graphs are graphical models that
are used to represent factorization of multivariate functions (e.g. joint prob-
ability distributions) [33]. In factor graphs, each factor is represented by
a factor or function node, and each variable is represented by an edge or
half-edge in the graph.! Factor graph methods, such as the sum-product al-
gorithm [33], exploit the factorization of a joint distribution to efficiently
compute a desired quantity by passing messages along the edges of the
graph. For example, the application of the sum-product algorithm in the
finite-memory channel in (1) exploits its factorization to compute marginal
distributions, an operation whose burden typically grows exponentially with
the block size, with complexity that only grows linearly with ¢. In fact, the
sum-product algorithm is exactly the recursive computation carried out in
the BCJR symbol detector [25]. More generally, the sum-product algorithm
specializes a multitude of common signal processing techniques, including
the Kalman filter and hidden Markov model (HMM) prediction [35].

The factor graph representing finite-memory channels (1) is presented
in Fig. 8, where we use the simplifying notation s; = SE,ZH, y; = yli], and
the fact that

t

Py g (y', s") HPY[M& L Wilsi) Pgi g (silsia) = L1 fitwis sy).
i=1

In order to implement the sum-product scheme, one must be able to specify
the factor graph encapsulating the underlying distribution, and in particular,
the function nodes { fj}§:1. This implies that the BCJR detector requires
full CSL.

We next generalize the approach we took in the previous section with
the ViterbiNet to realize a broad family of data-driven factor graph methods
by learning the mappings carried out at the function nodes from a relatively

In this work we use the style proposed in [34], known as Forney-style factor
graphs.

Data-driven symbol detection via model-based machine learning 297

) S3 St

fl(yl’sl’so) : fz(yz’srsl) J‘;(y3’s3’sz

f,(}’,,snsﬂ)

N Y3

Figure 8: Factor graph of finite-memory channel.

small set of labeled data using ML tools. By doing so, one can train a
system to learn an underlying factor graph, which can then be utilized for
inference using conventional factor graph methods, such as the sum-product
algorithm.

The proposed approach requires prior knowledge of the graph struc-
ture, but not its nodes. For example, a finite-memory channel with memory
length not larger than [can be represented using the structure in Fig. 8
while its specific input-output relationship dictate the function nodes. Con-
sequently, in order to learn such a factor graph from samples, one must learn
its function nodes. As these mappings often represent conditional distribu-
tion measures, they can be naturally learned using classification networks,
e.g., fully-connected DNNs with a softmax output layer and cross-entropy
objective, which are known to reliably learn conditional distributions in
complex environments [4]. Furthermore, in many scenarios of interest, e.g.,
stationary finite-memory channels and time-invariant state-space models,
the mapping implemented by the factor nodes f;(-) does not depend on the
index 4. In such cases, only a fixed set of mappings whose size does not grow
with the dimensionality ¢ has to be tuned in order to learn the complete
factor graph. An example of how this concept of learned factor graphs can
be applied to the BCJR detector is presented next.

4.3.2. BCJRNet: data-driven M AP recovery In this section, we first
present the application of the sum-product method for MAP symbol detec-
tion in finite-memory channels, also known as the BCJR algorithm [25]. We
then describe how the approach proposed in Section 3 can be incorporated
into the BCJR algorithm.

Consider a stationary finite-memory channel, namely, a channel obeying
the model in Section 4.1. The detector which minimizes the symbol error
probability is the MAP rule given in (3). Using the formulation of the state
vectors {S§_,. 1}, the desired joint probability can be written as [36, Ch. 9.3]

() pspgy(s1:y) =D pstr gy (s [sk ()1 ()]s y")
seSt

298 Nariman Farsad et al.

The summands in (7) are the joint distributions evaluated recursively from
the channel factor graph. Thus, when the factor graph is known, the MAP
rule (3) can be computed efficiently using the sum-product algorithm.

Now, we show how the rationale presented in Section 3 yields a method
for learning the factor graphs of finite-memory channels, from which the
MAP detector can be obtained. We assume that the channel memory length,
[, is known. However, the channel model, i.e., the conditional distribution
Py i) SLM(') is unknown, and only a set of labeled input-output pairs is
available.

Since the channel memory is known, the structure of the factor graph is
fixed to that depicted in Fig. 8. Consequently, in order to learn the factor
graph, one must only adapt the function nodes f;(-), which are given by

filyi, si:8i-1) = Pysi,,, (ilsi) Psi | g1 (silsi-1)

@ | mpyis (Wilsi) (si)j = (si1)ja, Vie{2,....1}
(8) = .
0 otherwise,

where (a) follows from the definition of the state vectors {S§_,,;} and the
channel stationarity, which implies that pyys: , (-) does not depend on i
and can be written as py|g(-). The formulation of the function nodes in (8)
implies that they can be estimated by training an ML-based system to eval-
uate py|g(-) from which the corresponding function node value is obtained
via (8). Once the factor graph representing the channel is learned, symbol
recovery is carried out using the sum-product method detailed earlier. The
resulting receiver, referred to as BCJRNet, thus implements BCJR detection
in a data-driven manner, and is expected to approach MAP-performance
when the function nodes are accurately estimated, as demonstrated in our
numerical study in the next section.

Taking the same approach as ViterbiNet, since Y[i] = y; is given and may
take continuous values while Sﬁ_l 11, representing the label, takes discrete
values, a natural approach to evaluate pyp S;i;_,+1(yz"3i) for each s; € S!
using ML tools is to estimate pg: | |v((silyi), from which the desired
pypis: ., (ilsi) can be obtained using Bayes rule via (6). In particular,
BCJRNet utilizes two parametric models: one for evaluating the conditional
ps:_,,,|v(i(8ilyi), and another for computing the marginal PDF py;) (y:), us-
ing a similar system as that used for computing the likelihood functions in
ViterbiNet, i.e., via the architecture illustrated in Fig. 7. The estimates are
then combined into the learned function nodes using (8) and (6), which are
used by BCJRNet to carry out BCJR detection in a data-driven manner.

Data-driven symbol detection via model-based machine learning 299

4.4. Numerical evaluations

In this section, we numerically compare the performance of the proposed
data-driven ViterbiNet and BCJRNet to the conventional model-based
Viterbi algorithm and BCJR detector as well as to previously proposed
deep symbol detectors. Throughout this numerical study we implement the
fully-connected network in Fig. 7 using three layers: a 1 x 100 layer followed
by a 100 x 50 layer and a 50 x 16(= |m/|!) layer, using intermediate sigmoid
and ReLU activation functions, respectively. The mixture model estimator
approximates the distribution as a Gaussian mixture using EM-based fitting
[31, Ch. 2]. The network is trained using 5000 training samples to minimize
the cross-entropy loss via the Adam optimizer [37] with learning rate 0.01,
using up to 100 epochs with mini-batch size of 27 observations. We note
that the number of training samples is of the same order and even smaller
compared to typical preamble sequences in wireless communications. Due
to the small number of training samples and the simple architecture of the
DNN, only a few minutes are required to train the network on a standard
CPU.

We consider two finite-memory channels: An ISI channel with AWGN,
and a Poisson channel. In both channels we set the memory length to [= 4.
For the AWGN channel, we let W[i] be a zero-mean unit variance AWGN
independent of S[i], and let h(y) € R! be the channel vector obeying an
exponentially decaying profile (h)_ = e~ 7"=1 for v > 0. The input-output
relationship is given by

(9) =P Z Sli — 7+ 1] + Wi,

where p > 0 represents the signal-to-noise ratio (SNR). The channel input
is randomized from a binary phase shift keying (BPSK) constellation, i.e.,
S = {—1,1}. For the Poisson channel, the channel input represents on-off
keying, namely, S = {0, 1}, and the channel output Y[i] is generated from
the input via

(10) []|St~IP<\/_Z Sli— 7 +]+1>,

where P(A) is the Poisson distribution with parameter A > 0, and X f(X)
indicates that the random variable X is distributed according to f(X).

300 Nariman Farsad et al.

For each channel, we numerically compute the symbol error rate (SER)
of ViterbiNet and BCJRNet for different values of the SNR parameter p. In
the following study, the DNN in Fig. 7, which produces a parametric esti-
mate of the log-likelihoods in ViterbiNet and produces the learned function
nodes in BCJRNet, is trained anew for each value of p. For each SNR p, the
SER values are averaged over 20 different channel vectors h(y), obtained
by letting v vary in the range [0.1,2]. For comparison, we numerically com-
pute the SER of the Viterbi and BCJR algorithms, as well as that of the
sliding bidirectional RNN (SBRNN) deep symbol decoder proposed in [13].
In order to study the resiliency of the data-driven detectors to inaccurate
training, we also compute the performance when the receiver only has ac-
cess to a noisy estimate of h(y), and specifically, to a copy of h(y) whose
entries are corrupted by i.i.d. zero-mean Gaussian noise with variance 2. In
particular, we use o2 = 0.1 for the Gaussian channel (9), and o2 = 0.08 for
the Poisson channel (10). We consider two cases: Perfect CSI, in which the
channel-model-based detectors have accurate knowledge of h(~), while the
data-driven receivers are trained using labeled samples generated with the
same h(y) used for generating the test data; and CSI uncertainty, where
the model-based algorithms are implemented with the log-likelihoods (for
Viterbi algorithm) and function nodes (for BCJR detection) computed us-
ing the noisy version of h(y), while the data used for training ViterbiNet
and BCJRNet is generated with the noisy version of h(7y) instead of the
true one. In all cases, the information symbols are uniformly randomized
in an i.i.d. fashion from S, and the test samples are generated from their
corresponding channel with the true channel vector h(y).

The numerically computed SER values, averaged over 50000 Monte Carlo
simulations, versus p € [—6,10] dB for the ISI channel with AWGN are de-
picted in Fig. 9, while the corresponding performance versus p € [10,30] dB
for the Poisson channel are depicted in Fig. 10. Observing Figs. 9-10, we
note that the performance of the data-driven receivers approaches that of
their corresponding CSI-based counterparts. In particular, for the AWGN
case, in which the channel output obeys a Gaussian mixture distribution,
the performance of ViterbiNet coincides with that of the Viterbi algorithm,
while the SER of BCJRNet is within a very small gap of the CSI-based
BCJR receiver. For the Poisson channel, both data-driven receivers achieve
performance within a small gap of the model-based ones, which is more
notable at high SNRs. This gap stems from the model mismatch induced
by approximating the distribution of Y[i] as a Gaussian mixture. We also
observe that the SBRNN receiver, which was shown in [13] to approach the
performance of the CSI-based Viterbi algorithm when sufficient training is

Data-driven symbol detection via model-based machine learning

Symbol error rate

Symbol error rate

10'2 L

103 F

—H— ViterbiNet, perfect CSI
—O—BCJRNet, perfect CSI
—%— SBRNN, perfect CSI
—A— Viterbi, perfect CSI
—<1—BCJR, perfect CSI

— > - ViterbiNet, CSI uncertainty
—3 —BCJRNet, CSl uncertainty
—-+ —SBRNN, CSI uncertainty
—Y/ — Viterbi, CSI uncertainty

— >~ BCJR, CSI uncertainty

-4 2 0

SNR [dB]

Figure 9: ISI channel with AWGN.

S
[
T

103 F

—— ViterbiNet, perfect CSI
—O—BCJRNet, perfect CSI
—#— SBRNN, perfect CSI
—A— Viterbi, perfect CSI
—<}—BCJR, perfect CSI

— % —ViterbiNet, CSI uncertainty |

— 3% —BCJRNet, CSI uncertainty
—- —SBRNN, CSI uncertainty
— — Viterbi, CSI uncertainty
— [>~BCJR, CSI uncertainty

:

15

20

SNR [dB]

Figure 10: Poisson channel.

30

301

provided, is outperformed by ViterbiNet and BCJRNet here due to the small
training set size. These results demonstrate that our proposed data-driven
detectors, which use simple DNN structures embedded into an established
detection algorithms, require significantly less training compared to previ-
ously proposed ML-based receivers.

In the presence of CSI uncertainty, it is observed in Figs. 9-10 that
both ViterbiNet and BCJRNet significantly outperform the model-based
algorithms from which they originate. In particular, when ViterbiNet and
BCJRNet are trained with a variety of different channel conditions, they
are still capable of achieving relatively good SER performance under each

302 Nariman Farsad et al.

of the channel conditions for which it is trained, while the performance of the
conventional Viterbi and BCJR algorithms is significantly degraded in the
presence of imperfect CSI. While the SBRNN receiver is shown to be more
resilient to inaccurate CSI compared to the Viterbi and BCJR algorithms,
as was also observed in [13], it is outperformed by ViterbiNet and BCJRNet
with the same level of uncertainty, and the performance gap is more notable
in the AWGN channel. The reduced gain of ViterbiNet and BCJRNet over
the SBRNN receiver for the Poisson channel stems from the fact that the
ML-based module of Fig. 7 uses a Gaussian mixture density estimator for the
PDF of Y'[i], which obeys a Poisson mixture distribution for the channel (10).

The results presented in this section demonstrate that ML-based re-
ceivers can be trained to carry out accurate and robust symbol detection
using a relatively small amount of labeled samples (compared to amount of
data typically needed to train DNNs). This is achieved by utilizing dedicated
ML tools to learn only the model-based computations of symbol detection
algorithms, such as the Viterbi and BCJR methods, while combining these
learned computations with the generic operations of the algorithms, e.g.,
the dynamic programming processing of the Viterbi algorithm or the sum-
product recursion of the BCJR receiver.

5. Example 2: memoryless MIMO channels

In the previous section we utilized the rationale detailed in Section 3 for
combining ML and model-based algorithms in order to implement two sym-
bol detection schemes — the Vitebi detector and the BCJR algorithm — in a
data-driven fashion. Both these methods are based on computing the like-
lihood for each possible combination of channel inputs which could have
lead to the observed output, i.e., for each state, followed by some generic
recursive operations. Such methods, both the original channel-model-based
algorithms as well as their data-driven ML-based implementations, grow
computationally infeasible when multiple symbols are transmitted simulta-
neously, as in, e.g., multiuser MIMO systems, since the possible number of
states grows rapidly with the number of transmitted symbols. In this sec-
tion we demonstrate how the proposed model-based ML rationale can be
exploited to realize symbol detection methods suitable for such MIMO sys-
tems in a data-driven manner. We begin by presenting the channel model in
Section 5.1. Then, in Section 5.2 we show how the iterative SIC symbol de-
tection mapping proposed in [26], which is a MIMO receiver scheme capable
of approaching MAP performance at affordable complexity, can be learned
from training, resulting in an ML-based receiver referred to as DeepSIC. The
achievable performance of DeepSIC is demonstrated in a numerical study
presented in Section 5.3.

Data-driven symbol detection via model-based machine learning 303

o Y
il > L [Receiver
Memoryless . .
Data chamnel | Y[i] §[i
syr:bols channel output Deep symbol [] 5
P(VIS[) A4 detector Recovered
V Y symbols

Seli
el -

Figure 11: System model.

5.1. System model

We consider a multiuser uplink MIMO system in which K single antenna
users communicate with a receiver equipped with n, antennas over a memo-
ryless stationary channel. At each time instance ¢, the kth user,
ke {1,2,...,K} 2 K, transmits a symbol S[i] drawn from a constella-
tion § of size m. Each symbol is uniformly distributed over S, and the
symbols transmitted by different users are mutually independent. We use
Y[i] € R™ to denote the channel output at time index i. While we focus on
real-valued channels, the system model can be adapted to complex-valued
channels, as complex vectors can be equivalently represented using real vec-
tors of extended dimensions. Since the channel is memoryless, Y[i] is given
by some stochastic mapping of S[i] £ [S1[i], Sa[i], ..., Sk [i]]T, represented
by the conditional distribution py-;;s};- Since the channel is stationary, this
conditional distribution does not depend on the index ¢, and is thus denoted
henceforth by py |s. An illustration of the system is depicted in Fig. 11.

We focus on the problem of recovering the transmitted symbols S[i] from
the channel output Y'[i]. The optimal detection rule which minimizes the
probability of error given a channel output realization Y'[i] = y is the MAP
detector. Letting pg|y be the conditional distribution of S[i] given Y'[i], the
MAP rule is given by

(11) smapli] £ argmax pgy (sly).
seSK

The MAP detector jointly recovers the symbols of all users by searching
over a set of m® different possible input combinations, and thus becomes
infeasible when the number of users K grows. For example, when binary
constellations are used, i.e., m = 2, the number of different channel inputs
is larger than 10° for merely K = 20 users. Furthermore, the MAP decoder
requires accurate knowledge of the channel model, i.e., the conditional dis-
tribution py|g must be fully known. A common strategy to implement joint

304 Nariman Farsad et al.

decoding with affordable computational complexity, suitable for channels in
which Y'[¢] is given by a linear transformation of S[i] corrupted by additive
noise, is interference cancellation [38]. Interference cancellation refers to a
family of algorithms which implement joint decoding in an iterative fashion
by recovering a subset of S[i] based on the channel output as well as an
estimate of the remaining interfering symbols. These algorithms facilitate
the recovery of the subset of S[i] from the channel output by canceling the
effect of the estimated interference using knowledge of the channel parame-
ters, and specifically, how each interfering symbol contributes to the channel
output. In the sequel we present how interference cancellation, and specifi-
cally iterative SIC [26], can be learned from data without prior knowledge
of the channel model pyg.

5.2. Symbol detector derivation

Here, we design a data-driven method for recovering S[i| from the channel
output Y'[i]. In particular, in our model the receiver knows the constella-
tion S, and that the channel is stationary and memoryless. We do not as-
sume that the channel is linear nor that the receiver knows the conditional
probability measure py|g. Following the approach detailed in Section 3, we
design our network to implement interference cancellation in a data-driven
fashion. In particular, our proposed receiver is based on the iterative SIC
algorithm proposed in [26]. Therefore, as a preliminary step to designing the
data-driven detector, we first review iterative SIC, after which we present
DeepSIC, which is an ML-based implementation of iterative SIC.

5.2.1. Iterative soft interference cancellation The iterative SIC al-
gorithm proposed in [26] is a multiuser detection method that combines
multi-stage interference cancellation with soft decisions. Broadly speaking,
the detector operates in an iterative fashion where, in each iteration, an es-
timate of the conditional distribution of Si[i] given the observed Y[i] = y
is generated for every user k € I using the corresponding estimates of the
interfering symbols {S)[i]};2 obtained in the previous iteration. Iteratively
repeating this procedure refines the conditional distribution estimates, al-
lowing the detector to accurately recover each symbol from the output of
the last iteration. This iterative procedure is illustrated in Fig. 12.

To formulate the algorithm, we consider a channel whose output is ob-
tained as a linear transformation of its input corrupted by AWGN, i.e.,

(12) Yli| = HS[i] + Wi,

Data-driven symbol detection via model-based machine learning 305

Iterative SIC symbol detector
(0) (©) §,

) \1) ~
P, Interference Interference P
! cancellation Soft decode ¥ cancellation ! Soft decode } l argmax }

Initial | . Hard

o stimate Iteration 1 L. Iteration Q decision

/ Interference e) [Interérence ‘{‘K
U |cancellation } { SRl AR ‘ A(1) | cancellation || SR ‘,\ gy leles
Pk Pk | p%]

S
y
Channel
Sk

Figure 12: Soft iterative interference cancellation illustration.

where H € R ¥ is an a-priori known channel matrix, and Wi] € R¥ is
a zero-mean Gaussian vector with covariance o2 Ik, independent of S[i].
Iterative SIC consists of () iterations. Each iteration indexed
q€{1,2,...,Q} £ Q generates K distribution vectors fo,(f) eR™ kek.
These vectors are computed from the channel output y as well as the distri-
bution vectors obtained at the previous iteration, {f)(qfl)}kK 1- The entries

(@)

of p;”’ are estimates of the distribution of Si[i] for each possible symbol
in S, given the channel output Y[i] = y and assuming that the interfering
symbols {S;[i]}1+, are distributed via {p)}#k. Every iteration consists
of two steps, carried out in parallel for each user: Interference cancellation,
and soft decoding. Focusing on the kth user and the gth iteration, the inter-
ference cancellation stage first computes the expected values and variances
of {S;[i]}12 based on {fol(q_l)}l#k. Letting {c;}72; be the indexed elements
of the constellation set S, the expected values and variances are computed
via el(q_l) =2 a,e5 (pl(q 1))]" and Ul(q_l) =2 a,e8 (aj—el(q_l))Q(i)l(q_l))f
respectively. The contribution of the interfering symbols from y is then can-
celed by replacing them with {el(q_l)} and subtracting their resulting term.
Letting h; be the lth column of H, the interference canceled channel output
is given by

(13) Z\9[Zhe = hpSkli]+) (S | =)+ WTi).
Ik I#k
Substituting the channel output y into (13), the realization of the interfer-
ence canceled Z (q)['] denoted z,gq), is obtained.
To implement soft decoding, it is assumed that W(DY 21 i (Si[i]—

el(q_l)) + W i] obeys a zero-mean Gaussian distribution, independent of S[i],

306 Nariman Farsad et al.

and that its covariance is given by EVVIEQ) =02l + D1tk vl(q_l)hlh;‘r. Com-
bining this assumption with (13), the conditional distribution of Z gcq) given
Skli] = o is multivariate Gaussian with mean value hya; and covariance

- Since Z(Q)[] is given by a bijective transformation of Y'[i], it holds

that pg, |y (ajly) = psk|z‘“>(0‘j|z§cq)) for each o;j € S under the above as-
k
sumptions. Consequently, the conditional distribution of Si[i] given Y'[7] is

approximated from the conditional distribution of Z ,(Cq) given Sii] via Bayes
theorem. Since the symbols are equiprobable, this estimated conditional dis-
tribution is computed as

exp {—% (z,(g) hkozj> zil(fn (@ hkO‘J)}

> exp{ (zgfq) hkaj) Ewl(q) ((@) _ hkaj/>}'

aj/ES

After the final iteration, the symbols are decoded by taking the symbol
that maximizes the estimated conditional distribution for each user, i.e.,

(15) 8| = argmax (13](52)) .

je{1,...,m} J
The overall joint detection scheme is summarized below as Algorithm 2.
The initial estimates {f),(co)}f:l can be arbitrarily set. For example, these

may be chosen based on a linear separate estimation of each symbol for vy,
as proposed in [26].

Algorithm 2 Tterative Soft Interference Cancellation Algorithm [26]

: Input: Channel output y.

Initialization: Set ¢ = 1, and generate an initial guess of {j)ko)}kK:l.
Compute the expected values {e,(fq_l)} and variances {kal}.
Interference cancellation: For each k € K compute z,(f) via (13).

Soft decoding: For each k € K, estimate p(Q) via (14).
Set ¢:=q+ 1. If ¢ < Q go to Step 3.
Output: Hard decoded output 3, obtained via (15).

Iterative SIC has several notable advantages as a joint decoding method:
In terms of computational complexity, it replaces the joint exhaustive search
over all different channel input combinations, required by the MAP de-
coder (11), with a set of computations carried out separately for each user.

Data-driven symbol detection via model-based machine learning 307

Hence, its computational complexity only grows linearly with the number of
users [38], making it feasible also with large values of K. Unlike conventional
separate decoding, in which the symbol of each user is recovered individually
while treating the interference as noise, the iterative procedure refines the
separate estimates sequentially, and the usage of soft values mitigates the ef-
fect of error propagation. Consequently, Algorithm 2 is capable of achieving
performance approaching that of the MAP detector, which is only feasible
for small values of K.

Iterative SIC is specifically designed for linear channels of the form (12).
In particular, the interference cancellation in Step 4 of Algorithm 2 requires
the contribution of the interfering symbols to be additive. This limits the
application of the algorithm in non-linear channels. Additionally, the fact
that the distribution of the interference canceled channel output Z ,(f) given
Sk[i] is approximated as Gaussian in Algorithm 2 degrades the performance
in channels which do not obey the linear Gaussian model (12). Furthermore,
even when the channel obeys the linear model of (12), iterative SIC requires
full CSI, i.e., knowledge of the channel matrix H and the noise variance o2,
which may entail substantial overhead. The dependence on accurate CSI and
the assumption of linear channels are not unique to iterative SIC, and are
in fact common to most interference cancellation based joint detection algo-
rithms [38]. These limitations motivate the design of a joint detector which
exploits the computational feasibility of interference cancellation methods
while operating in a data-driven fashion. We specifically select iterative SIC
since it is capable of achieving MAP-comparable performance, with a struc-
ture that can be readily converted to be data-driven. This is a result of
the fact that its specific model-based computations, i.e., Steps 4-5 in Algo-
rithm 2, can be naturally implemented using relatively simple ML methods.
The resulting receiver, detailed in the following, integrates ML methods into
Algorithm 2, allowing it to be implemented for arbitrary memoryless sta-
tionary channels without requiring a-priori knowledge of the channel model
and its parameters.

5.2.2. Data-driven receiver architecture Here, we present a receiver
architecture that implements iterative SIC in a data-driven fashion. Follow-
ing the approach of Section 3, we keep the overall structure of the iterative
SIC algorithm, depicted in Fig. 12, while replacing the channel-model-based
computations with dedicated suitable DNNs. To that aim, we note that iter-
ative SIC can be viewed as a set of interconnected basic building blocks, each
implementing the two stages of interference cancellation and soft decoding,
i.e., Steps 4-5 of Algorithm 2. While the high level architecture of Fig. 12

308 Nariman Farsad et al.

e anes DeepSIC symbol detector
p, (0) A (1) ~(0) A
T Ly y) Pi [Classmcatlon DNN Py Classification DNN ‘pl 1‘ argmax sl
4 gl 7 '
£ -~ |-
. Initisl "3 Iteration 1 Iteration Q Hard
estimate | o 1§ % decision

u

S > 30 | Classification DNN | _ Classification DNN } AM{ argmax Sk
y K Px Px
Channel - .
LY K

Figure 13: DeepSIC illustration.

is ignorant of the underlying channel model, its basic building blocks are
channel-model-dependent. In particular, interference cancellation requires
the contribution of the interference to be additive, i.e., a linear model chan-
nel as in (12), as well as full CSI, in order to cancel the contribution of
the interference. Soft decoding requires complete knowledge of the channel
input-output relationship in order to estimate the conditional probabilities
via (14).

Although each of these basic building blocks consists of two sequential
procedures which are completely channel-model-based, we note that the pur-
pose of these computations is to carry out a classification task. In particular,
the kth building block of the gth iteration, k € K, ¢ € Q, produces f)g]),
which is an estimate of the conditional distribution of Sk[i] given Y[i] = y

based on {f)l(qfl)}#k. Such computations are naturally implemented by clas-
sification DNN, e.g., fully-connected networks with a softmax output layer.
Embedding these ML-based conditional distribution computations into the
iterative SIC block diagram in Fig. 12 yields the overall receiver architec-
ture depicted in Fig. 13. We set the initial estimates {f)g))}le to represent a
uniform distribution, i.e., (ﬁ,go))j = % for each j € {1,2,...,m} and k € K.
The resulting data-driven implementation of Algorithm 2 is repeated below
as Algorithm 3. Note that the model-based Steps 3-5 of Algorithm 2, which
estimate the conditional distributions, are replaced with the ML-based con-
ditional distribution estimation Step 3 in Algorithm 3.

A major advantage of using classification DNNs as the basic building
blocks in Fig. 13 stems from the fact that such ML-based methods are capa-
ble of accurately computing conditional distributions in complex non-linear
setups without requiring a-priori knowledge of the channel model and its pa-
rameters. Consequently, when these building blocks are trained to properly
implement their classification task, the receiver essentially realizes iterative

Data-driven symbol detection via model-based machine learning 309

Algorithm 3 Deep Soft Interference Cancellation (DeepSIC)

1: Input: Channel output y.

2: Initialization: Set ¢ = 1, and generate an initial guess of the conditional distri-
butions {j),(go)}le.

3: ML-based conditional distribution estimation: For each k € K, estimate the con-
ditional distribution f)ﬁcq) from y and {ﬁ,(cqfl)}#k using the (g, k)th classification
DNN.

4: Set g:=q+ 1. If ¢ < @ go to Step 3.

5: Output: Hard decoded output &, obtained via (15).

soft interference cancellation for arbitrary channel models in a data-driven
fashion.

5.2.3. Training the DNNs In order for the ML-based receiver structure
of Fig. 13 to reliably implement joint decoding, its building block classifi-
cation DNNs must be properly trained. Here, we consider two possible ap-
proaches to train the receiver based on a set of n; pairs of channel inputs
and their corresponding outputs, denoted {s;,y,};,: End-to-end training,
and sequential training.

End-to-end training The first approach jointly trains the entire network,
i.e., all the building block DNNs. Since the output of the deep network
is the set of conditional distributions {ﬁng)}le, where each fo,(gQ) is used

to estimate Si[i], we use the sum cross entropy as the training objective.

Let 8 be the network parameters, and f),(CQ) (y,;0) be the entry of f),(CQ)

corresponding to Sk[i] = a when the input to the network parameterizd by
0 is y. The sum cross entropy loss is

n, K
1 .
(16) Lsumcr(6) = - Y - log p\? (. (51)1:6).
i=1 k=1

Training the receiver in Fig. 13 in an end-to-end manner based on the
loss (16) jointly updates the coefficients of all the K -@ building block DNNs.
Since for a large number of users, training so many parameters simultane-
ously is expected to require a large labeled set, we next propose a sequential
training approach.

Sequential training To allow the network to be trained with a reduced
number of training samples, we note that the goal of each building block
DNN does not depend on the iteration index: The kth building block of the

310 Nariman Farsad et al.

qth iteration outputs a soft estimate of Si[i] for each ¢ € Q. Therefore, each
building block can be trained individually to minimize the cross entropy

loss. To formulate this objective, let 0,(;1) be the parameters of the kth DNN

at iteration ¢, and write j),(f) (y, {j)l(q_l)}#kl,a;ﬂéq)) as the entry of f)](f)

corresponding to Si[i] = « when its inputs are y and {f)l(q_l)}l;gl. The cross
entropy loss is

1 O . (-
(17) Lon(0) = -3~ —log By (i, 1B bk (5008 01,
=1

where {f)qufl)} represent the estimated probabilities associated with y, com-
puted at the previous iteration. The problem with training each DNN indi-
vidually is that the soft estimates {fogg_l)} are not provided as part of the
training set. This challenge can be tackled by training the DNNs correspond-
ing to each layer in a sequential manner, where for each layer the outputs
of the trained DNN corresponding to the previous iterations are used as the
soft estimates fed as training samples.

Sequential training uses the m; input-output pairs to train each DNN
individually. Compared to the end-to-end training that utilizes the training
samples to learn the complete set of parameters, which can be quite large,
sequential training uses the same data set to learn a significantly smaller
number of parameters, reduced by a factor of K -), multiple times. Conse-
quently, this approach is expected to require much fewer training samples,
at the cost of a longer learning procedure for a given training set, due to its
sequential operation, and possible performance degradation as the building
blocks are not jointly trained. This behavior is numerically demonstrated in
the simulation study detailed in Section 5.3.

5.3. Numerical evaluations

In the following section we numerically evaluate DeepSIC. We train DeepSIC
using the ADAM optimizer [37] with a relatively small training set of 5000
training samples, and tested over 20000 symbols. In the implementation
of the DNN-based building blocks of DeepSIC, we used a different fully-
connected network for each training method: For end-to-end training, where
all the building blocks are jointly trained, we used a compact network con-
sisting of a (n, + K — 1) x 60 layer followed by ReLU activation and a 60 x m
layer. For sequential training, which sequentially adapts subsets of the build-
ing blocks and can thus tune a more parameters using the same training set

Data-driven symbol detection via model-based machine learning 311

(or, alternatively, requires a smaller training set) compared to end-to-end
training, we used three fully-connected layers: An (n, + K — 1) x 100 first
layer, a 100 x 50 second layer, and a 50 x m third layer, with a sigmoid and a
ReLU intermediate activation functions, respectively. In both iterative SIC
as well as DeepSIC, we set the number of iterations to @) = 5.

We first consider a linear AWGN channel as in (12). Recall that itera-
tive SIC as well as previously proposed unfolding-based data-driven MIMO
receivers [11, Sec. II], are all designed for such channels. Consequently, the
following study compares DeepSIC in terms of performance and robust-
ness to competing detectors in a scenario for which these previous schemes
are applicable. In particular, we evaluate the SER of the following MIMO
detectors: The MAP detector, given by (11); The iterative SIC algorithm
(Algorithm 2); DeepSIC with the sequential training method, referred to in
the following as Seq. DeepSIC; DeepSIC with end-to-end training based on
the sum cross entropy loss (16), referred to henceforth as F2E DeepSIC; and
the unfolding-based DetNet MIMO detector [17].

The model-based MAP and iterative SIC detectors, as well as DetNet
[17], all require CSI, and specifically, accurate knowledge of the channel
matrix H. DeepSIC operates without a-priori knowledge of the channel
model and its parameters, learning the decoding mapping from a training set
sampled from the considered input-output relationship. In order to compare
the robustness of the detectors to CSI uncertainty, we also evaluate them
when the receiver has access to an estimate of H with entries corrupted
by i.i.d. additive Gaussian noise whose variance is given by o2 times the
magnitude of the corresponding entry, where o2 > 0 is referred to as the
error variance. For DeepSIC, which is model-invariant, we compute the SER
under CSI uncertainty by using a training set whose samples are randomized
from a channel in which the true H is replaced with its noisy version.

We simulate 6 x 6 linear Gaussian channel, i.e., K = 6 users and n,, = 6
receive antennas. The symbols are randomized from a BPSK constellation,
namely, S = {—1,1} and m = |S| = 2. The channel matrix H models
spatial exponential decay, and its entries are given by (H) ik = e~ li=dl) for
each i € {1,...,n,}, k € K. For each channel, the SER of the considered
receivers is evaluated for both perfect CSI, i.e., 02 = 0, as well as CSI
uncertainty, for which we use o2 = 0.1. The evaluated SER versus the SNR,
defined as 1/02, is depicted in Fig. 14.

Observing Fig. 14, we note that the performance of DeepSIC with end-
to-end training approaches that of the model-based iterative SIC algorithm,
which is within a small gap of the optimal MAP performance. This demon-
strates the ability of DeepSIC to implement iterative SIC in a data-driven

312 Nariman Farsad et al.

102

—HE—MAP, perfect CSI

—© ~MAP, CSI uncertainty

103 || —A—Iterative SIC, perfect CSI

—V -~ lterative SIC, CSI uncertainty

—<}—Seq. DeepSIC, perfect CSI

-p- Seq. DeepSIC, CSI uncertainty

" —%— E2E DeepSIC, perfect CSI

10 — % —E2E DeepSIC, CSI uncertainty

—+— DetNet, perfect CSI

—>— DetNet, perfect CSI, 100x train ;e

— = —DetNet, CSI uncertainty, 100x train
: : :

SER

0 2 4 6 8 10 12 14
SNR [dB]

Figure 14: 6 x 6 AWGN channel.

fashion. The sequential training method, whose purpose is to allow DeepSIC
to train with smaller data sets compared to end-to-end training, also achieves
an SER that is comparable to iterative SIC. In the presence of CSI uncer-
tainty, DeepSIC is observed to substantially outperform the model-based
iterative SIC and MAP receivers, as well as DetNet operating with a noisy
version of H and trained with a hundred times more samples. In particular,
it follows from Fig. 14 that a relatively minor error of variance o2 = 0.1
severely deteriorates the performance of the model-based methods, while
DeepSIC is hardly affected by the same level of CSI uncertainty.

Next, we consider a Poisson channel. We use K = 4 and n, = 4. Here,
the symbols are randomized from an on-off keying for which & = {0, 1}. The
entries of the channel output are related to the input via the conditional
distribution

(18) (Y[, ISl ~P(.

Vo

where P()) is the Poisson distribution with parameter A > 0.

The achievable SER of DeepSIC versus SNR under both perfect CSI
as well as CSI uncertainty with error variance o2 = 0.1 is compared to the
MAP and iterative SIC detectors in Fig. 15. Observing Fig. 15, we again note
that the performance of DeepSIC is only within a small gap of the MAP
performance with perfect CSI, and that the data-driven receiver is more ro-
bust to CSI uncertainty compared to the model-based MAP. In particular,
DeepSIC with sequential training, which utilizes a deeper network archi-
tecture for each building block, outperforms here end-to-end training with

(HS[i]); + 1) . je{l, . n),

Data-driven symbol detection via model-based machine learning 313

SER

L [—5—MAP, perfect CSI

—@© —-MAP, CSI uncertainty

—A— Iterative SIC, perfect CSI

—<}—Seq. DeepSIC, perfect CSI

— P>-Seq. DeepSIC, CSI uncertainty

—%— E2E DeepSIC, perfect CSI

— % — E2E DeepSIC, CSI uncertainty
: :

10 15 20 25 30
SNR [dB]

Figure 15: 4 x 4 Poisson channel.

basic two-layer structures for the conditional distribution estimation compo-
nents. We conclude that under such non-Gaussian channels, more complex
DNN models are required to learn to cancel interference and carry out soft
detection accurately. This further emphasizes the gain of our proposed se-
quential approach for training each building block separately, thus allowing
to train an overall deep architecture using a limited training set based on the
understanding of the role of each of its components. Furthermore, iterative
SIC, which is designed for linear Gaussian channels (12) where interference
is additive, achieves very poor performance when the channel model is sub-
stantially different from (12).

Our numerical results demonstrate the ability of DeepSIC to achieve ex-
cellent performance through learning from data for statistical models where
model-based interference cancellation is effectively inapplicable.

6. Discussion and conclusion

We reviewed an ML-based approach for designing symbol detection algo-
rithms for communication systems. This approach introduces ML into well-
known algorithms such as Viterbi, BCJR, and MIMO SIC, by identifying
the computations that require full knowledge of the underlying channel
input-output statistical relationships, and replacing them with ML-based
algorithms. The resulting architecture combines ML-based processing with
conventional symbol detection schemes. Our numerical results demonstrate
that the performance of data-driven ViterbiNet, BCJRNet, and DeepSIC
approaches the optimal performance of the equivalent CSI-based versions,

314 Nariman Farsad et al.

and outperform previously proposed ML-based symbol detectors using a
small amount of training data. It is also illustrated that these algorithms
are capable of operating in the presence of CSI uncertainty with little per-
formance degradation. Since our approach relies on small neural networks
that can be trained quickly to achieve close to optimal performance with
only a few thousand training symbols, it paves the way to the possibility of
online training using pilot sequences.

As part of future work, we will be extending our approach to general fac-
tor graph methods as well as using meta learning to improve the adaptability
of our algorithms to changing channels. Finally, we will also investigate how
different density estimation methods can be used to further improve the
training process.

References

[1] A. Goldsmith, Wireless communications. Cambridge University Press,
2005.

[2] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge University Press, 2005.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, 2015.

[4] Y. Bengio, “Learning deep architectures for Al Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[5] K. Gregor and Y. LeCun, “Learning fast approximations of sparse cod-
ing,” in Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, 2010, pp. 399-406.

[6] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” arXiv preprint
arXiv:1912.10557, 2019.

[7] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no. 4,
pp. 563-575, 2017.

[8] O. Simeone, “A very brief introduction to machine learning with appli-
cations to communication systems,” IEEE Trans. on Cogn. Commun.
Netw., vol. 4, no. 4, pp. 648-664, 2018.

9] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 25952621, 2018.

https://arxiv.org/abs/arXiv:1912.10557

[10]

[11]

[12]

[20]

[21]

Data-driven symbol detection via model-based machine learning 315

D. Giindiiz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine learning in the air,” IEEE J. Sel.
Areas Commun., vol. 37, no. 10, pp. 2184-2199, 2019.

A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” arXiv preprint
arXiv:1906.05774, 2019.

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication algorithms via deep learning,” arXiv preprint
arXiw:1805.09317, 2018.

N. Farsad and A. Goldsmith, “Neural network detection of data se-
quences in communication systems,” IEEE Trans. Signal Process.,
vol. 66, no. 21, pp. 5663-5678, 2018. MR3884587

A. Caciularu and D. Burshtein, “Blind channel equalization using vari-
ational autoencoders,” in Proc. IEEE ICC, 2018.

J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding:
Model-based inspiration of novel deep architectures,” arXiv preprint
arXw:1409.2574, 2014.

O. Solomon, R. Cohen, Y. Zhang, Y. Yang, Q. He, J. Luo, R. J. van
Sloun, and Y. C. Eldar, “Deep unfolded robust PCA with application
to clutter suppression in ultrasound,” IEEFE Trans. Med. Imag., 2019.

N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans.
Signal Process., vol. 67, no. 10, pp. 2554-2564, 2019. MR3957688

S. Takabe, M. Imanishi, T. Wadayama, and K. Hayashi, “Deep learning-
aided projected gradient detector for massive overloaded MIMO chan-
nels,” in Proc. IEEE ICC, 2019.

H. He, C.-K. Wen, S. Jin, and G. Y. Li, “A model-driven deep learn-
ing network for MIMO detection,” in Proc. IEEE GlobalSIP, 2018.
MR4114651

S. Khobahi, N. Naimipour, M. Soltanalian, and Y. C. Eldar, “Deep
signal recovery with one-bit quantization,” in Proc. IEEE ICASSP,
2019.

N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Viterbi-
Net: A deep learning based Viterbi algorithm for symbol detection,”
IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3319-3331, 2020.

https://arxiv.org/abs/arXiv:1906.05774
https://arxiv.org/abs/arXiv:1805.09317
http://www.ams.org/mathscinet-getitem?mr=3884587
https://arxiv.org/abs/arXiv:1409.2574
http://www.ams.org/mathscinet-getitem?mr=3957688
http://www.ams.org/mathscinet-getitem?mr=4114651

316

[22]

23]

[24]

[25]

Nariman Farsad et al.

N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Data-
driven factor graphs for deep symbol detection,” arXiv preprint
arXiw:2002.00758, 2020.

N. Shlezinger, R. Fu, and Y. C. Eldar, “DeepSIC: Deep soft inter-
ference cancellation for multiuser MIMO detection,” arXiv preprint
arXww:2002.05214, 2020.

A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
no. 2, pp. 260-269, 1967.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of lin-
ear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284-287, 1974. MR0368917

W.-J. Choi, K.-W. Cheong, and J. M. Cioffi, “Iterative soft interfer-
ence cancellation for multiple antenna systems.” in Proc. WCNC, 2000,
pp- 304-309.

1. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016, http://www.deeplearningbook.org. MR3617773

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Explor-
ing generalization in deep learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 5947-5956.

G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3, pp.
268-278, 1973. MR0439384

A. V. D. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint arXiv:1609.03499,
2016.

G. McLachlan and D. Peel, Finite mizture models. John Wiley & Sons,
2004. MR1789474

C. M. Bishop, “Mixture density networks,” 1994. [Online|. Available:
http://publications.aston.ac.uk/id /eprint /373 /

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp- 498-519, 2001. MR1820474

G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Trans.
Inf. Theory, vol. 47, no. 2, pp. 520-548, 2001. MR1820475

https://arxiv.org/abs/arXiv:2002.00758
https://arxiv.org/abs/arXiv:2002.03214
http://www.ams.org/mathscinet-getitem?mr=0368917
http://www.deeplearningbook.org
http://www.ams.org/mathscinet-getitem?mr=3617773
http://www.ams.org/mathscinet-getitem?mr=0439384
https://arxiv.org/abs/arXiv:1609.03499
http://www.ams.org/mathscinet-getitem?mr=1789474
http://publications.aston.ac.uk/id/eprint/373/
http://www.ams.org/mathscinet-getitem?mr=1820474
http://www.ams.org/mathscinet-getitem?mr=1820475

Data-driven symbol detection via model-based machine learning 317

[35] H.-A. Loeliger, “An introduction to factor graphs,” IFEFE Signal Pro-
cess. Mayg., vol. 21, no. 1, pp. 28-41, 2004.

[36] J. M. Cioffi, “Sequence detection,” EE379B Course notes chapter 9.
Stanford University, 2008.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[38] J. G. Andrews, “Interference cancellation for cellular systems: a contem-
porary overview,” IEEE Wireless Commun., vol. 12, no. 2, pp. 19-29,
2005.

NARIMAN FARSAD

DEPARTMENT OF COMPUTER SCIENCE
RYERSON UNIVERSITY

TORONTO

CANADA

E-mail address: nfarsad@ryerson.edu

NIR SHLEZINGER

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
BEN-GURION UNIVERSITY OF THE NEGEV
BE’ER-SHEVA

ISRAEL

E-mail address: nirshl@bgu.ac.il

ANDREA J. GOLDSMITH

DEPARTMENT OF ELECTRICAL ENGINEERING
PRINCETON UNIVERSITY

PRINCETON, NJ, 08540

USA

E-mail address: goldsmith@princeton.edu

YoNINA C. ELDAR

FacurLry oF MATH AND CS

WEIZMANN INSTITUTE OF SCIENCE

REHOVOT

ISRAEL

E-mail address: yonina.eldar@weizmann.ac.il

RECEIVED FEBRUARY 14, 2020

https://arxiv.org/abs/arXiv:1412.6980
mailto:nfarsad@ryerson.edu
mailto:nirshl@bgu.ac.il
mailto:goldsmith@princeton.edu
mailto:yonina.eldar@weizmann.ac.il

	85th birthday tribute to Tom Kailath
	Introduction
	Model-based machine learning
	Machine learning for symbol detection
	Combining ML and model-based algorithms

	Example 1: finite-memory channels
	System model
	ViterbiNet
	The Viterbi Algorithm
	Integrating ML into the Viterbi Algorithm

	BCJRNet
	Learning factor graphs
	BCJRNet: data-driven MAP recovery

	Numerical evaluations

	Example 2: memoryless MIMO channels
	System model
	Symbol detector derivation
	Iterative soft interference cancellation
	Data-driven receiver architecture
	Training the DNNs

	Numerical evaluations

	Discussion and conclusion
	References

