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Extrema without convexity and stability without
Lyapunov
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∗
and Mengbin Ye

†,‡

The great majority of optimization problems where there is a global
minimum are convex, and a great variety of demonstrations of
equilibrium point stability of nonlinear systems involve Lyapunov
functions. This work illustrates alternative techniques which may
allow dispensing with a convexity assumption, or dispensing with
use of a Lyapunov function. The techniques are grounded in topol-
ogy, in particular Morse Theory, and results of Lefschetz-Hopf and
Poincaré-Hopf. Illustrations are provided from the literature.

1. Introduction

Modern system theory probably has its roots in the commencement in the
19th century of the process of providing rigorous underpinnings to control,
and the development in the 20th century of circuit theory and its associated
mathematical foundations. The clear separation of system theory from these
streams started to become evident with the appearance of one of the first
books dealing with system theory, viz. [1]. Despite the word ‘linear’ in the
title, this book ranged well beyond the theory of linear systems. From that
time on the system theory field grew and spread vigorously, not necessarily
because of, but no doubt aided by, the book. During this growth phase, linear
system theory in the true sense of the words was heavily developed, with
books such as [2], replete with its discussion of multivariate canonical forms
among other things, showing the zenith of many of these developments. At
the same time, the branching away from linear systems, in part motivated by
challenging applications for which theory was often uncomfortably limited
at best, gave rise to many tributaries. A great number of these fall under

∗B. D. O. Anderson (corresponding author) was supported by the Australian
Research Council under grant DP-160104500 and DP190100887, and by Data61-
CSIRO.

†M. Ye was supported by the European Research Council (ERC-CoG-771687),
and by Optus Business.

‡ORCID: 0000-0003-1698-0173.

253

https://www.intlpress.com/site/pub/pages/journals/items/cis/_home/_main/index.php


254 Brian D. O. Anderson and Mengbin Ye

the heading of nonlinear systems and a great many others fall under the
heading of optimization.

In this paper, we discuss some recent developments, essentially grounded
in differential topology, which bypass some of what we now see as the tra-
ditional foundations of nonlinear systems and optimization. In particular,
we consider minimization problems where convexity is not assumed, and we
consider stability problems, including global stability problems, where Lya-
punov theory is not the foundation of the analysis. The set of developments
we summarize are not that well known, although there are individual exam-
ples of their use in the system literature and in essence this paper in part is
to proselytize, by using the opportunity to expose the ideas more widely.

Whatever the commonalities of the mathematical underpinnings, the
material we present falls naturally into three distinct parts, presented over
the following three sections of the paper. In the first of these, we discuss
the application of Morse Theory [3, 4], which at its heart is concerned with
counting the number of critical points of a scalar function, and classifying
them as maxima, minima, saddle points etc. We note how such counting
may lead one to infer the existence of a unique minimum (or maximum) of
a function, without a convexity assumption. In the second part, we consider
(continuous time) nonlinear dynamical systems, and use Poincaré-Hopf the-
ory [5, 6] to identify situations in which there will be precisely one stable
equilibrium. Further, for a large class of nonlinear systems known as mono-
tone systems (which are widely occurring in many fields of application) [7, 8],
we can often go further to establish global asymptotic stability, i.e. we rule
out existence of chaotic or limit cycle behavior. The third part is a sort of
discrete-time equivalent to the second part, in that we are able to identify
situations where a mapping has precisely one fixed point. This development
rests on results due to Lefschetz-Hopf [5, 9, 10].

A common feature of the mathematics behind the three parts is that
properties of a local nature are shown to imply properties of a global nature.
Thus for example, in connection with the Morse Theory development, it is
not relevant whether a function is convex everywhere (i.e. has a positive
definite Hessian matrix everywhere), but only that it be locally convex at
each critical point. With additional rather general conditions, this is enough
to yield the global property that there is a single critical point which is a
minimum.

A different common feature over the three parts is our provision of ap-
plications examples illustrating the results. The examples are of a sort which
are more attuned to engineering journals than mathematics journals, deal-
ing with nuclear source detection, epidemics, and social networks. In each
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section of the paper, the general mathematical/system theory idea is first
presented, and then it is followed by the example.

Morse Theory and the major results of Lefschetz-Hopf and Poincaré-
Hopf are unknown to many, perhaps the majority, of systems researchers
with engineering background. Isolated works have of course appeared in the
engineering literature utilizing these tools, but not as far as we are aware
with any sense of unification of the concepts as attempted here. We aim to
present just enough ideas to allow engineers to see the general framework,
and provide motivating systems examples at the same time to illustrate how
one may seek to apply the framework.

1.1. Preliminaries and the Euler characteristic

We conclude the section with some brief notation. For two vectors x, y ∈ R
n,

we write x ≥ y and x > y if for all i = 1, . . . , n, xi ≥ yi and xi > yi,
respectively. The n × n identity matrix is In, and the ith canonical basis
vector is ei. The Euclidean norm in R

n is | · |.
For a smooth manifold M with boundary, we denote the boundary as

∂M and the interior as Int(M) = M \ ∂M . Central to our treatment is the
Euler characteristic of the manifold M , denoted as χ(M) [11, 5], which is an
integer number associated with M . A key property is that χ(M) is invariant
with respect to a homotopy of M (roughly speaking, distortion or bending
of M). The Euler characteristics for a great number of manifolds are known.
We remark that the Euler characteristic can certainly be associated with
topological spaces that are not smooth manifolds, e.g. an n-dimensional hy-
perrectangle in R

n. Other similar concepts and results we introduce may
have extensions to general topological spaces, but for simplicity of exposi-
tion, we consider only smooth manifolds with boundary, or sometimes R

n

itself.
We will focus on M which are contractible, and for which χ(M) = 1

[5]. We say that M is contractible if it is homotopy equivalent to a single
point (roughly, if M can be continuously shrunk and deformed to a point).
Any convex and compact space in R

n is contractible, e.g. the unit disc, a
hyperrectangle, or a ball. However, contractible spaces need not be convex;
M is contractible if there exists an x0 ∈ M such that for all x ∈ M and
t ∈ [0, 1], the point (1− t)x0 + tx ∈ M . Such an M is called a star domain.

2. Morse theory

Morse Theory is in part concerned with counting the number of minima,
maxima and saddle points of a real function, and noting relations between
the counts. For rigorous and detailed introduction, see e.g. [4, 3].
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Figure 1: An illustration of a scalar function f(x) that is a Morse function.
Notice that the extreme points are isolated, f(x) → ∞ as |x| → ∞, and
there is one more minimum than maximum.

We introduce the idea with a simple example, suitable for consumption
by an engineering audience. Consider a (scalar) smooth function f : R → R

with the properties that (a) all extreme points are isolated, (b) the function
is bounded below, and (c) f(x) → ∞ when |x| → ∞. See Figure 1 for
an example. The observation evident from this figure is that the number
of minima exceeds the number of maxima by precisely 1. This is not just
a property of the particular function illustrated, but in fact a property of
any function f satisfying the stated conditions. It is this observation which
Morse Theory generalizes. In particular, the generalization is to functions
f : M → R where M is a (smooth) manifold. In this work, we shall identify
M with R

n for some positive integer n, or with a box sitting in R
n. In the

latter case, because there is a boundary to M , it is necessary to consider
behavior on the boundary, and technically to assure the box boundary is
smooth–thus corners for example would need to be rounded, but we skip
these smoothing details, which are minor. In the more elementary forms
of the theory, as we work with here, it is assumed that (a) f is smooth
and bounded below, (b) at the critical points of f , i.e. the points where its
gradient is zero, the Hessian matrix ∇2f is nonsingular, and (c) there are
a finite number of critical points. (In the case of a box, this last property
is automatic given the first two.) In the case of M = R

n, it is most easily
assured by requiring that f → ∞ when |x| → ∞. When M has a boundary,
as with a box in R

n, the additional requirements are (d) there are no critical
points of f on the boundary and (e) the gradient of f points outwards from
the boundary.

Definition 1 (Morse function). A function f : M → R satisfying the just
listed properties (a), (b), (c) (and if M has a boundary then also (d) and
(e)), is termed a Morse function.
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In R
n, there can be minima, maxima and saddle points of indices

1, 2, . . . , n−1, corresponding to there being 1, 2, . . . , n−1 negative eigenval-
ues of the Hessian ∇2f computed at the critical point in question. Suppose
that the number of such critical points is finite, a feature which will follow
if f has no critical points for suitably large values of the argument, and
f is outwardly pointing on the boundary of any large box. Let mi denote
the number of critical points where the Hessian has i negative eigenvalues.
Then Morse Theory establishes certain inequality relations among the mi

and indeed one equality relation. These relations are as follows:

m0 ≥ 1(1)

m1 −m0 ≥ −1

m2 −m1 +m0 ≥ 1
...

mn−1 −mn−2 + · · ·+ (−1)n−1m0 ≥ (−1)n−1

mn −mn−1 + · · ·+ (−1)nm0 = (−1)n

For the case n = 2, these relations reduce simply tom0−m1 = 1, as observed
above with the example in Fig. 1. If the manifold in question is other than R

n

(or a box within R
n), the numbers on the right hand side of the inequalities

are varied to include what are known as the Betti numbers, see e.g. [4], of the
manifold M ; these are integer numbers determined just by the manifold and
certainly numbers which are independent of the function. The number on the
right hand side of the equality is (−1)n times the previously mentioned Euler
characteristic of the manifold M , denoted χ(M). The Euler characteristic
of Rn is 1, and recall that any contractible manifold (e.g. a box in R

n) also
has Euler characteristic of 1.

There is a crucial consequence of these equations, easily obtained, which
is not widely known. Mention can however be found in textbooks, see e.g.
[12].

Theorem 1 (Morse Theory Corollary for System Theory). Let f : Rn → R

be a Morse function. Suppose there is a finite number of critical points and
every critical point is a minimum. Then the function has a unique minimum.

The proof is an immediate consequence of setting mi = 0 for all i �= 0
in the Morse equality above.

Remark 1 (Convexity not needed). Obviously, there is no requirement for
a smooth function possessing a unique minimum to be convex–consider for
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Figure 2: An example of a function that is not convex, and possesses a unique
minimum: f(x) = log(x2 + a2), with a = 2.

example the function f(x) = log(x2 + a2), an example of which is given in
Fig. 2 with a = 2. As seen in the figure, and may be checked by computing
the first and second derivatives of f , there is a single critical point at x = 0,
f is not convex and f → ∞ as |x| → ∞.

Remark 2 (Relaxing the critical point condition). If the hypothesis in the
above theorem is changed to require that every critical point has a Hessian
matrix with positive determinant, the same conclusion follows. This obser-
vation (with inessential replacement of f by −f and minima by maxima)
can be found in [13]. At a critical point of odd index 1, 3, . . . , the number
of negative eigenvalues of the Hessian matrix is odd, and so its determinant
will be negative. The hypothesis that the Hessian has a positive determinant
at every critical point means then that m1 = m3 = · · · = 0. The Morse
equality then becomes m0 + m2 + · · · = 1, and taken with the inequality
m0 ≥ 1, it follows that m0 = 1 and all other mi are zero. As suggested
by the title of [13], the proposed application is to potential games. In game
theory, a potential game has the property that there is a function P : X → R

with X the strategy set (satisfying appropriate assumptions), and P has the
further property that at a pure strategy Nash equilibrium x∗ ∈ X, there holds
∇P (x∗) = 0. The Hessian property then gives a tool for concluding unique-
ness of the Nash equilibrium. Reference [13] however gives no example of a
potential game where this property is actually used.

Remark 3. Manifolds other than R
n or a box within R

n do arise in some
system theory problems. Multi-agent formation shape control problems are
examined in [14] and [15], where the Morse function is used as a potential
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function, and distributed gradient descent controllers are used to drive the
agents to the desired formation shape, corresponding to a minimum of the
Morse function. The relevant manifold in particular in some instances has
an Euler characteristic unequal to 1. This immediately guarantees that any
Morse function cannot have a single critical point which is a minimum, and
in some cases, the existence of multiple local minima can be a conclusion.
This then has important implications regarding the possible final formation
shape.

2.1. Applications

There have been several applications of Theorem 1 in the literature. An
early example, but only hinting at the way the theorem should be applied,
is [16], while [17] indicates how the result above can be applied more clearly.
Both these references deal with finding a coordinate basis change for a linear
system to optimize performance of the system when calculations are imple-
mented using the state-variable description but in an impaired way, due to
constraints on word length of the real numbers. Convexity of the relevant
performance index is not assured in either case.

We now present a much more recent example, associated with detec-
tion of a stationary nuclear source by a moving sensor by gradient-ascent-
based maximum likelihood estimation, see [18]. A nuclear source of unknown
strength is located at an unknown position (x0, y0) in the plane and a de-
tector moves in the same plane at known speed ν along the x-axis in the
positive direction. With reasonable assumptions, the particle arrivals de-
tected constitute an inhomogeneous Poisson process with mean arrival rate

(2) λ(t) =
A0

(x0 − νt)2 + y20

where A0 is a source strength parameter determined by the detector charac-
teristics and the source itself. Given its partial dependence on the source, A0

is necessarily assumed to be unknown. The observed particle arrival times
over an interval [T1, T2], call them t1, t2, . . . , tn, are independent. A limiting
argument not provided here allowing T1 → −∞, T2 → ∞ establishes that
maximization of the associated likelihood function (with respect to the three
scalar unknowns x0, y0 and A0 and to obtain a maximum likelihood estimate
of these quantities) is equivalent to the maximization of

(3) L(A0, x0, y0) = − πA0

ν|y0|
+ n logA0 +

n∑
i=1

log

(
1

(x0 − νti)2 + y20

)

or minimization of −L.
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Observe for future reference that for very large values of x20 + y20, L will
be very large and negative, being approximated by −nlog(x20 + y20), and
evidently it will be monotone in x20 + y20.

At the outset, one must assume knowledge of the half plane, either y > 0
or y < 0, in which the source is located. The path of the detector cannot
intersect the source, and the invariance of L with respect to the sign of y0
is evident both mathematically and from the physical arrangement. To be
definite, we will assume y0 > 0 henceforth. Also, a normalization is possible
to allow without loss of generality the assumption ν = 1, which we will also
adopt henceforth.

Setting equal to zero the derivative of L with respect to each argument
yields the critical point equations

A0 =
ny0
π

(4)

n∑
i=1

x0 − ti
(x0 − ti)2 + y20

= 0

n∑
i=1

1

(x0 − ti)2 + y20
=

n

2y20

Evidently, A0 is immediately known in terms of y0 and the real issue is to
determine (x0, y0). Our task is then to maximize

(5) J(x0, y0) = L(
ny0
π

, x0, y0)

(or to minimize −J). It is readily verified that the critical points of J satisfy
the second and third equations of (4). The associated Hessian of J can be
calculated to be

(6) HJ(x0, y0) =

[
−2

∑n
i=1

y2
0−(x0−ti)2

(y2
0+(x0−ti)2)2

4y x0−ti
(y2

0+(x0−ti)2)2

4y x0−ti
(y2

0+(x0−ti)2)2
−2n

y2
0
+ 2

∑n
i=1

y2
0−(x0−ti)2

(y2
0+(x0−ti)2)2

]

While the Hessian is not everywhere sign definite, it is negative definite at
any point at which the critical point equations hold. (This last property
can most easily be seen by defining θi = arctan(y0/(x0 − ti)) and then
expressing the critical point equations and the Hessian using trigonometric
functions of the θi). For details see [18]. This observation, the smoothness of
J , its behavior for large values of its arguments as recorded below (3) and
Theorem 1 guarantee uniqueness of the maximum of J , which can then be
readily computed by a gradient ascent algorithm.
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3. The Poincaré-Hopf Theorem

We introduce the application of this theorem in system theory by mak-
ing an important observation drawn from the discussion on Morse Theory.
Suppose that f is a Morse function. Consider the gradient descent system
ẋ = −∇f(x). Theorem 1 then establishes that if there are no equilibrium
points other than stable ones, there can be but one such equilibrium point.
The Poincaré-Hopf Theorem, or more properly the extension thereof pre-
sented below, effectively extends this result to more general systems of the
form ẋ = F (x). Very roughly speaking, if all equilibrium points are stable,
there can only be one equilibrium point.

Of course, this theorem rests on ideas of differential topology, see e.g.
[5], and we only exploit an elementary version of it, suited to motion in R

n

or a box thereof. Consider a smooth map F : X → Y , where X and Y are
manifolds. Associated with F and any point x ∈ X is a linear derivative
mapping dFx : TxX → TF (x)Y , where TxX and TF (x)Y denote respectively
the tangent space of X at x and Y at y = F (x) ∈ Y . Of course, the manifold
X locally at x looks like Rn for some n, and in an associated local coordinate
basis dFx is simply the Jacobian of F evaluated at x. Suppose now X and
Y have the same dimension. A point x ∈ X is called a regular point if dFx is
nonsingular, and a point y ∈ Y is called a regular value if F−1(y) contains
only regular points.

Suppose further that both X and Y are manifolds, with X compact and
Y connected. The (Brouwer) degree of F at a regular value y ∈ Y is given
by [11]

(7) deg(F, y) =
∑

x∈F−1(y)

sign det(dFx)

(It can be argued that the sum can only have a finite number of terms due
to the compactness of X.) Evidently, sign det(dFx) assumes the value +1
or −1 according as dFx preserves or reverses orientation. A major result is
that deg(F, y) is the same for all regular values y, see [11], and so the left
side of (7) can be written simply as deg(F ).

A point x ∈ X is a zero of F if F (x) = 0, and it is an isolated zero if
there exists an open ball around x in which there are no other zeros. When
a zero x has nonsingular dFx it is termed nondegenerate, and nonsingularity
of dFx is a sufficient condition for x to be isolated. The index of an isolated
zero x ∈ R

n, denoted indx(F ) is the degree of the map

u : ∂D → Sn−1
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z �→ F (z)

|F (z)| ,

where D is a closed ball centred at x containing no other zero. A slightly
simplified version of the Poincaré-Hopf theorem, but allowing manifolds with
boundary, states:

Theorem 2 (Simplified Poincaré-Hopf Theorem). Consider a smooth vector
field F on a compact n-dimensional manifold M, i.e. a smooth map F :
M → TM. If M has a boundary ∂M, then F must point outwards at every
point on the boundary. Suppose that every zero xi ∈ M is nondegenerate.
Then

(8)
∑
i

indxi(F ) =
∑
i

sign det(dFxi) = χ(M)

where χ(M) is the Euler characteristic of M.

Remark 4. The notion of a vector field F “pointing outwards” on the
boundary ∂M, and similarly of “pointing inwards” as introduced in the se-
quel, has both an intuitive geometric interpretation and a consistent rigorous
technical definition. To keep this treatment illustrative in nature, we omit the
rigorous technical definition, which relies on the concept of a tangent cone.
Interested readers are referred to [19, Section III and Appendix D].

For our purposes, we are interested in a specialization to compact, con-
tractible and smooth m-dimensional manifolds embedded in R

n, where
m ≤ n. Recall that for such a manifold, the Euler characteristic is χ(M) = 1.
Further, we suppose that dFx is Hurwitz matrix at every zero x of F . The
key result is as follows.

Theorem 3 (Poincaré-Hopf Corollary for System Theory). Consider the
autonomous system

(9) ẋ = F (x)

where F is smooth, and x ∈ R
n. Suppose that M ⊂ R

m is an m-dimensional
compact, contractible and smooth manifold with boundary ∂M, such that F
points inward to M at every point on ∂M. Then there exists at least one
equilibrium in Int(M). If dFx is a Hurwitz square matrix (i.e. its eigenvalues
all have negative real part) for every equilibrium point x̄ ∈ M (i.e. for which
F (x̄) = 0), then (9) has a unique equilibrium x∗ ∈ Int(M), and x∗ is locally
exponentially stable.
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That there exists at least one equilibrium follows from the fact that
χ(M) = 1, implying that the summation on the left in (8) (which is over
the equilibrium points) is nonempty. The proof follows by observing that
the requirement that dFx is Hurwitz for all zeros of F ensures that the signs
of the determinants of dFxi

must be the same for all equilibrium points.
Since also χ(M) = 1, applying the main theorem to G := −F establishes
the result. At this point, the reader can verify that, as earlier observed, this
result encompasses the Theorem 1, through identification of F (x) here with
the gradient of −f(x) in Theorem 1.

There is however a significant distinction in the applicability of the two
theorems. The generalization from gradient flows to general vector fields
may be welcome, but it brings with it the possibility of limit cycles and
chaotic behavior which simply cannot occur in a gradient flow, at least if
the function f is real analytic [20]. We therefore introduce another tool
which helps us eliminate the possibilities when paired with Theorem 3, and
is applicable in many situations of interest–monotone systems.

3.1. Monotone systems

We provide a brief introduction to monotone systems, and again, one lesser
known or possibly unknown extension of the theory of particular relevance
in applications. Details (apart from Theorem 4 below) are available in e.g.
[7, 21]. We continue to study the system ẋ = F (x) and we focus on behavior
of the system in particular orthants of Rn, including but not limited to the
positive orthant xi ≥ 0 ∀i.

To be more precise, consider a sequence mi, i = 1, 2, . . . , n with mi ∈
{0, 1}. Then the sequence defines a particular orthant Km by

(10) Km = {x ∈ R
n : (−1)mixi ≥ 0, ∀i ∈ {1, . . . , n}}

For a given orthant Km, we write x ≤Km
y and x <Km

y if y− x ∈ Km and
y − x ∈ Int Km respectively.

We consider the system (9) on a convex, open set U ⊆ R
n, with F

smooth such that dFx exists for all x ∈ U , and the solution of (9) exists
and is unique for every x(0) ∈ U . Let φt(x0) denote the solution x(t) when
x(0) = x0.

Definition 2 (Type Km monotone system). The system (9) is a type Km

monotone system if whenever there exists x0, y0 ∈ U with x0 ≤Km
y0, then

φt(x0) ≤Km
φt(y0); then φt is said to preserve the partial ordering ≤Km

for
t ≥ 0.
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There is a simple necessary and sufficient condition for the monotone
property involving the Jacobian (Kamke–Müller condition) [7, Lemma 2.1]:

Lemma 1 (Condition for monotone property). With notation as above,
suppose that F is of class C1 in U , where U is open and convex in R

n.
Then φt(x0) preserves the partial ordering ≤Km

for t ≥ 0 if and only if
PmdFxPm has all off-diagonal entries nonnegative for every x ∈ U , where
Pm = diag((−1)m1 , . . . , (−1)mn).

Given this characterization, the following definition makes sense.

Definition 3 (Irreducible monotone system). An irreducible type Km mono-
tone system is one for which dFx is irreducible for all x ∈ U .

There are many results establishing convergence for type Km monotone
systems. Here is one from [7, Theorem 2.6] which (among other things) rules
out the occurrence of chaos, and limits substantially the role played by limit
cycles. In the lemma, we use B(xi) to denote the basin of attraction of an
equilibrium xi.

Lemma 2 (Monotone system equilibria and limit cycles). Let M be an open,
bounded and positively invariant set for an irreducible type Km monotone
system (9). Suppose the closure of M, call it M̄, contains a finite number
of equilibria xi. Then

∪xiInt (B(xi)) ∩ M̄
is open and dense in M, and any point not in this set lies on a nonattractive
limit cycle.

The above result restricts the nature of allowed limit cycles substantially.
More again is true however if we are willing to assume (or prove with e.g.
Theorem 3) that there is but a single equilibrium in M̄ and it is actually
contained in M. The result is given below, first reported in [22], and with a
greatly simplified proof in [19].

Theorem 4 (Global convergence for monotone systems with a single equilib-
rium point). Let M be an open, bounded, convex and positively invariant set
for an irreducible type Km monotone system (9). Suppose there is a unique
equilibrium x∗ ∈ M and no equilibrium in M̄ \M. Then convergence to x∗

occurs for every initial condition in M.

Proof. In light of Lemma 2, we must prove there does not exist a limit
cycle. The argument is by contradiction. Let a be a point on a limit cycle.
Then one can pick points a ∈ M and ā ∈ M such that a <Km

a <Km
ā;
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construct two small balls B1 and B2 surrounding a and ā respectively, which

do not intersect the boundary of M nor contain a, with every x ∈ B1 and

y ∈ B2 obeying x <Km
< a <Km

y. Without loss of generality also, a and ā

can be assumed not to lie on any limit cycle. Then limt→∞ φt(a) = x∗ and

limt→∞ φt(ā) = x∗ according to Lemma 2. Using the monotone property

easily gives φt(a) ≤Km
φt(a) ≤Km

φt(ā) and combining these gives that

limt→∞ φt(a) = x∗, a contradiction, since a is a point on a limit cycle.

Evidently then, the combination of the Poincaré-Hopf and the monotone

system ideas gives a powerful result (roughly speaking) on global conver-

gence to a unique equilibrium, for monotone systems for which any equilib-

rium is known to be locally exponentially stable.

3.2. Applications

We present here one application of the above ideas, in the analysis of a deter-

ministic networked Susceptible-Infected-Susceptible (SIS) epidemic model.

These models are well analyzed in the literature, in the main using Lyapunov

theory to study equilibria and convergence, [23, 24, 25]. However, use of the

methods just presented allows us to go further, in that we consider classes

of systems not yet handled in the literature apart from our very recent work

under review, which is available on arXiv [19]. In the extended class of sys-

tems, the construction of a Lyapunov function has not been presented, and

in fact may not be straightforward.

We now present the basic SIS model, and refer the reader to e.g. [23, 26,

25] for more details on motivation and derivation. Each individual resides

in one of n different populations, of fixed and large size. Each individual

is either infected (I) with or susceptible (S) to some disease of interest,

being capable of transitioning in either direction between the two states. The

collection of n populations forms a metapopulation, with linkages described

by a directed graph G = (V, E , B). Here, V = {1, . . . , n} is the set of nodes,

corresponding to each of the populations, with n ≥ 2 nodes. The set of

ordered edges is E ⊆ V × V, and the nonnegative adjacency matrix B is

defined so that bij > 0 if and only if an edge eji = (vj , vi) is in E , and bij = 0

otherwise. The neighbor set of node i is denoted by Ni = {j ∈ V : eji ∈ E}.
A graph is strongly connected if there is a path from every node to every

other node and the results below will invoke an explicit assumption of strong

connectivity.
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Associated with node i ∈ V is the variable xi(t) representing the fraction
of population i that is Infected. The dynamic equation for node i is:

(11) ẋi(t) = −dixi(t) + (1− xi(t))
∑
j∈Ni

bijxj(t) i = 1, 2, . . . , n

where di is the recovery rate of node i, and for a node j that is a neigh-
bor of node i in G, bij > 0 is the infection rate from node j to node i; if
j /∈ Ni, then bij = 0. With x = [x1, . . . , xn]

�, D = diag(d1, . . . , dn) and
X(t) = diag(x1(t), . . . , xn(t)), we can also write the networked SIS dynami-
cal equation as

(12) ẋ(t) = (−D +B −X(t)B)x(t)

Define the hypercube

Ξn = {x ∈ R
n
≥0 : 0 ≤ xi ≤ 1, i ∈ {1, . . . , n}}.

Unsurprisingly, it follows from (12) that Ξn is an invariant set for the motion,
which is a physical requirement ensuring that the xi variables retain their
important meaning in the model context.

It is immediate that x = 0n is an equilibrium for (12); for obvious
reasons, it is termed the healthy equilibrium, and it may or may not be
stable, as explored further below. Any other equilibrium in Ξn is termed an
endemic equilibrium since the disease is persistent in a nonzero proportion of
at least one population. Equilibrium properties in the literature are discussed
with the aid of the spectral radius of D−1B:

(13) R0 = ρ(D−1B),

and R0 is often termed the effective reproduction number of the disease
for reasons that will become apparent below. The following is a key result
derived in [23, 24, 27] with various mild adjustments to the assumptions and
with the references containing different proofs.

Theorem 5 (SIS equilibria). With notation as above, consider the sys-
tem (12) and suppose that the graph G = (V, E , B) is strongly connected, or
equivalently, that B is an irreducible matrix. Then the following hold:

• If R0 ≤ 1, the healthy equilibrium x = 0n is the unique equilibrium,
and is globally attractive for all x(0) ∈ Ξn;

• If R0 > 1, there is in addition to the equilibrium x = 0n, a single
endemic equilibrium x∗ > 0n, which is attractive for all x(0) ∈ Ξn \ 0.
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We remark that the persistence or elimination of the disease depends
solely on the effective reproduction number R0, which can intuitively be
considered as the number of new infections transmitted by a single infected
individual before becoming cured.

The proofs of the above theorem in [23, 24, 27] all rely on Lyapunov
theory after using algebraic arguments to establish the precise number of
equilibria, for both R0 ≤ 1 and R0 > 1. For example, when R0 > 1, the
existing proofs use complicated algebraic arguments centered on proof by
contradiction to establish the uniqueness of the endemic equilibrium x∗,
and then construct an appropriate Lyapunov function driven by knowledge
that x∗ is unique. The paper [24] for example establishes uniqueness of any
equilibrium point using a series of inequalities, and then with x∗ denoting
the equilibrium point, shows that a differential equation for the difference
y := x − x∗ takes the form ẏ = A(y)y. where the entries of A obey certain
sign constraints associated with A(0). (The relevant class of matrices are
called Metzler-matrices, and we briefly discuss this class in the sequel.) This
allows a Lyapunov function V =

∑
i ci|yi| to be constructed for certain

positive constants ci, with somewhat nontrivial arguments being used to
establish that V̇ < 0 ∀ y �= 0, given x̄ + y(0) ∈ Ξn \ 0. The paper also
suggests that an alternative Lyapunov function

V =
∑
i

ci(xi − x∗i ln xi)

with certain positive ci can be used to establish stability, but the calculation
is not straightforward. It is interesting to note that the time between [23]
and [24] is more than three decades, with both using Lyapunov theory to
establish very similar results, but with the latter paper doing so more simply
than the first, though not entirely painlessly. Subsequent to both [23, 24], and
four decades after the first of these references, in [27] a quadratic Lyapunov
function was put forward for the ẏ = A(y)y system introduced in [24], again
relying on results concerning Metzler matrices.

It turns out that Theorem 5 can also be derived using the methods
outlined earlier in this section. We omit such a treatment however, since it
becomes a special case of a further theorem below where these methods are
used to obtain the result, and where it is not clear one could even hope to
generalise the Lyapunov methods mentioned above.

Those with responsibility for public health are obviously interested in
understanding how to limit epidemic spreading, and several approaches can
also be reflected in changes to the above model. We consider one of those
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possibilities here. We postulate that the recovery rate di > 0 is modified, e.g.

by reflecting increased medical resources being applied, with more resources

corresponding to larger values of xi. More specifically, we suppose that di
is replaced by d̄i(t), being the sum of a base level constant recovery rate di
and a control term ui(t) = hi(xi(t)):

(14) d̄i(t) = di + hi(xi(t))

where for all i, hi : [0, 1] → R≥0 is bounded, hi(0) = 0, and hi is smooth

and monotone nondecreasing. The vector equation then becomes

(15) ẋ(t) = (−D −H(x(t)) +B −X(t)B)x(t)

where H(x(t)) = diag(h1(x1(t), . . . , hn(xn(t)). It is immediate to establish

that 0n remains a (healthy) equilibrium of the system, and not hard to

establish that Ξn remains an invariant set for this system. One can for

example appeal to Nagumo’s Theorem [28], checking that for all i, ẋi ≥ 0

if xi = 0 and ẋi ≤ 0 if xi = 1. Without feedback, the condition R0 ≤ 1

ensured the healthy equilibrium is attractive. Intuitively, one would expect

that applying feedback is not going to change that conclusion, and indeed the

methods of e.g. [23] for the nonfeedback problem continue to be applicable.

Our interest is in considering the effect of feedback when there is an endemic

equilibrium in the nonfeedback case, i.e. R0 > 1.

Before proceeding further however, we note a small linear algebra result.

A real square matrix A is termed a Metzler matrix when it has all off-

diagonal entries nonnegative [29]. Then the following result holds [30]:

Lemma 3 (Metzler matrix property). Let A be an n×n irreducible Metzler

matrix. Let s(A) denote the real part of the eigenvalue of A with the largest

real part. Then s(A) is a simple eigenvalue of A and there exists a unique

(up to scalar multiple) x > 0n such that Ax = s(A)x, and there is no other

linearly independent eigenvector with positive entries.

To use the theoretical tools presented earlier in Theorem 3, we must first

identify a contractible manifold M for the system (15) with the property

that at all points on ∂M, F (x) points inward. In principle, this calculation

is straightforward, but slightly messy. We indicate it only in outline. Because

R0 > 1 and the matrix −D + B has nonnegative off-diagonal entries, the

matrix can be shown to have the property that there exists y > 0n for which

(−D+B)y = φy for the simple eigenvalue s(−D+B) � φ > 0 (see e.g. [31,
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Proposition 1]). Without loss of generality, let maxi yi = 1. Given 0 < ε < 1,

define the set

(16) Mε = {x : εyi ≤ xi ≤ 1, i = 1, 2, . . . , n} ⊂ Ξn.

Then, as may be checked, there exist sufficiently small εu ∈ (0, 1) and

εv ∈ (0, εu] such that for all ε ∈ (0, εu], trajectories of (15) intersecting

the boundary of Mε are inward pointing at the point of intersection and for

any x(0) ∈ ∂Ξn\0n, there holds x(t̄) ∈ Mεv for some finite t̄ > 0. This latter

fact implies that any endemic equilibrium x̄ necessarily satisfies x̄ ∈ Mεv .

For details of the calculations and precise results, see [19].

In order to apply one of the Poincaré-Hopf theorems, we must smooth

each edge and corner of Mε to create an arbitrarily close manifold M̃ε. This

essentially technical adjustment preserves the inward-pointing property of

trajectories at the boundary. And now we can record the key result.

Theorem 6 (No elimination of endemic equilibrium via feedback). With

notation as above, consider the system (15) and suppose that the graph

G = (V, E , B) is strongly connected, or equivalently, that B is an irreducible

matrix. Suppose that R0 > 1, and the hi satisfy the conditions given be-

low (14). Then there is a single endemic equilibrium x̃∗ > 0n, which is

attractive for all x(0) ∈ Ξn \ 0n, with convergence to the equilibrium being

exponentially fast.

A compact version of the proof is now presented to allow the reader an

appreciation of how one can apply Theorem 3. Further details, including

specific calculations and lengthened arguments, may be found in [19].

Proof. We shall first establish that there is a unique endemic equilibrium,

by studying the Jacobian matrix properties computed at any possible equi-

librium. Suppose that x̃ is one such equilibrium (the existence of which is

derived from Theorem 3). Below (15), we established that any such equilib-

rium satisfies 0n < x̃ < 1n, and x̃ must further obey

(17) 0n = (−D +H(x̃) + (I − X̃)B)x̃

Recall that B is irreducible and nonnegative; since I− X̃ is nonsingular and

nonnegative, (I − X̃)B is also irreducible and nonnegative. Hence P (x̃) �
−D − H(x̃) + (I − X̃)B is an irreducible Metzler matrix. Since x̃ > 0,

Equation (17) yields s(P (x̃)) = 0 from Lemma 3. Now the Jacobian matrix
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for (15) can be checked to be

(18) dFx = P (x)−
n∑

i=1

( n∑
j=1

bijxj

)
eie

�
i − diag

(∂h1
∂x1

x1, . . . ,
∂hn
∂xn

xn
)

One can check that the irreducibility ofB ensures that
∑n

i=1(
∑n

j=1bijxj)eie
�
i

is a positive diagonal matrix for all x ∈ M̃εv while diag(∂h1

∂x1
x1, . . . ,

∂hn

∂xn
xn) is

obviously a nonnegative diagonal matrix. In summary then, dFx is obtained
from P (x) through the subtraction of a negative definite diagonal matrix.
Now specialize to x = x̃. Since s(P (x̃)) = 0 is the eigenvalue of P (x̃) with the
greatest real part, the subtraction ensures that dFx̃ is a Hurwitz matrix (in
fact s(dFx̃) < 0). The specific arguments are laid out using standard results
from M -matrix theory1 [29, 32]. Since x̃ can be any endemic equilibrium, by
Theorem 3 we conclude it must be unique and locally exponentially stable.
Call it henceforth x̃∗.

It now remains to establish that the region of attraction for x̃∗ is Ξn\0n.
Observe that dFx has all nonnegative off-diagonal terms and in fact since
(I − X)B is irreducible in M̃εv , (15) is a an irreducible monotone system
where Km coincides with the positive orthant. Then Theorem 4 yields the
desired conclusion concerning the region of attraction of x̃∗.

Note that the above theorem includes the original SIS model, viz. the no-
feedback model where H ≡ 0n×n, as a special case. Note also that although
feedback of the type defined cannot eliminate occurrence of an endemic
equilibrium, it can move the endemic equilibrium, and arguments using the
monotone property actually establish that the endemic equilibrium is always
moved closer to the origin as a result of feedback. We state the result without
proof here, but interested readers can see [19].

Theorem 7 (Feedback improves the endemic equilibrium). With notation
as above, suppose that the condition R0 > 1 for existence of an endemic
equilibrium holds. Let x∗ and x̃∗ denote the unique equilibria for the uncon-
trolled and controlled systems, (12) and (15), respectively. Then x̃∗ < x∗.

Remark 5. We have shown how the combination of Poincaré–Hopf theory
and monotone systems theory can be combined to analyse a large class of net-
worked SIS models with distributed feedback control at each node, with the

1An M -matrix is a matrix with all off-diagonal entries nonpositive, and with all
eigenvalues having nonnegative real part. The specific arguments for the result of
this theorem, including the specific M -matrix results, are detailed in [19], and rest
fundamentally on the Perron–Frobenius theorem for nonnegative matrices.
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original SIS model is a special case. Apart from the new theoretical conclu-
sions themselves, a separate key takeaway is that the new analysis framework
allows for conclusions to be drawn on a broad class of dynamics without te-
dious calculations (or at most doing the calculations once for the general
system). This is in contrast to the algebraic and Lyapunov-based approach,
in which each change to the hi(xi(t)) term in (14) would likely require ad-
justments to the algebraic calculations and/or Lyapunov function.

4. Lefschetz-Hopf theory

Lefschetz fixed point theory and the developments joined to the name Hopf
apply to smooth maps F : X → X where X is a compact oriented manifold
[9] or a compact triangulated space [10]. Of course, a fixed point of such a
mapping is also an equilibrium point for a system defined by

(19) x(k + 1) = F (x(k))

Evidently, X = R
n is excluded, though obviously compact contractible sub-

sets of Rn are allowed. Also, if a map F is known to have no fixed points for
large values of its argument, the theory we will present in this section can
often be applied by considering the restriction of F to a compact subset X
of Rn such as a ball of suitably large radius that ensures X is a positively
invariant set of (19).

Lefschetz fixed-point theory involves derivatives. Because we are assum-
ing that F is smooth, we can associate with every x ∈ X a linear derivative
mapping dFx; much as was detailed in Section 3, dFx is essentially the Ja-
cobian of F evaluated at x in local coordinates of X. Our interest is mainly
in maps which have a finite number of fixed points, even though maps with
an infinite number of fixed points exist, including important ones like the
identity map F (x) = x.

A fixed point is called a Lefschetz fixed point if the eigenvalues of dFx

are unequal to 1. (This is an analog of requiring for ẋ = F (x) that at an
equilibrium point x, dFx is nonsingular). A fixed point is isolated if there
are no other fixed points in a sufficiently small ball around it; this again
parallels the definition of an isolated zero in Section 3. Smoothness of F
means that any Lefschetz fixed point is necesssarily isolated, and since X is
compact, there can only be a finite number of isolated fixed points.

If a particular fixed point, call it xi, is a Lefschetz fixed point, then the
mapping I−dFxi

is an isomorphism of the tangent space Txi
(X) at xi. If the

mapping preserves orientation, its determinant is positive while if it reverses
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orientation, its determinant is negative. The local Lefschetz number of F at
a fixed point xi, written Lxi

(F ) is defined as +1 or −1 according as the
determinant of I − dFx is positive or negative.

The map F is termed a Lefschetz map if all the fixed points are Lefschetz
fixed points, and the Lefschetz number of F is defined as

(20) L(F ) =
∑

xi:F (xi)=xi

Lxi
(F )

To this point, the development has roughly paralleled that of the
Poincaré-Hopf theorem, but at this point it potentially ceases to be a paral-
lel. In fact, we can still relate the Lefschetz number to an Euler characteris-
tic, but only by making an additional assumption on the manifold X. The
result is as follows, and is a straightforward consequence of standard ideas
in Lefschetz-Hopf theory, see e.g. [5], [9], [10], and is recorded explicitly in
[33]).

Theorem 8 (Specialization of Lefschetz-Hopf Theorem). Let X be a com-
pact oriented manifold or a compact triangulable space, and suppose F :
X → X is a Lefschetz map, i.e. there are a finite number of fixed points
xi at each of which I −DFxi

is an isomorphism. Suppose further that F is
homotopically equivalent to the identity map. Then there holds

(21) L(F ) =
∑

xi:F (xi)=xi

Lxi
(F ) = χ(X)

where Lxi
(F ) is +1 or −1 according as det(I−dFxi

) has positive or negative
sign, and χ(X) is the Euler characteristic of X.

How do we deal with the requirement that F should be homotopically
equivalent to the identity map? Either one has to generate a family of maps
X → X, parameterized by λ say, and smooth in x and λ, such that the
identity map and F are both in the family, or we can impose a sufficient
condition on X that implies the property. Fortunately, X being contractible
is a sufficient condition so that for a given F , there always exists a homotopy
from F to the identity map, see e.g. [5].

Now we have the machinery in place to establish that systems of the form
in (19) that are known to be positively invariant on a contractible X which
have all asymptotically stable fixed points can only in fact have one such
fixed point. A slightly more restrictive version of this corollary appeared in
[33], where it was assumed that X was convex, rather than just contractible.
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Theorem 9 (Lefschetz-Hopf Corollary for System Theory). Consider a
smooth map F : X → X where X is a compact, oriented and contractible
manifold of arbitrary dimension. Suppose that for all fixed points xi the
eigenvalues of dFxi

have magnitude less than 1. Then F has a unique fixed
point, and in a local neighborhood about the fixed point, Equation (19) con-
verges to the fixed point exponentially fast.

Proof. Note that the assumption on the fixed points guarantees that I −
dFxi

is nonsingular and all of its eigenvalues have strictly positive real part.
This implies that the determinant of I − dFxi

, which is the product of its
eigenvalues, is positive. The fixed points are then necessarily isolated and
the compactness of X guarantees that there are a finite number. Theorem 8
(The Specialization Theorem) above applies, with χ(X) = 1 due to the
contractibility assumption on X. The left side of (21) evaluates to be the
number of fixed points. Thus there is just one fixed point.

The exponentially fast character of the local convergence is a conse-
quence of the fact that the linearized system around the fixed point is ex-
ponentially fast, as we have assumed that dFxi

at any fixed point xi has
eigenvalues all with magnitude less than 1.

In contrast to what was done in the previous section, we omit devel-
opment of some kind of global convergence property. It seems likely that a
development using the theory of discrete-time monotone systems should be
possible, see e.g. [34]. We turn therefore to an illustrative application.

4.1. Applications

We now present an application of Lefschetz–Hopf theory to the DeGroot–
Friedkin model, which is dynamical model of a social network. The appli-
cation result first appeared in [33]. We give here a brief introduction to the
model, and readers interested in the details on the modelling derivation and
motivation are referred to [35, 36]. The model considers n ≥ 3 individu-
als2 in a strongly connected social network discussing their opinions on a
sequence of topics k = 0, 1, . . .. The individuals discuss a topic k until a
consensus of opinions is reached, and during this discussion, individual i has
a self-confidence xi(k) in her own opinion. After consensus is reached on
topic k and before discussion begins on the next topic k + 1, individual i’s
self-confidence, for all i = 1, . . . , n, is updated to become xi(k+1) according
to how much “social power” individual i had in the discussion of topic k
(there is a mathematical definition of social power which we omit here).

2The dynamics for n = 2 are too simple to be of interest for this discussion.
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Leaving aside the individual steps within the formulation of the dynam-
ics, the final model is given as in (19) where x = [x1, . . . , xn]

� is the vector
of self-confidences, and the map F is given by

F (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ei if x = ei for any i

1∑n
i=1

γi
1−xi

⎡
⎢⎢⎣

γ1

1−x1

...
γn

1−xn

⎤
⎥⎥⎦ otherwise

(22)

Here, γi is the eigenvector centrality of individual i, and for generic network
topologies,3 it was shown in [35] that γi ∈ (0, 0.5) for all i and

∑n
i γi = 1.

A number of properties of the map F in (22) have been established in
[35, 36], and we recall several important ones. First, the n-dimensional unit
simplex (in fact an n− 1-dimensional manifold embedded in R

n) defined as

Δn = {x ∈ R
n : 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n,

n∑
i=1

xi = 1}

is an invariant of the map F . That is, F : Δn → Δn. Second, it is clear that
the corners of Δn, e1, . . . , en, are fixed points of F . Third, and despite its
appearance in (22), F is smooth on Δn (in fact of class C∞) [36, Corollary 2].
Fourth, there exists a sufficiently small δ > 0 such that

(23) Δ̃n = {x ∈ R
n : δ ≤ xi ≤ 1− δ ∀ i = 1, . . . , n,

n∑
i=1

xi = 1}

is also an invariant of the map F , and no fixed points can be in found in
Δn \ Δ̃n other than the corners of Δn. These four facts will yield from the
Brouwer Fixed Point Theorem [37] that at least one fixed point x̄ exists
in Δ̃n. At such a fixed point, every individual i has a nonzero self-confidence
x̄i ∈ (0, 1).

To establish whether x̄ is in fact unique or not, the original analysis
in [35, Appendix F] used an extensive set of complicated algebraic manip-
ulations on the specific functional form of F in (22) to obtain a proof by

3There is a special topology class called star topology which is not considered
in this treatment, but topologies are examined in [35, 36]. For a star topology, the
map remains the same as in (22), but there exists a k such that γk = 0.5, which
has nontrivial consequences on the limiting dynamics.



Extrema without convexity and stability without Lyapunov 275

contradiction. Here, we bypass this by analysing only the Jacobian at po-
tential fixed points in Δ̃n, and show how to apply Theorem 9 to establish
the uniqueness of the fixed point in the interior of Δn.

We shall not detail all the steps and calculations, which can be found
in [33], but will provide enough for the reader to understand the analysis
process. Different from the above two application examples, the space X
in question is the n − 1-dimensional manifold Δ̃n embedded in R

n, so we
must analyze the Jacobian in local coordinates. To do so, we first compute
the Jacobian ∂F

∂x in the coordinates of Rn in which Δ̃n is embedded, and
then introduce a coordinate transformation y and associated map G, so
that Theorem 9 can applied to the Jacobian dGy.

One can compute the iith entry of ∂F
∂x to be ∂Fi

∂xi
= Fi

1−Fi

1−xi
. Similarly, we

obtain, for j �= i, the ijth entry of ∂F
∂x as ∂Fi

∂xj
= − FiFj

1−xj
. It can be proved

that for all values of x ∈ Δ̃n,
∂F
∂x has a single zero eigenvalue, and all of

the other eigenvalues are positive real (this is achieved by showing that
∂F
∂x

�
is the Laplacian matrix of a strongly connected directed graph having

strictly real eigenvalues). We remark that in general, the Laplacian matrix
of a strongly connected directed graph has all eigenvalues with nonnegative
real part, but may have complex eigenvalue pairs. Unusually in our case,
a specific positive diagonal matrix A can be found such that ∂F

∂xA is the
symmetric Laplacian matrix of a connected undirected graph, thus having
real eigenvalues. A standard linear algebra result yields that ∂F

∂x has real
eigenvalues. Details are given in [33, Proof of Theorem 4]. Now, at a fixed
point x̄ ∈ Δ̃n, one has

∂Fi

∂xi

∣∣∣∣
x̄

= x̄i.(24)

∂Fi

∂xj

∣∣∣∣
x̄

= − x̄ix̄j
1− x̄j

, j �= i.(25)

Since x̄ ∈ Δ̃n implies
∑n

i=1 x̄i = 1, the trace of ∂F
∂x |x̄ must be equal to 1.

Since n ≥ 3 and ∂F
∂x |x̄ has n − 1 positive real eigenvalues, it immediately

follows that all eigenvalues of ∂F
∂x |x̄ are less than 1 in absolute value.

Next, let us introduce a vector y ∈ R
n−1, of lower dimension therefore

than x, and obtained from x as y1 = x1, y2 = x2, . . . , yn−1 = xn−1. This
means that on the manifold Δ̃n, there holds xn = 1 −

∑n−1
k=1 yk. On the

manifold, and in the y coordinates, we define G as the map with G1(y) =
F1(x), . . . , Gn−1(y) = Fn−1(x), which implies that Fn = 1−

∑n−1
k=1 Gk. As ex-

plained above, the Jacobian of interest is the one on the manifold of Δ̃n, that
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being in fact dGy. For any Gi(y1, . . . , yn−1) = Fi(y1, . . . , yn−1, 1−
∑n−1

k=1 yk),
the Chain rule yields

∂Gi

∂yj
=

n∑
k=1

∂Fi

∂xk

∂xk
∂yj

=
∂Fi

∂xj

∂xj
∂yj

+
∂Fi

∂xn

∂xn
∂yj

because ∂xk/∂yj = 0 for k �= j, n. Define the matrices

(26) T =

[
In−1 0n−1

−1�n−1 1

]
, T−1 =

[
In−1 0n−1

1�n−1 1

]
,

where 0n−1 and 1n−1 are the n − 1 dimensional vector of all zeros and all
ones, respectively, and In−1 is the n − 1 dimensional identity matrix. One
can compute (see [33] for the precise steps) that[

dGy
∂F
∂xn

0�n−1 0

]
= T−1∂F

∂x
T,(27)

where ∂F
∂xn

is a column vector with ith element ∂Fi

∂xn
. The similarity transform

in (27) tells us that the matrix on the left of (27) has the same eigenvalues
as ∂F

∂x , and since the matrix is block triangular, it follows that dGy has the

same nonzero eigenvalues as ∂F
∂x . From the above, and restricting x to being

an arbitrary fixed point x̄, with ȳ ∈ Δ̃n corresponding, we immediately
conclude that all eigenvalues of dGy|ȳ are less than 1 in magnitude. Since
Δ̃n is contractible, applying Theorem 9 establishes that G has a unique fixed
point ȳ, and it is locally exponentially stable. Equivalently, F has a unique
fixed point in Δ̃n which is locally exponentially stable for the system (19).

Remark 6. Having established the uniqueness of the interior fixed point
x̄, convergence of (19) with the map F in (22) for all initial conditions
x(0) ∈ Δn \ {e1, . . . , en} is proved in [35] using a Lyapunov function that is
constructed using the fact that x̄ is unique. In contrast, [36] continues the
theme of [33] and this treatment by analyzing the Jacobian ∂F

∂x . However, [36]

analyzes ∂F
∂x over the entire manifold Δ̃n, and by introducing a nonlinear dif-

ferential coordinate transformation (a transformation of the tangent space),
proves simultaneously the uniqueness of x̄ and the exponential convergence
for all x(0) ∈ Δn \ {e1, . . . , en} using nonlinear contraction theory [38].
The differential transform, and the subsequent contraction analysis is non-
trivial and not obvious. In comparison then, the analysis presented in this
treatment to establish the uniqueness of x̄ is much simpler than the orig-
inal approach in [35], and also establishes local exponential convergence.
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However, the analysis presented in this treatment does not yield a global
convergence result, for which more sophisticated arguments are required as
in [36].

5. Conclusions

We have introduced three different results from topology, viz. Morse Theory,
Poincaré–Hopf theory, and Lefschetz–Hopf theory, presenting them in such
a way that they can be readily applied to systems theory analysis. We then
showed how each result could be applied to models that are derived from
real applications in localisation, epidemics, and social networks. A unifying
theme of the three results is the drawing of global conclusions, viz. unique-
ness of minima or equilibria or fixed points, from analysis of local quantities,
viz. the Hessian or Jacobian of the relevant function, vector field, or map.
Moreover, the domain of the function, or space of the vector field or map,
need not be convex. When paired with other methods (gradient ascent al-
gorithms in Section 2, and monotone systems theory in Section 3), global
convergence results can be established without relying on Lyapunov theory.

We are in no way suggesting the techniques covered in this paper are
generally superior to the fundamental Lyapunov methods that have under-
pinned a great number of developments of systems theory. For example, the
methods of Section 3 and 4 cannot be easily adapted for analysis of non-
smooth or non-autonomous systems. However, we do hope that we have laid
out a convincing argument that a variety of other, sometimes non-standard,
tools can be employed and just sometimes, the analyses and calculations are
made easier.
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