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Stochastic models based on moment matching

Patrick Dewilde

In honor of Tom Kailath on his 85th birthday, with admiration and
gratitude

The paper considers interpolating models for non-linear, non-Gauss
stochastic variables and processes, given a well-ordered set of mo-
ments of increasing order. The proposed models use a characteriza-
tion with independent parameters, much in the style of the Schur-
Levinson parametrization for the linear, Gaussian case (a topic to
which Tom Kailath made seminal contributions), but very differ-
ent from it, given the different kind of structured matrices involved
(Hankel-like instead of Toeplitz). The paper starts out with a re-
view of the classical Hamburger-Akhiezer-Jacobi parametrization
for one stochastic variable, using a (non-classical) dynamical sys-
tem theory approach. Next, the paper generalizes these results to
the multivariable case, and presents a detailed generalized Jacobi-
like (independent) parametrization for two variables. Like in the
Schur-Levinson case, such parametrizations succeed in characteriz-
ing models that interpolate the moment data (given the complexity
of the issue, only the 2D case is treated in this paper, but using a
method that generalizes to more variables).

Keywords and phrases: Nonlinear stochastic models, parametriza-
tion, Hankel and Jacobi matrices, dynamical system theory.

1. Introduction

Modeling stochastic processes has been a central piece of endeavor in signal
processing, leading in particular to the famous Schur-Levinson model filters
[13, 10, 6], in which a (zero means) stochastic process for which n specific
covariance data items have been measured is modeled by an artificial linear
filter of order n driven by (artificial) white noise. This order n stochas-
tic modeling provides a ‘best’ possible model when the original process is
known to be (zero mean) Gaussian, and where ‘best’ can be understood as
reproducing (interpolating) the measured covariance data and being as un-
specified as possible concerning not known covariances (i.e., being maximum
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entropy for the unknown parameters, while satisfying the positivity of the
covariance matrix). Connected to this type of model is a derived predictor
or estimator, which, in the specific Gaussian case, is both the conditional
expectation as well as the maximum likelihood estimate.

However, many processes are highly non-Gaussian so that higher degree
moment information is needed if any modeling accuracy is to be obtained
for them [18], and the modeling filter (also to be driven by an artificially
constructed process) will hence have to be non-linear. Needless to say, the
problem just stated has not been solved in all generality so far. In this pa-
per, we look at the problem of matching a well-ordered set of higher order
data (higher order moments or correlations), first of a single stochastic vari-
able (the 1D problem) and then show how these results can be extended
to multiple variables (as they occur in a stochastic process). The general
strategy for this kind of modeling is to determine an adequate approxi-
mating joint pdf of the variables present, i.e., a pdf that is as simple as
possible while matching the known data (in the Gaussian case, just data
on the mean and the covariances determine the pdf and hence provide for
‘sufficient statistics’). Once a joint pdf is settled on, then the best model
filter can be taken as the conditional probability of the model variable with
respect to the measured variables, and the estimation or prediction filter
becomes a quantity derived from it (such as some average or maximum
likelihood).

Motivation The author has heard claims (even in recent times) that the
moment modeling problem can be solved using an extended version of the
classical Schur interpolation problem. That is (perhaps unfortunately) but
pertinently not true. The modeling problem based on covariances is essen-
tially different from the one based on higher order moments, although both
can be seen as solving an interpolation problem, each in its own ways. So
some of the techniques used may be similar, but their algebraic content is
very different (a positive real function on the complex plane is a very differ-
ent object from a real positive function on the real line, like a pdf!). However,
in both cases, the key to solving the modeling problem is parametrization.
A parametrization of a problem is the determination of a set of independent
parameters that characterize solutions uniquely—preferably all solutions,
but ‘good’ characterizations are always useful. Independent parameters are
parameters that can be chosen at will within a given collection of individually
admissible values. In the case of the Schur-Levinson solution for the covari-
ance problem, the parameters are reflection coefficients or Schur parameters
and go back to Schur’s seminal paper [15]. These reflection coefficients take
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on values in the unit disc of the complex plane. Such a parametrization char-

acterizes a positive definite Töplitz matrix. In the case of the (real) moment

matching problem, the situation is very different. In the one variable case, a

classical parametrization is available and known as Jacobi parametrization

[1], which consists of two sets of values {ai, bi} for integers i ≥ 0 from i = 0

up to a maximum index (which may be infinite), whereby the ai are arbi-

trary reals, and the bi real > 0. The 1D Jacobi parametrization characterizes

a positive definite Hankel matrix (in both cases a distinction has to be made

between the non-singular case, for which there is an infinite number of pa-

rameters, and the (many possible) singular solutions, for which the number

of parameters is restricted in a specific way).

The Schur parametrization can easily be extended from Toeplitz matri-

ces to general positive definite matrices [5], and of course positive definite

Toeplitz block Toeplitz (TBT) matrices. The case of the moment problem

is more complex. We shall see that an nD moment problem characterizes a

matrix that we shall call hierarchically Hankel, a notion that will be defined

further on in the paper.

The classical scalar real moment problem of analytical function theory

has been exhaustively treated by I.N. Akhiezer in [1], building on results from

Hamburger [8]. There has been continuous interest in achieving extensions of

the treatment in various directions, in particular to the complex case [4] and

to the matrix case [7, 2, 14]. However, these extensions do not specifically

address the stochastic moment problem (as will be made clear in this paper),

but do provide for interesting methods and inspiration.

The paper starts out describing the general idea behind higher order

stochastic modeling and a review of the classical single variable case, fol-

lowed by an analysis of the multivariable stochastic modeling problem given

a coherent set of correlation data. Our aim is system modeling, so we devote

special attention to system theoretical properties. This is particularly rele-

vant for the moment problem, because Hankel matrices play a central role

in system theory. Classically, the parametrization problem is approached

via the theory of orthogonal polynomials. The system theoretical, or matrix

algebra approach presented in this paper is therefore substantially different

from the classical Akhiezer approach based on orthogonal polynomials, but

appears to serve our main aim, namely the extension of 1D properties to a

multivariable, nD context. In order not to burden the exposition with too

much notational details, the extension from one variable will be limited to

two, using, however, a method for which a convincing case can be made that

it extends to n variables, recursively on the number of variables (of course
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with a considerable increase of complexity, but no more than what hap-
pens in numerical analysis, when one considers higher dimensional partial
differential equations).

Notation

– δ(x − a) is the one-dimensional Dirac impulse of unit weight at the real
point a; we shall also need two dimensional Dirac impulses, denoted as
δ(x− a, y − b); shorthand notation: δk = δ(k);

– MATLAB matrix notation is used informally, except when indicated oth-
erwise; in particular, an accent is used to denote transposes (the paper
uses real algebra throughout); when no confusion arrises with powers and
to abbreviate the writing, the row index of a matrix is put as subscript and
the column index as superscript: Hi,j ← Hj

i (the notation A←B means
‘replace A by B’ or ‘A becomes B’);

– ‘constructors’ are used to build matrices: col[·] makes a column from the
ordered list in its argument, Toe[·] and Han[·] construct Toeplitz and
Hankel matrices from their respective ordered list arguments (we indicate
an ordered list by putting it between square brackets [·]);

– We use some abbreviated notation for expectations: when X denotes a
stochastic variable we write X = EX;

– We may simplify the MATLAB notation in some cases, or use the special
structure of the matrix considered. E.g., the Hankel matrix H0:k

0:k ← Hk,
considering that its first column is based on the moment data μ0:k, al-
though the matrix depends on μ0:2k; a single ‘:’ is also often suppressed:
Hk indicates the kth row of H and Hk the kth column;

– The linear span of a collection of vectors xk is indicated by
∨
[xk]k=···. If

X is a matrix, then
∨

X indicates the span of its columns.

2. The modeling principle

Given a multidimensional set of n+1 stochastic variables Y0:n = [Y0 · · ·Yn],
then the best possible model in the pdf sense, is of course a set of (artificial)
stochastic variables X0:n with the same overall distribution, and the best
stochastic approximate (or model) to X0, assuming the [Xi]i=1:n] known,
is the conditional estimate X̂0 = X0|[Xi]i=1:n]. The conditional estimate is a
stochastic variable in one dimension, with a specific pdf for each value of
the n-tuple X1:n.

The traditional modeling strategy, given a stationary stochastic process
Yi, is to assume that any Yi is not directly dependent on the Y� for � <
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i − n, i.e., Yi|Yi−n:i−1
= Yi|Y−∞:i−1

, so that an nth order model based on

the n previous values Yi−n:i−1 is adequate. In this case the model becomes

a new stochastic process Xi which is such that the conditional estimate

X̂i|Xi−n:i−1
= X̂i|X−∞:i−1

.

This means that the joint pdf of the relevant stochastic variables de-

termines the model. Hence, the effort in the non-linear, non-Gaussian case

will aim at determining joint pdf’s that are consistent with the measured

or known data. In the present paper we assume the known data to be fully

ordered, both in sequence and in degree or power order (this means: we typ-

ically assume a few stochastic variables {X,Y, · · · } for which all the moment

data E(XaY b · · · ) is known up to a certain degree n = a+ b+ · · · . Since the
theory presented in this paper is a first approach to what turns out to be a

very ambitious problem, we shall restrict ourselves to at most two variables

(the 2D case), but use methods that can be extended further. Since only

few data on the statistics are given or measurable in most cases, there will

be a large collection of pdf’s fitting the data, and one of the endeavors is to

describe (i.e., parametrize if possible) all solutions, starting with the sim-

plest(s) possible. It turns out that we can indeed find minimal complexity

pdf’s that fit the data, and that we can generate large collections of solu-

tions, if not all, using interpolation of the given data as criterion (allowing

other criteria on the parametrization to establish the choice of solution in

the class of all possible solutions).

In the Gaussian stationary case, the conditional pdf is Gaussian as

well, with mean μ
̂X = −

∑
i=1:n aiXi, which is linearly dependent on the

X1:n with Levinson coefficients {ai} [12], and variance found by solving the

Wiener-Levinson equations. In the general (non-Gaussian) case the model

will not depend linearly on known values, and the proposed method will

have to produce a (hopefully as simple as possible) model which fits the

desired or known moments and correlations. In case not a model is needed,

but an estimation or prediction, some strategy is needed to select one repre-

sentative value. This can be a mean, a median, maximum likelihood or any

desirable average.

3. The 1-D case

In the one variable case, the Hamburger theorem [8] gives necessary and

sufficient conditions for a moment series to belong to a pdf. Let {μk}∞k=0

(μ0 = 1) be the series of moments given, then there will exist a (generalized)
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pdf p(x) and a stochastic variable X that generates these moments as μk =
EXk :=

∫∞
−∞ xkp(x)dx iff, for all indices k ≥ 1 the Hankel matrices

(1)

Hk =

⎡⎢⎢⎢⎢⎢⎣
1 μ1 μ2 · · · μk

μ1 μ2 . .
.

. .
.

μk+1

μ2 . .
.

. .
.

. .
.

μk+2
... . .

.
. .
.

. .
. ...

μk μk+1 μk+2 · · · μ2k

⎤⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎣
1
X
X2

...
Xk

⎤⎥⎥⎥⎥⎥⎦
[
1 X X2 · · · Xk

]

are positive (semi-)definite [1]. The pdf is the generalized derivative of a non-
decreasing and left-continuous function σ(x) such that μk =

∫∞
−∞ xkdσ(x)

(Stieltjes integral). The singularities in p(x) = dσ(x)/dx can only be positive
Dirac impulses, derived from the jumps in σ(x).1 We shall call a distribution
atomic of order n if dσ(x)/dx consists of just a finite number n of Dirac
impulses and is zero otherwise.

The modeling issue we consider here is in a sense simpler than the mod-
eling of an infinite series (the problem most mathematics in this area con-
siders). We are interested mostly in constructing finite models that fit the
given data, hence in determining parameters that describe such fitting mod-
els adequately.

Proposition 1. Suppose the series of (known) moments is given as {μk}
for k = 0 : 2(n+ 1) and some n with, as is necessary, Hn+1 ≥ 0 and, in
addition, Hn+1 singular of rank η ≤ n + 1. Then the series has a unique
extension to a moment series. This unique extension pertains to an atomic
pdf of order η. No atomic pdf of lower order exists that generates the given
partial moment series.

Proof. Let us first assume Hn non-singular, and prove the theorem for that
case. From classical dynamical system theory, and because the (singular)
Hankel matrixHn+1 is symmetrical, we know that a transfer function T (z) =∑∞

k=1 μk−1z
k built on the given {μi} can be realized by a system of degree

1This is a somewhat imprecise statement, as limit points of singular atoms are
also singular points, but we shall not encounter such singularities in the present
theory. For more precise information on this, see a textbook on measure theory.
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n+1 with state space representation {A, b, b ′} as T (z) = zb ′(1− zA)−1b, in
which A = A ′ is of dimension n+ 1 and symmetrical. For the sake of later
reference, here are the arguments:

1. The Hankel property assures that for all n, [Hn+1]
0:n
1:(n+1) = [Hn+1]

1:(n+1)
0:n .

2. With Hn non-singular and symmetrical, we dispose of two factorizations:
Hn = LnL

′
n and Hn+1 = Ln+1L

′
n+1, with Ln square non-singular and

Ln+1 =

[
Ln

rn+1

]
for some vector rn+1 (because Hn+1 is assumed singular).

(Note: we do not have to assume here that Ln is lower triangular (i.e.,
Cholesky), any non-singular factor will do.)

3. Let L↑
n+1 = [Ln+1]

0:n
1:(n+1) be the ‘restricted upward shift’ of Ln+1 and

similarly for the restricted left shift, then we have (by cancellation of an
appropriate row and column)

(2)
H↑

n+1 = [Hn+1]
0:n
1:(n+1) = L↑

n+1L
′
n

= [Hn+1]
1:(n+1)
0:n = Ln(L

↑
n+1)

′ = H←
n+1.

Now define b :=[L ′
n]

0
0:n (first column of L ′

n) and A=L−1
n L↑

n+1 = (L↑
n+1)

′L− ′
n ,

then it follows, by AL ′
n = (L←

n+1)
′, that L ′

n+1 =
[
b Ab · · · Anb

]
. A

is symmetrical by definition (eq. (2)), and for all 0 ≤ k ≤ 2n + 2 we find
μk = b ′Akb.
4. The construction given is unique up to a unitary transformation, given
the moments μk : 0 ≤ k ≤ 2n+ 1, that is, up to an n× n unitary matrix U
such that an alternative ‘realization’ with the same interpolation properties
is given by b̂ = Ub, Â = UAU−1 (notice: μ2(n+1) is fixed by the singularity
condition on Hn+1). It also follows that all subsequent moments μk for
k ≥ 2(n+ 1) are determined by μk = b ′Akb (this requires a bit of proof).

Since A is symmetrical, there exists a unitary transformation making
A diagonal; in fact, we can just assume that A is diagonal to begin with:
A = diag(αi), i = 0 · · ·n. Let the corresponding b ′ =

[
β0 · · · βn

]
, then

it results that all μk = b ′Akb =
∑n

i=0 β
2
i α

k
i , which is the moment series

of the atomic pdf p(x) =
∑n

i=0 β
2
i δ(x − αi). The {αi}, the corresponding

weights {β2
i } and the resulting atomic pdf is hence fully determined by the

moments up to and including μ2n+1.
In the case also Hn is singular, the construction can be done with a lower

order model (say of degree η < n), and will also be essentially unique, given
the moments up to and including 2η + 1, for the same reasons.

Remark One may wonder whether the rank of the Hankel matrix can go up
again, after having been stationary for some k ≥ η. That is indeed possible
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in general realization theory, but not in the present case where the Hankel
matrix is required to be positive definite. The next proposition shows this.

Proposition 2. Suppose a power series {μk}, k = 1, · · · , 2n is given with
Hn non-singular. Then there is a one-parameter collection of corresponding
atomic pdf’s of degree n+1 parametrized by the single moment μ2n+1, which
may be chosen arbitrarily.

Proof. From the construction in the previous proposition, we see that μ2n+1

can be chosen arbitrarily, but to make Hn+1 singular, μ2(n+1) is then fixed.
More precisely,

(3) Hn+1 =

[
Hn μn+1:2n+1

(μn+1:2n+1)
′ μ2(n+1)

]
has to be singular, hence μ2(n+1) = [μn+1:2n+1]

′H−1
n μn+1:2n+1. By the con-

struction of the previous theorem, there are degree n realizations {A, b, b ′}
generating the moments up to μ2(n+1) by the rule μk = b ′Akb, 0 ≤ k ≤ 2n.
The series can be augmented further step by step, keeping the degree equal
to n: first the already known vector μn+2:2n+2 is linearly dependent on the
columns of Hn, determining μ2n+3, then the linear dependence of μn+3:2n+3

determines μ2n+4 etc. recursively. In fact: all these quantities equal b ′Akb
for values of k > 2n.

There is an important stochastic interpretation to the properties pre-
sented so far, which follows from the following general principle. Let a
covariance matrix C := UU ′ with U := U1:n an n-dimensional stochas-
tic vector, and suppose that C is singular, with a ′C = 0 for some (non-
stochastic, i.e., regular) vector a. Then the stochastic variable a ′U ≡ 0,
because (a ′U)2 = a ′Ca = 0 (strictly speaking, a ′U is almost everywhere
zero on its stochastic σ-algebra, which we do not need to specify further in
this context). Applied to the singular Hn+1 of the previous theorem, there
exists a single constant vector a (of dimension n+2) such that a ′Hn+1 = 0,
and hence a ′[Xk]k=0:n+1 = 0 with an+1 = 1 — i.e., Xn+1 depends linearly
on (Xk)k=0:n. This has profound consequences for all sub-Hankels based

on the Xk. For example, for any positive integers i and k, Hk:k+j
i:i+n+1 =

[Xk]k=0:n+1X i+k[Xk]
′
k=0:j and hence singular as well with a ′Hk:k+j

i:i+n+1 = 0.

Generating function Assuming the existence of moments up to the order
needed (i.e., integrability with the pdf), let us define2 the generating function

2This definition may differ from definitions in the literature, relating to a different
context!
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Figure 1: Realization of the generating function as the input impedance of
a Foster circuit.

Gσ(z) =
∫∞
−∞

1
1−zxdσ(x) =

∑∞
i=0 μiz

i (this being merely a unilateral series

in z, which may not converge anywhere in the complex plane3 or where terms
may become infinite from a certain degree on). The definition is motivated by
the fact that atomic pdf’s with a finite number of atoms possess moments of
all degree—hence there will always be infinite continuations of a given series.
The generating function of an order n atomic realization can be written
(using the definition of αi and βi given earlier)

(4) zG(z) =

n∑
i=0

β2
i z(1− zαi)

−1,

with
∑n

i=0 β
2
i = 1 and all αi real. Hence G(z) =

∑n
i=0 β

2
i (1 + z(−αi))

−1. In
electrical circuit theory, one may interpret this expression as an impedance,
and realize it as a (Foster) series of shunt RC-circuits with R = β2

i and
C = −αi/β

2
i shown in Fig. 1. Notice that the circuit contains both positive

and negative capacitances, testimony to the double-sidedness of the corre-
sponding atomic pdf

∑n
i=0 β

2
i δ(x− αi). Also, the residues corresponding to

negative real frequencies are positive, while those corresponding to positive
(‘unstable’) frequencies are negative.

Following the terminology in Willems [17] we may call a system with
transfer function of the type given by G(z), namely a rational transfer func-
tion with corresponding positive definite Hankel matrix, of generalized re-
laxation type or a GR system (Willems only considers systems with poles
in the left half z-plane and calls them relaxation systems). In the present
case there is no pole at infinity (which is possible in the classical relaxation

3Which is the case for Gaussian or normal distributions. E.g., a zero-mean
Gaussian distribution of variance σ2 has moments E(Xn) = (n − 1)!!σn with
(n − 1)!! = 1.3. · · · .(n − 1) for n even and otherwise zero, so that the radius of
convergence of its generating function is zero.
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case), and, moreover, the zero component g0 =
∑

β2
i = 1. We call this case

accordingly of normalized general relaxation type or NGR.

Jacobi realization

Proposition 3. A factorization of the Hamburger matrix Hn = LnL
′
n with

Ln a non-singular lower staircase of rank m + 1 ≤ n + 1 produces two
important objects:

1. A basis Pm := L−1
m Xm, orthonormal with respect to the Gram matrix

Hm for m ≤ n, and
2. A special ‘realization’ {Jm, e0, e

′
0} with Jm a characteristic Jacobi matrix

(5) Jm :=

⎡⎢⎢⎢⎢⎢⎣
a0 b0
b0 a1 b1

. . .
. . .

. . .

bm−2 am−1 bm−1

bm−1 am

⎤⎥⎥⎥⎥⎥⎦
and e0 the first natural unit vector (e ′

0 =
[
1 0 · · ·

]
), by which is

meant that μk = e ′
0J

ke0 for all k = 0: ∞.

Proof. First, if Hn is non-singular, then Ln will be square non-singular and
lower triangular. Otherwise there will be an index m < n such that all Hk

for m < k ≤ n are singular, and Ln necessarily has a staircase form with a
non-singular upper triangular part. In any case there will be Lm with m ≤ n
such that

(6) Hm = LmL ′
m

and Ln =

[
Lm

Mm+1:n

]
where M completes the staircase (and disappears

when m = n). Let us first observe that the elements of L−1
m Xm form an or-

thonormal basis for Xm = [Xk]k=0:m, which we denote with Pm := L−1
m Xm.

Indeed, PmP ′
m = L−1

m XmX ′
mL− ′

m = I. Secondly, if m < n, then by our pre-
vious theorems, there exist degree m + 1 symmetric realizations {A, b, b ′}
such that [Hn]

j
i = biA

i+jbj . Any such choice leads to a (‘square-root’) fac-
torization of Hn = OnO

′
n with the ‘observability’ matrix On = [b ′Ak]k=0:n

in which A has dimension (m + 1) × (m + 1). Conversely, every such re-
alization can be obtained from a (minimal) square root factorization (see
classical realization theory, e.g., [11]). In the case of a staircase factoriza-
tion, this leads to b = e0 (since anyway [L ′

m]00:m = e0) and for ′A ′ the usual
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and earlier derived formula A = L−1
m [Lm+1]

0:m
1:m+1 = LmL↑

m+1, resulting in
a singular extension of Lm beyond m (i.e., a set of solutions parametrized
by the choice of μm+1 — see Proposition 2 — let’s call it Jm at this point
of the proof and show that it is a Jacobi matrix indeed. Notice that Jm will
automatically be symmetric, but it is also tri-diagonal, which can be seen
as follows. Let

(7) Pm(X) =

⎡⎢⎢⎣
P0(X)
P1(X)

...
Pm(X)

⎤⎥⎥⎦ := L−1
m Xm

then PmXP ′
m = L−1

m XmXX ′
mL− ′

m = Jm, because XXX ′ = H←, hence

XmXX ′
m = [e ′

0J
i+j
m e0]

1:(m+1)
0:m = LmJmL ′

m (consequence of the realization

theory). But we also have Pk(X)Xj = 0 as soon as j ≤ k − 1 because∨
Pk =

∨
Xk for k ≤ m, and hence also PkXPj = [Jm]jk = 0 for j <

k−2. From this it follows that Jm is symmetric tri-diagonal, hence a Jacobi
matrix. Reconstituting Lm = [e ′

0[Jm]k]k=0:m one finds that the diagonal
elements are [Lm]k,k = 1 · b0 · · · bk−1, which may be chosen positive together
(there is an ambiguity in the choice of the sign of diagonal elements in a
Cholesky factorization, which is removed by choosing them all positive).
Conversely, given any (m+ 1)-dimensional Jacobi matrix Jm with non-zero
bk, Lm := [e ′

0(Jm)k]k=0:m will be a lower, non-singular triangular matrix
such that LmL ′

m is Hankel — an obvious property from the form of Lm in
terms of e ′

0 and Jm.

Remarks

– the non-zero off-diagonal elements [b]0:m−1 may all be chosen strictly pos-
itive without loss of generality (this choice makes the construction unique
or ‘canonical’);

– once Jm is known, then the complete X up to infinity is known as well
(this is because Jm fixes L0:m

m+1 and singularity then forces Hm+1
m+1 =

L0:m
m+1[L

0:m
m+1]

′ — a quantity that we call the Schur residue Sm+1—in this
singular case the Schur complement is zero and hence Sm+1 =
e ′
0[Jm]2m+2e0).

Next I claim: the Jacobi realization G(z) = e ′
0(I−zJm)−1e0(= 1+e ′

0(I−
zJm)−1zJe0), for which μk = e ′

0J
k
me0 becomes a cascade of sections, with

the kth section shown in Fig. 2. The inputs and the state of section k are
vectors Uk := uik, Yk+1 := yik+1, Xk := xik where i = 0, 1, · · · is the time
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Figure 2: A Jacobi section.

index and x0k = 0 for all sections; similarly for the outputs. This section
stands for the detailed equations

(8)

⎧⎨⎩
xi+1
k = ak(x

i
k + uik) + bky

i
k+1

uik+1 = bk(x
i−1
k + ui−1

k )
yik = xik + uik

Derivation of the Jacobi section

Proposition 4. Let {a, b} be the first Jacobi coefficients of the normalized
generating function G(z) of relaxation type with b/=0, then

(9) G(z) =
[
1− z(a+ b2zGL(z))

]−1

for an arbitrary normalized generating function GL(z) of relaxation type.

Proof. Let GL(z) be a normalized generating function of relaxation type,
with Jacobi matrix JL. We have GL(z) = e ′

0(I − zJL)
−1e0. Let J be the

Jacobi matrix for G(z) = e ′
0(I − zJ)−1e ′

0, with J =

[
a be ′

0

e0b JL

]
, then

(10) e ′
0(I − zJ)−1e0 =

([
1− za −zbe ′

0

−e0zb I − zJL

]−1
)

0,0

Using formal LU-decomposition on the right hand side, and abbreviating
β := e0zb and Γ := I − Jz − β(1− za)−1β ′, we find

(11) e ′
0(I − zJ)−1e0 = (1− za)−1 + (1− za)−1β ′Γ−1β(1− za)−1

Now using a standard argument (also applicable to our formal calculus of
one-sided series),

(12)
β ′Γ−1β = β ′ [I − (I − JL)

−1β(1− za)−1β ′]−1
(I − zJL)

−1β

= β ′(I − zJL)
−1β

[
1− (1− za)−1β ′(I − zJL)

−1β
]−1
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Now, β ′(I − zJL)
−1β = b2z2GL(z). Working out further we find

(13) G(z) =
1

1− za

(
1 +

b2z2GL(z)

1− za− z2b2GL(z)

)
and the claimed result.

From this a realization for G(z) in terms of GL(z) follows directly, using
auto-regression:

(14) Y = G(z)U → Y = U + (a+ zb2GL(z))zY

This means: after having produced some Yk, one puts it in memory and uses
it as input for the next stage. A diagram representing this is what Fig. 2
shows.

A finite realization of order n is obtained by putting bn = 0 (and no
further coefficients.) However, notice that in that case the impulse response
remains infinite, as the system keeps on ‘ringing’ (for example, if b0 = 0 and
u0 = col[1, 0, · · · ] then y0 = col[1, a0, a

2
0, a

3
0, · · · ], corresponding to G(z) =

1/(1− za0).)

From Cholesky to Jacobi and vice-versa

The Jacobi matrix can easily be computed recursively from a Cholesky fac-
torization of the respective augmented Hankel. Assuming temporarily that
Hm+1 is non-singular, we have, from LmPm = Xm that [Hm+1]

1:m+1 =
XmXX ′

m = LmJmL ′
m = Lm[L ′←]m, and hence

(15) JmL ′
m =

⎡⎢⎢⎢⎣
L1,0 L2,0 · · · Lm,0 Lm+1,0

L1,1 L2,1 · · · Lm,1 Lm+1,1

0 L2,2 · · ·
...

. . .
. . .

0 · · · · · · Lm,m Lm+1,m

⎤⎥⎥⎥⎦
The left-hand side induces a recursion on the sub-diagonal and diagonal
entries:

(16)

{
[Lm]i,i = b0 · b1 · · · bi−1

[Lm]i,i−1 = (a0 + a1 + · · ·+ ai−1)[Lm]i−1,i−1

and

(17)

{
bi−1 = [Lm]i,i/[Lm]i−1,i−1∑

k=0:i−1 ak = [Lm]i,i−1/[Lm]i−1,i−1
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from which also ai−1 can be deduced recursively. Notice that both Lm and

Jm are determined by the [Lm]ii and [Lm]i−1
i , for i = 1:(m + 1), but there

is some indeterminacy at the end: supposing Lm non-singular and Lm+1

singular, we have am free (arbitrary) and bm = 0, because g2m+1 can be

chosen arbitrarily, actually

(18) am =
1

[Lm]m,m
([Mm+1]m − [Lm]m,m−1bm−1)

since in this case Mm+1 = e ′
0[Jm]m+1 = [Lm]m,0:mJm and also [Mm+1]m is

free together with g2m+1 in the original Hankel.

An important property concerning the relation between the orthonormal

polynomials and the Jacobi matrices is the following.4

Proposition 5. Let Pn+1(z) be the orthonormal polynomial of degree n+1,

assuming Hn+1 non-singular and Jn the Jacobi matrix of dimension (n +

1)×2, then the eigenvalues of Jn are the zeros of the polynomial Pn+1(z) with

eigenvector Pn(α).

Proof. The Jacobi recursion up to order n with non-zero bn (necessary to

have Hn+1 non-singular) gives

(19) zPn(z) = JnPn(z) + enPn+1(z)bn

Putting z = α gives the result.

Notice that Pn+1(z) = b−1
n (zPn(z) − bn−1P(n−1)(z) − anPn(z)), so that

bn appears to be a normalizing factor on Pn+1(z). In the finite index case

of order n, we have that Pn(z) depends only on the Jacobi parameters

{a0:(n−1), b0:(n−1)}, and Pn+1 can be chosen monic and is then the charac-

teristic polynomial of λI − Jn.

Extension theory

The Jacobi parametrization allows for a universal extension strategy on a

given set of moments to be interpolated. Let us consider two ‘Jacobi sys-

tems’: {J (1)
m , δ00:m} and {J (2)

n , δ00:n} (with δjk := δ(k − j) the discrete Dirac

function), then we can extend the (1) system with the (2) system just by

4I am grateful to dr. Sankar Basu for pointing out this fact and proof!
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Figure 3: Extension of a Jacobi realization with another one (using the
notation e0 = δ0: = col[1, 0, · · · ], em = δ−m:0 = col[0, · · · , 0, 1]).

introducing a free ‘connecting’ bm and defining the total as the Jacobi system

(20)

{
J
(t)
m+n+2, δ

0
0:(m+n+1)

}
:={[

J
(1)
m δ0−m:0bmδ0:n0

δ00:nbmδ−m:0
0 J

(2)
n

]
, δ00:(m+n+1)

}
.

Splitting the state vector x = col[x0:m, x(m+1):] produces the general cascade
shown in Fig. 3.

Fig. 3 exhibits a general cascade connection, with a connecting sys-
tem having the character of a generalized kind of ‘immitance’. In order not
to confuse notation, and stay in line with other types of cascade struc-
tures, let us denote the transfers in the first section as mapping (see the
figure)

(21)

[
U2

Y1

]
= S

[
U1

Y2

]
then we find (chasing the diagram, and replacing J1 by J)

(22) S =

[
e ′
m

e ′
0

]
(I − zJ)−1

[
e0 em

]
loaded into b2mzGL(z), where GL represents a normalized general relaxation
function. We find

Proposition 6. Given a sequence of 2m moments {μ0:2m}, then any inter-
polating moment series is given by the generating function

(23) G(z) = e ′
0

[
I − z(J + emzb2mGL(z)e

′
m)
]−1

e0,
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in which {e ′
0, J, e0} is the normalized order m interpolant with Jacobi matrix

J , and GL(z) is an arbitrary normalized general relaxation function.

Proof. (Abbreviating somewhat) we have, as usual

(24) G = S2,1 + S2,2(I − zb2mGLS1,2)
−1zb2mGLS1,1,

and, filling in the values for this case,

(25)
G = e ′

0[(I − zJ)−1 + (I − zJ)−1em·
·[I − zb2mGLe

′
m(I − zJ)−1em]−1zb2mGLe

′
m(I − zJ)−1]e0,

which produces the result after ‘shift throughs’ of the type (I − ab ′)−1a =

a(I−b ′a)−1, with zb2mGLe
′
m(I−zJ)−1 ← a and em ← b, assuming existence

of the inverses (true in the one-sided algebra).

The formula obviously generalizes the previous one step recursion, in

which we had m = 0, J = a0, e0 = em = 1.

Referring to Fig. 3, one may use individual eigenstates for the subsys-

tems, and derive an updated secular equation for the total. Indeed, assum-

ing diagonalizations J (i) = U ′
i AiUi for the original systems, and putting

β(i) = [U ′
i ]e0, γ

(1) := [U ′
1 ]em, we find as partially diagonalized global tran-

sition matrix

(26) {A(t), b(t)} :=

{[
A1 γ(1)bm[β(2)] ′

β(2)bm[γ(1)] ′ A2

]
,

[
β(1)

0

]}
.

The previous extension formula remains valid in terms of the eigenvalue-

based state space variables:

(27) G(z) = [β(1)] ′
[
I − zA− γ(1)z2b2mGL(z)[γ

(1)] ′
]−1

β(1)

One may choose for {A2, β
(2)} any convenient ‘sampling’ system, possi-

bly a discretization around zero reflecting the desired fineness of the mesh.

The combined system will produce a discretized pdf that interpolates the

chosen set of moments (as produced by the system {A1, w1}). An interpo-

lation of this new system will yield a continuous pdf that may approximate

the desired result reasonably well (although the exact interpolation is based

on the discretized version). This can be seen as follows.
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Given a moment series μ0: there is the corresponding spectrum (now
with j :=

√
−1)

(28) M(jω) = ejωX =
∑
k=0:

μk

k!
(jω)k,

and the pdf is of course the reverse Fourier transform of M(jω). While the
generating function typically does not converge, the spectrum often does
(except, among others, for processes for which moments do not exist), and
this can be pretty fast as well thanks to the weights k!. (For example, for a
Gaussian, zero mean pdf we have μk

(2k)! =
σ2k

k!2k .) This means that a relative

small number of μk’s may pretty well determine the pdf up to a reasonable
accuracy, so that one might suffice with an expansion of – say – a couple of
tens of terms. This approximation issue has not been studied extensively to
my knowledge.

Here are few more observations or conjectures:

– when one peals Jacobi sections off a zero-mean Gaussian pdf, one de-
stroys the Gaussian property. The first Jacobi coefficient a0 determines
the means and b0 determines the variance, since μ2 = a20 + b20. After this
information has been taken out, what remains is information on higher
order moments. This effect demonstrates why one can expect loss of the
most obvious information when one proceeds with ‘pealing off’ Jacobi
coefficients;

– it seems the further one goes, the more the information gets ‘pointed’.
For example, when starting out with an originally order n atomic system,
at the last step in the recursion, just a single impulse remains;

– one can use Cuppen’s method [3] to do the join (perhaps it is possible to
enhance the method nicely with an order 2 update, instead of the order
one update of Cuppen’s method which modifies the oddity of the con-
stituents). The order one update of the secular equation interleaves the
join of the eigenvalues. Assuming the interpolation forced by system (1)
to be of relatively low order m and spread over an interval [p1, p2], then
system (2) could be a uniform discretization over the same region (say N
atoms with weights 1/N). The joint system would then have N +m+ 1
atoms somewhat extending (with two atoms) over the borders set by sys-
tem (1), but distributed in between the uniform distribution forced by
system (2). This would assure a non-uniform, but still fairly evenly dis-
tributed final result. Assuming the total order sufficiently large to make
the spectral series converge, this method finally yields a continuous dis-
tribution that interpolates the given data to a good accuracy (to be in-
vestigated further!).
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Algebraic models

One may also wonder whether there is a natural stochastic variable con-
nected to system (2) of the previous section, given the total system. For
the construction given, this is not necessary. Connected to Hankel matri-
ces, one may construct a purely deterministic polynomial algebra with an
inner product defined by the Hankel operator [1, 16]. Using the classical
strategy to deal with stochastic variables, related polynomial representa-
tions and their geometry, one can identify three, isometric, approaches. Let
H be the global moment matrix (H = XX ′), which may or may not be
singular (often finite singularity is ruled out as a spurious case, but singular
cases are highly important in modeling theory, where one works up to a
maximal index for which H is not singular, and then derives a computable
dicretization).

Approach 1: vectors. Let a and b be vectors padded with zeros to make their
indices run to infinity, one defines the inner product < a, b >H := a ′Hb =
(a ′L)(b ′L) ′ where H = LL ′ is taken as a minimal factorization of H.

Approach 2: polynomials. Connected to a vector a one may define a poly-

nomial A(z) =
∑

k=0: akz
k and the inner product < A(z), B(z) >H= a ′Hb.

Approach 3: stochastics. This is the approach we have followed so far, where

the inner product is defined by expectations: < a ′X, b ′X >= a ′XX ′b.

Needless to say, the three approaches are equivalent and define the same
inner product.

Hankel symmetry

An important characterization of the Hankel symmetry works on one step
extensions of the Hankel matrix. An infinite Hankel matrix H with positive
definite sub-HankelsHn can be Cholesky factorized for as much as one wants
to go, just by extending the Cholesky factorization of finite restrictions Hn

of H. So, when Hm = LmL ′
m and similarly Hn = LnL

′
n are Cholesky factor-

izations with m < n, then Lm is a submatrix of Ln, and Ln can be obtained
recursively by just extending Hm and Lm recursively (as is usually done in
algorithms for Cholesky factorization). In this way we may consider the in-
finite Hankel H and its (formal) Cholesky factorization H = LL ′, although
these infinite matrices are only defined numerically and will typically be
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very unbounded (as is shown by the Gaussian example). Calculus on such
matrices is allowed so long as it remains unilateral, meaning: recursively
increasing. This works for the determination of corresponding orthonormal
polynomials as well, and the inner products on which they depend, for as
long as one deals with finitely supported vectors and matrices. Let then
σk=0:,�=0: with [σ]k,� = δ(k + 1 − �) be the infinitely supported upper shift
matrix then the Hankel symmetry on the global Hankel series can simply
be written as σH = Hσ ′. Suppose now that H = LL ′ and L, being lower
triangular, is recursively invertible, then the Hankel symmetry can be char-
acterized in terms of L as well:

Proposition 7. A recursively invertible (infinite dimensional) L is the lower
Cholesky factor of a strictly positive definite Hankel matrix iff J = L−1σL
is a Jacobi matrix, and, if so, it is the Jacobi matrix that parametrizes H.

Proof. One checks that equating the rows in JL−1 = L−1σ produces the
three terms recursion which defines the Jacobi parameters. Uniqueness of
these parameters (assuming the bk strictly positive) does the rest.

The property can of course be refined further for finite positive definite
Hankel matrices, but one has to take account of the fact that J and σ
are not lower triangular, leading to some border effects that have to be
accounted for. Exploiting the tri-diagonal nature of J one only has the partial
Jacobi recursion (for compactness of formulas we now adopt the notations5

Ai,j ← Aj
i and []0: n0: n ← n)

(29) J0:n+1
0:n p0:n0:n+1 = p0:n1:n+1,

in which J0:n+1
0:n and p0:n0:n+1 are not square. However, a finite, non singular

and positive definite Hankel matrix Hn of order n is still characterized by
the symmetry of Jn = L−1

n (σL)n = L−1
n [L↑]n. This equation shows that

L0:n
n+1 enters in the definition of Jn. Given only a finite (normalized) Hn =

Ln[Ln]
′, the quantities in L0:n

n+1 are still to be determined: they depend (as
we shall see) partially on Ln, but are also partially undefined (and can be
characterized further).

As we shall have to characterize finite Hankel matrices in the 2D treat-
ment, let us specialize to characterizations using just an order n+ 1 Jacobi
matrix J = Jn (assuming given H = Hn non-singular). Such a Jacobi ma-
trix generates an (infinite) moment series gk := e ′

0J
ke0, whereby [Ln]0:n =

5We also suppress the single full range indicator ‘:’: λn ≡ λ:
n specifies the nth

row of λ.
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[e ′
0J

k]0:n and L0:n
n+1 = LnJn (in general, for k > n: Hk = L0:n

0:k [L
0:n
0:k ]

′,
singular of rank n + 1). This establishes the connection Jacobi matrix ⇒
Cholesky factor. We see that [Jn]k is always a step ahead of [Ln]k: L0 = e ′

0,
L1 = L0Jn =

[
a0 b0 0 · · ·

]
, Ln+1 = LnJn etc... In the other direction,

the Hankel symmetry regulates the extension of Ln up to and beyond n
(actually: the Jacobi recursion specifies the relation). More precisely:

Ln+1 = LnJn
=
[
L0
na0 + L1

nb0 L0
nb0 + L1

na1 + L2
nb2 · · · Ln−1

n bn−1 + Ln
nan

](30)

and we see that only an enters in the definition Ln
n+1 and vice versa, or,

to put it differently: one may choose either one as parameter. On the other
hand, an does not enter in the definition of Ln and has no influence on Ln

nor on the series μ0:2n. A specific choice will determine a specific Jn, which
can be used to characterize the series up to 2n in a univocal way. We might
choose an = 0, but a more self-contained choice is to make Jn singular,
i.e., forcing an atom at zero, which also makes the degree of the generating
function minimal (i.e., n). Alternative choices (e.g., making the generating
function ‘balanced’) are of course possible. Hence the

Definition 1. We call the singular Jacobi matrix Jn that characterizes Hn

canonical. This Jacobi matrix has the characteristic property that the cor-
responding generating function is of degree n and is the unique one with
that property. We call the corresponding singular extension Hn+1 and the
resulting Cholesky factor L0:n

0:n+1 canonical as well.

Moreover (and extending the results to the non-normalized situation),
let an eigen decomposition of a canonical Jn = UnαU

′
n with eigenvalues

α = diag[{0, α1:n], and let β = U ′
ne0, then {α, β√g0,

√
g0β

′} produces a

diagonalized realization for Ĝ(z) with n+1 distinct eigenvalues and weights
[βk]

2g0; the full state transformation matrix Un can be generated from Jn,
hence from β and α as well, actually

(31)

⎡⎢⎢⎢⎣
β
βα
...

βαn

⎤⎥⎥⎥⎦ = LnUn

is an LQ-factorization, which can be computed recursively, if so desired.
Summarizing the properties derived so far for the finitely indexed case,

we may state for further reference:
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Proposition 8. Related to a strictly positive definite Hankel matrix Hn =

Han[g0:2n] of dimensions (n+1)×2, there is a canonical singular Jacobi ma-

trix Jn, with canonical Jacobi parameters {a0:n, b0:n−1}, real distinct eigen-
values {α0 = 0, α1:n}, canonical, strictly positive weights {w0:n = β2

0:ng0}
with [βk]k=0:n > 0 and

∑
k=0:n β

2
k = 1, and a canonical generating function

Ĝn(z) such that

1. Ĝn(z) interpolates the coefficients g0:2n,

2. Ĝn(z) =
∑

k=0:n
wk

1−αkz
,

3. Ĝn(z) is rational of degree n (corresponding to an atomic density function

with n+ 1 atoms δ(x− αk) of weights wk),

4. gi =
∑

k=1:nwkα
i
k for i ≥ 1 and g0 =

∑
k=0:nwk.

Hankel symmetry in the finite case

A compact way of expressing the Hankel symmetry in the finite case is by

utilizing the unilateral infinite shift matrix σ and a specific pseudo-inverse for

the Cholesky factor L := L0:n
0: = [e ′

0J
k
n]k=0:∞] of dimensions (0: ∞)× (0: n),

in which Jn may be any order n Jacobi matrix (but which we typically will

take canonical), namely

(32) L+ :=
[
L−1
n 0

]
The Hankel symmetry in terms of L is then simply

Proposition 9. H = LL ′ will be Hankel iff L+σL is symmetrical, and

J = L+σL.

Proof. only if: the Hankel property is easily seen to be equivalent to σH =

Hσ ′, which, after applying the pseudo-inverse shown gives L+σL =

L ′σ ′(L+) ′ (notice that all quantities are well-defined and products are fi-

nite);

if: because L+σL = L−1
n L0:n

1:n+1 = J , resulting in L := L0:n
0: = [e ′

0J
k
n]k=0:], so

that LL’ is necessarily Hankel.

4. Generalized moment matrices in two variables

A full moment matrix in two dimensions is H = XX ′, in which

X := col
[
1 X Y X2 XY Y 2 · · ·

]
,
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Figure 4: The 2D Hankel structure inH3. Some identical blocks and elements
are highlighted.

and X and Y are stochastic variables. Such matrices (and also in higher
dimensions) have a generalized Hankel structure, in the sense that blocks on
anti-diagonals contain the same elements and are internally Hankel as well,
with compatible ordering—see H3 represented in Fig. 4. Connected to the
2D case we can define a 2D generating function, very much in the same way
as in the 1D case, but now introducing two variables z1 and z2, summed by
order and then as μ(I − i, i)i=0:I = (XI−iY i)i=0:I within order I:

(33) G(z1, z2) =
∑
I=0:

(∑
i=I:0

μi,I−iz
i
1z

I−i
2

)

which can also be seen as the unilateral expansion in 2D of E 1
(1−z1X)(1−z2Y ) .

We now have almost immediately:

Theorem 1. A rational generating function G(z1, z2) corresponds to a 2D
atomic distribution.

Proof. Consider marginals: one obtains the X marginal by putting z2 = 0 in
the generator, and similarly z1 = 0 for the Y marginal. IfG(z1, z2) is rational,
then so are these marginals, and they correspond to an atomic distribution
each. The resulting 2D distribution can only have contributions for x values
and y values corresponding to the location of the atoms in the marginal
distributions, because the latter add the contributions (which are necessarily
of the Dirac type due to the monotone character of the distribution function)
on their respective abscis or ordinate, and hence have to be atomic as well
with atoms located on the intersection of the coordinates of the atoms in
the marginal distribution.
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Notation To simplify the writing, we use three related systems of notation.
First, the (totally ordered) two digit notation

(ij) ∈
[
00 10 01 20 11 02 · · ·

]
;

next, just positive integers to indicate the global order i + j of an index
(ij) or just a normal numerical index; and finally a fat bold face k = 0:k
to indicate a global vector or matrix of a given order. So we write Xk for
X0:k, not to be confused with Xk = col[Xk Xk−1Y · · · Y k], which is the
vector of index and degree k in X. In the case of matrices, we often use
the upper index to indicate a column and the lower to indicate a row, as in
Akl

ij = Aij,kl.

A first example of extension

To introduce the topic, let us look at a simple example first. Suppose we
want to find a minimal 2D pdf that matches X = Y = 0, X2 = Y 2 =
1, XY = 0, X3 = XY 2 = Y 3 = 0 and X2Y = d for some large d (|d| > 1,
otherwise the problem is simpler). In other words: extend

(34) H2 =

⎡⎢⎢⎢⎢⎣
1 0 0 1 0 1

0 1 0 0 d 0
0 0 1 d 0 0

1 0 d ? ? ?
0 d 0 ? ? ?
1 0 0 ? ? ?

⎤⎥⎥⎥⎥⎦ ,

to a full moment series, or equivalently, the corresponding infinite H. First,
we try to do that as singularly as possible, respecting the extended Han-
kel structure and the positivity. Assuming H1 non-singular, the extension
to H2 will be positive definite iff the Schur complement of H2

2 , namely
H2

2 − H0:1
2 (H1)

−1H2
0:1 is positive definite. We call S2 = H0:1

2 (H1)
−1H2

0:1

the Schur residue at index 2, which, in this case, is S2 =

[
1 + d2 0 1

0 d2 0
1 0 1

]
and is not Hankel. A minimal solution will be obtained when H2

2 − S2

is rank deficient of order 2, making H2 rank deficient of order 2 as well.
We shall see that this leads to a minimal, atomic pdf, and hence will de-

fine the whole moment series. E.g., we can choose H2
2 =

[
2d2 0 d2

0 d2 0
d2 0 d2

]

in which case H2
2 − S2 =

[
d2 − 1 0 d2 − 1

0 0 0
d2 − 1 0 d2 − 1

]
≥ 0. Expressing the singu-
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Figure 5: The atomic distribution for the 2D example.

larity, we find

{
−dX +XY = 0

−dY +X2 − Y 2 = 0
. The first equation says that ei-

ther X = 0 or Y = d. When X = 0, the second equation says that
Y (Y + d) = 0 and hence either Y = 0 or Y = −d. In the second case
of Y = d, X2 = 2d2 and hence X = ±

√
2d. So this means that the corre-

sponding distribution has to be atomic with Dirac impulses at the positions
(0, 0), (0,−d), (−

√
2d, d), (

√
2d, d) with appropriate positive weights. These

are found by solving for the moments (a linear set of equations that can be
solved with a simple strategy), and we find as final result the 2D atomic pdf
p(x, y) = (1− 1

d2 )δ(x, y) +
1

2d2 δ(x, y + d) + 1
4d2 δ(x+

√
2d, y − d) + 1

4d2 δ(x−√
2d, y − d). Remark that all subsequent Hk for k ≥ 3 are now defined and

will have the same rank as H2 (4 in this case). However, and as already
observed in the 1D case, we probably wish to compute extensions of much
larger order, keeping the subsequent generalized Hankels Hk non-singular,
until a sufficient high degree is obtained corresponding to a fine grid of atoms
and allowing a good approximation of an eventual continuous pdf (this is
an issue that we shall not consider in the present paper).

General 2D extension strategy

The considerations given so far lead to a general extension strategy: assum-
ing non-singularity up to some level n, obtained by determining new fitting
data Hk

k+1 and Hk+1
k+1 for k = 2 · · · of Hankel type and such that Hk+1

k+1 is
strictly larger that the (k + 1)st order Schur residue Sk+1, until a sufficient
level of sampling accuracy is obtained, at which time a new Hn

n has to be
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added making Hn rank deficient (it will turn out that deficiency 2 will be

possible and sufficient at that point, see the discussion of the singular case

further on). When that is the case, then all subsequent Hankels will turn

out to be determined, based on an atomic distribution with a fine enough

maze (hopefully). In the present paper, we concentrate on generating infi-

nite non-singular extensions through parametrization, leaving the resulting

approximation theory for future papers.

Jacobi representations in the 2D case

Jacobi representations may be derived also in 2D and nD cases, but the full

parametrization property of the 1D case is lost and has to be restored by

removing redundancies (as we shall see). The Jacobi ‘coefficients’ become

matrices in a block-tridiagonal hierarchical matrix, which still have some

internal structure that has to be characterized further parametrically. The

main result of this paper is that a full parametrization is indeed possible

(remember: parameters have to be independent), and an algorithm will be

given to determine a full parametrization.

Returning to the ordered stochastic vector

[Xn]ij for ij ∈ [00 | 10 01 | 20 11 02 | · · · ]

up to whatever order n, a recursive orthonormalization yields a modified,

orthonormal basis [Pn] in the same order, with P00 = e ′
0 (of whatever dimen-

sion needed), and orthonormal with respect to the GramianHn of sufficiently

high order n. Let, for as far as one wants to go, Hn = LnL
′
n. Connected to

the orthonormal basis, we shall have 2D polynomials

(35) Pij(z1, z2) = L00
ij + L10

ij z1 + L01
ij z2 + L20

ij z
2
1 + L11

ij z1z2 + · · ·

in which the general term is Lkl
ijz

k
1z

l
2 with (kl) following the same ordered

series as (ij). Just as in the 1D case, the orthogonality structure gets prop-

agated recursively via shifts. In the 2D case (figure 6) there are two shifts:

multiplication with X and with Y , resulting in the following propagation

schema for the shifted polynomials (e.g.,

P21 ⊥ 1, (X·)1, Y, (X·)X, (X·)Y, Y 2, (X·)X2,

hence P21(X) ⊥ {1, X, Y,X2} where I have highlighted the X that is taken

out to the other side of the inner product by bracketing it).
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X P PijX ⊥ on PijY ⊥ on

1 1

X P10 {} {}
Y P01 {1} {}
X2 P20 {1} {1}
XY P11 {1, X} {1}
Y 2 P02 {1, X, Y } {1, X}
X3 P30 {1, X, Y } {1, X, Y }
X2Y P21 {1, X, Y,X2} {1, X, Y }
XY 2 P12 {1, X, Y,X2, XY } {1, X, Y,X2}
Y 3 P03 {1, X, Y,X2, XY, Y 2} {1, X, Y,X2, XY }

etc.

Figure 6: Shift orthogonalities in the 2D case.

Noticing Xn+1 =

[
XnX
[Xn]nY

]
, this then results in the following hierar-

chical Jacobi recursion, exemplified up to order 3 (other choices are possible,

see the discussion on symmetries further):

(36)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00X
P00Y

P10X
P01X
P01Y

P20X
P11X
P02X
P02Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ a
∗ ∗ c

a ∗ h d
0 h ∗ e f
c ∗ ∗ ∗ ∗ g

0 d e ∗ i j ∗
0 0 f i ∗ k ∗ ∗
0 0 0 j k ∗ ∗ ∗ ∗
0 0 g ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00

P10

P01

P20

P11

P02

P30

P21

P12

P03

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
in which ‘∗’ indicates some entry, and repeated entries are annotated as

‘a, b, c etc.’. The way the schema builds up is as follows:

1. There is a total order in the indexing series: (kl) ≺ (ij) iff k+l < i+j, or,

if k+ l = i+j and k > i. The linear span [X](kl)�(ij) = [P](kl)�(ij) always

contains any span with a smaller (ij)—this being the central purpose of

the definition of the subsequent entries (more solutions are possible!).

2. Any PijX or PijY is orthogonal on any Pkl with k+ l ≤ i+ j−2. This is

obvious from the fact that (PijX)Pkl = Pij(XPkl) and XPkl sits in the

span of the Pmn with m+n ≤ i+ j− 1. This makes the Jacobian matrix



Stochastic models based on moment matching 235

block tridiagonal (notice: it is not square anymore: only the blocks in the
first upper diagonal are square).

3. There is an evident progression of orthogonalities. P01 is orthogonal on
P00X, since the latter is in the span of {P00, P10} =

∨
{1, X}. This makes

all the blocks in the upper diagonal lower triangular. Moreover, these
blocks may all be endowed with positive ‘leading coefficients’
{a, c, d, · · · }.

4. The symmetries in the main diagonal blocks are of course obvious.

To analyze the structure further, let us introduce some notation for the
2D generalized Jacobi matrix, using a simplifying global indexing notation

(37) Jn =

⎡⎢⎢⎢⎢⎢⎣
A0 Bu

0

B�
0 A1 Bu

1

B�
1 A2 Bu

2

. . .
. . .

. . .

B�
n−2 An−1 Bu

n−1

B�
n−1 An

⎤⎥⎥⎥⎥⎥⎦
until order n is reached and included. B�

k is determined by Bu
k and symme-

tries mentioned above have to be satisfied. The determination of the basis
from the Jacobi matrices then proceeds like in the 1D case, but is a bit more
complex. Eq. (36) defines σP, where the shift matrix now has the form (in
the present case, easily generalizable, see further)

(38) σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
Y

X
X
Y

X
X

X
Y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and we have J2 = σP2P ′

2 by definition of orthogonality. Now P ′
2L

′
2 = X ′

2,
hence

(39) J2L
′
2 = σP2X ′

2 = (σL−1
2 X2)X ′

2

But σL−1
2 is nothing but a stack of rows from L−1

2 (some repeated), which
each get multiplied wholly with either X or Y . This multiplication, when
transferred to X2, produces column shifts. More precisely, denoting the rows
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of L−1
2 by �ij conformal to the indexing of X2 and, similarly the columns by

�ij (i.e., we drop the comma in (i, j) for convenience), we find (specializing

to maximum order 2 without impairing generality)

(σL−1
2 X2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�00XX
�00XY

�10XX
�01XX
�01XY

�20XX
�11XX
�02XX
�02XY

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

�0010 0 �1010
�0001 0 �1001 �0101
0 �0001 0 �1001 �0101
�0020 0 �1020 �0120 0 �2020
�0011 0 �1011 �0111 0 �2011 �1111
�0002 0 �1002 �0102 0 �2002 �1102 �0202
0 �0002 0 �1002 �0102 0 �2002 �1102 �0202

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
Y

X2

XY
Y 2

X3

X2Y
XY 2

Y 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:= �σ2X
↑
3

(40)

in which �σ2 is the ‘augmented’ inverse of L2 shown, X↑
3 = [X]10:03, and

L↑
3 := [L3]10:03. It follows that

(41) J2 = �σ2L
↑
3.

More generally and using a generalization of the notation, we have, with an

appropriately column-shifted �σ

(42) Jm = �σmL↑
m+1

provided Lm is non-singular, and since Lm is lower triangular, its inverse

contains the inverse of Lm−1 as a diagonal top block. This expression resem-

bles the expression for the 1D-case, except for the second block row, which

represents an extra ‘mixing’ term involving the relation between X and Y

(notice that in the 1D case we simply have Jm = L−1
m L↑

m+1.)

The recursion for the blocks in Lm follows from the Jacobi matrices, and

conversely:

(43) (�σm)−1Jm = L↑
m+1
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Let the relevant permutation operator be

(44) P σ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1
1

1
1

1

1
1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then

(45) P σ�σmP σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�0010 �1010
�0001 �1001 �0101
�0020 �1020 �0120 �2020
�0011 �1011 �0111 �2011 �1111
�0002 �1002 �0102 �2002 �1102 �0202

0 0 0 0 0 0 1
0 0 �1001 0 0 0 �0001 �0101
0 0 �1002 0 �2002 �1102 �0002 �0102 �0202

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which may be written as

(46) P σ�σmP σ =

[
[L2]

−1

m2 �0,0:20,0:2

]
in which

(47) m2 :=

[
0 0 0 0 0 0
0 0 �1001 0 0 0
0 0 �1002 0 �2002 �1102

]

Hence

(48) [�σ2]
−1 = P σ

[
L2

−[�0,0:20,0:2]
−1m2L2 [�0,0:20,0:2]

−1

]
P σ

and

(49) P σ

[
L2

−[�0,0:20,0:2]
−1m2L2 [�0,0:20,0:2]

−1

]
P σJ2 = L↑

3.
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Reversing the permutations and writing

(50) −[�0,0:20,0:2]
−1m2L2 :=

[
0 0 0 0 0 0
n00
01 n10

01 n01
01 0 0 0

n00
02 n10

02 n01
02 n20

02 n11
02 n02

02

]

we obtain

(51) (�σ2)
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0 1

L00
10 0 L10

10

L00
01 0 L10

01 L01
01

n00
01 L10

01 n10
01 n01

01 L01
01

L00
20 0 L10

20 L01
20 0 L20

20

L00
11 0 L10

11 L01
11 0 L20

11 L11
11

L00
02 0 L10

02 L01
02 0 L20

02 L11
02 L02

02

n00
02 L00

02 n10
02 n01

02 L01
02 n20

02 n11
02 n02

02 L02
02

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
:= Lσ

2

The nlm
ik are ‘new’ correlation values connecting the Y variable with X. They

involve both L and its inverse � but can be computed recursively at the end
of each stage, since � depends recursively on L. The recursion works both
ways, as we shall see now.

Jacobi matrices from factorization and vice versa

For the first right block diagonal we have immediately from (43)

(52) [Lσ]iiB
u
i = Li+1

i+1, for i = 0:

This fully defines the Bu
i = ([Lσ]ii)

−1Li+1
i+1 in terms of the Li

i as long as these
are invertible (which we simply assume at this point; when they become
singular, a different strategy as explained before has to be followed by con-
struction of the corresponding kernel). The converse works as well, but is
slightly more complex. Assuming recursively [Lσ]ii, we may construct Li+1

i+1

by computing the corresponding nkl
0i for {kl} = i0 : 0i:

(53) ni0:0i
0i =

(
[Lσ]ii

)i0:0i
0i

in which [�σ]ii is constructed from �ii = [Li
i]
−1 by shifting the last row as

shown in eq. (40). Remark that in contrast of the 1D case, the diagonal
blocks of both the factorization and the Jacobi representation increase in
dimension. Next,

(54) Ai = [�σ]ii
(
Li
i+1 − [Lσ]i−1

i Bu
i−1

)
, for i = 1:
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with A0 = L0
1 as starting value. This determines Ai in terms of Li

i (and its
diagonal predecessors), and Li

i+1 — notice that this necessitates the compu-

tation of [Lσ]i−1
i , which uses both Li

i and Li−1
i . Conversely, one reconstructs

both Lm, Lσ
m and �σm from the recursion that produces the orthonormal poly-

nomials starting from the given Jacobi matrices (equation (36)). In detail,
the recursion proceeds as follows:

P1 =

[
P10

P01

]
= (Bu

0 )
−1

([
X
Y

]
−A0

)
(since P0 = 1!)

P2 =

⎡
⎣ P20

P11

P02

⎤
⎦ = (Bu

1 )
−1

([
P1X

P01Y

]
−B�

0(P0)−A1P1

)

etc.

Pm =

⎡
⎢⎢⎢⎣

Pm0

P(m−1)1

...

P0m

⎤
⎥⎥⎥⎦ = (Bu

m−1)
−1

([
Pm−1X

P0(m−1)Y

]
−B�

m−2Pm−2 −Am−1Pm−1

)

(this is a generalized ‘three terms’ recursion! The ‘n-coefficients’ are gener-
ated at the singularized bottom row). Next, the various powers XiY j can
be recovered from the so-defined polynomials, actually each of them has the
next X iY j in the total {ij} order as its next highest order term.

Detailed parametrization

As remarked earlier, the ‘global’ parametrization Ai and Bu
i (B�

i is directly
derived from Bu

i ) is (largely) incomplete: it does not account for the ‘local’
Hankel-like structure of the constitutive blocks of the increasing series of
Hi’s. Assume stage i (i.e., order i) has been reached. At stage i+1 the new
elements added to the Hankel matrix are H i

i+1 of dimensions (i+2)× (i+1)

and H i+1
i+1 of dimensions (i + 2)×2. Both matrices are Hankel. This means

that the algebraic freedom is, in the first case 2i + 2 and 2i + 3 respect.,
but the total of 4i + 5 real quantities are of course not independent of
each other, because they have to make the total new Hankel Hi+1 positive
definite. Nonetheless, the odd moments inH i

i+1 can be chosen independently,

constraining the choice6 of H i+1
i+1 .

The first aim is now to translate these considerations to the Cholesky
factor Li+1, assuming Li (and of course also �i, which produces the orthogo-
nal polynomials �iXi) known. Assuming the free choice of moments in H i

i+1

6This is like in the scalar case. It is important to notice that this property is
dependent on the existence of infinite continuations, a fact that we just assume at
this point.
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made, also L0:i
i+1 are known (we have of course Lk

i+1 = L0:k−1
i+1 (L0:k−1)

′�kk for

k = 0 : i − 1). New is only Li
i+1, which can be parametrized by H i

i+1, but

can also be parametrized in its own right (we shall discuss this point later

and relate it to a parametrization of Jacobi matrices).

Let now the (i+ 1)st Schur residue be

(55) Si+1 := L0:i
i+1(L

0:i
i+1)

′,

and consider the Schur complement at index i + 1: H i+1
i+1 − Si+1. The total

Hi+1 will be strictly positive definite, iff H i+1
i+1 � Si+1, and Li+1

i+1L
i+1
i+1

′
=

H i+1
i+1 − Si+1. I claim

Proposition 10. A non-singular Li+1
i+1 may be parametrized by strictly pos-

itive numbers on its first diagonal, and arbitrary numbers on its first sub-

diagonal, i.e., 2i+ 3 elements all together.

Proof. Suppose Li+1
i+1 parametrized as proposed, one has to show that both

the (strictly) positive definite Hankel matrix H i+1
i+1 , and the continuation of

Li+1
i+1 to further lower diagonals, are well defined. H i+1

i+1 will be Hankel iff

(1) it is symmetric, and (2) the submatrix [H i+1
i+1 ]

0:i
1:i+1 is symmetric as well

(proof of this fact is by tracing equalities: (2, 0) → (0, 2) → (1, 1) etc.).

The first condition is automatically satisfied. As to the second, let for any

square matrix X, Δ(X) := X − X ′ (a skew matrix), then H will be Han-

kel iff Δ([Li+1L
′
i+1]

0:i
1:i+1) = −Δ([Si+1]

0:i
1:i+1), which is assumed known at

this point of the recursion. This equation can be fulfilled recursively by

solving Δ([Li+1L
′
i+1]

0:k
1:k+1) = −Δ([Si+1]

0:k
1:k+1) for k = 2 : i. Putting for

brevity, Li+1 ← L and [Si+1] ← S, we have [LL ′]0:k1:k+1 = L0:k+1
1:k+1[L

′]0:k0:k+1 =

L0:k
1:k+1[L

′]0:k0:k and we have to require Δ(L0:k
1:k+1[L

′]0:k0:k) = −Δ(S0:k
1:k+1)). Writ-

ing out:

(56)

⎡
⎢⎣ L0:k−1

1:k

0

Lk
k

L0:k−1
k+1 Lk

k+1

⎤
⎥⎦
[

[L ′]0:k−1
0:k−1 [L ′]k0:k−1

0 Lk
k

]
−

−
[

[L]0:k−1
0:k−1 0

[L]0:k−1
k Lk

k

] [
[L ′]1:k0:k−1 [L ′]k+1

0:k−1

0 · · · 0 Lk
k Lk

k+1

]
? =?−Δ(S0:k

1:k+1)

and we have to satisfy, at stage k,

(57) L0:k−1
k+1 [L ′]0:k−1

0:k−1 = L0:k−1
k [L ′]0:k−1

1:k + [0 · · · 0 (Lk
k)

2]−Δ(S0:k
1:k+1),
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which define the remaining entries in Lk+1, since [L ′]0:k−1
0:k−1 is known and

invertible, and both Lk
k+1 and Lk+1

k+1 are given.

Example. In the example of eq. (34), let’s choose the diagonal and subdi-

agonal for (L2
2 ← L) :=

⎡⎣ ε
0 1
? 0 1

⎤⎦, in which ε is a small positive number.

We find Δ(S) =

[
0 d2 − 1

1− d2 0

]
, Δ(LL ′) =

[
0 1− εL0

2

εL0
2 − 1 0

]
, hence

L =

⎡⎣ ε
0 1
d2

ε 0 1

⎤⎦, and finally

(58) S + LL ′ =

⎡⎣ 1 + d2 + ε 0 1 + d2

0 1 + d2 0

1 + d2 0 2 + d4

ε2

⎤⎦ .

This example shows that a small choice for (L2
2)

0
0 may (often) result in a

very large H2
2—compare this to the non-existence of a solution when (L2

2)
0
0

is chosen zero. The singular case will be discussed later.

The Schur residue Si+1 appears to be recursively computable from the
Jacobi recursion, and must be included in the determination of the next
Li+1
i+1, the point being that this will not influence the parametrization. We

have

Proposition 11. The Schur residue Si+1 is obtained by putting Bu
i = 0 in

the generalized Jacobi recursion, i.e.,

(59) Si+1 = LS
i+1(L

S
i+1)

′

where

(60) LS
i+1 = Lσ

i Ji

Proof. We have J i+1
i = �σi [L

↑
i ]
i+1 — see formula (42). In the case of the

Schur residue, the last column of [L↑
i ]
i+1 is put equal to zero, making Li+1

solely dependent on Lσ
i = (�σi )

−1.

Remark Putting the last block column in [L↑
i ]
i+1 to zero will not result in

Si+1 being Hankel, as observed before.
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The parametrization via Li
i+1 and Li+1

i+1 can fairly easily be transformed
into a parametrization of the Jacobi matrices Bu

i and Ai (equations (52) and
(54)), taking the structure of these matrices into account.

Hankel symmetries in the 2D case

Consider two (restricted) shift matrices:

(61) σ1 =

⎡
⎢⎢⎢⎣

0 1 0

0 1 0 0
0 0 1 0

. . .
. . .

⎤
⎥⎥⎥⎦, σ2 =

⎡
⎢⎢⎢⎣

0 0 1

0 0 1 0
0 0 0 1

. . .
. . .

⎤
⎥⎥⎥⎦.

Proposition 12. Let H∞ = LL ′ be the Cholesky factorization of the 2D
positive definite H∞ matrix and let L be (formally) invertible, then H∞ will
be generalized Hankel iff both L−1σ1L and L−1σ2L are symmetric matrices.

Proof. H∞ is generalized Hankel iff both equations σiH∞ = H∞σ ′
i (i = 1, 2)

are satisfied, much as in the scalar case. From this follows the proposition,
provided L is formally invertible.

Notice that the two equations overlap. It would suffice that one of the
two is satisfied (say the first one), and that, in addition, the marginal for Y
is scalar Hankel—this is exactly what we did before. Notice also that all the
matrices in the products L−1σiL have dimensions [1⊕ 2⊕ 3⊕ · · · ]×2.

The symmetries expressed in terms of the Cholesky factor lead, in turn,
to the symmetries the Jacobi matrices have to satisfy (this point can be
worked out further, but is beyond the scope of the present paper).

The singular case

The full singular 2D (or nD) case has not been explored so far to the best
of my knowledge. It is important because 1., it serves to terminate exten-
sions once a sufficient number of additional moments has been reached and
2., it allows for variations in the relations between the stochastic variables.
Nonetheless, the method used in the non-singular parametrization allows us
to generate singular solutions of higher order in a systematic way (sufficient
to terminate extensions) and, in addition, shows the way towards further
generalization, thereby necessitating an extension of the theory beyond the
hierarchical Hankel matrices considered so far. I briefly indicate how to gen-
erate singular solutions based on the parametrization.

With reference to the key parametrization step given in Proposition 10
and the simplified notation used there, one remarks that the next global
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moment matrix Hi+1 becomes singular when L
0(i+1)
0(i+1) = 0, and singular of

rank 2 when both L1i
0(i+1) = 0 and L1i

1i = 0 in addition. Such choices are

actually generic, but there are special cases where other choices are possi-

ble: as stated in the proposition, the diagonal and sub-diagonal elements of

Li+1
i+1 can be chosen freely in the non-singular case, but the numbers on the

diagonal have to be strictly non-zero. However, only the last two columns of

Li+1
i+1 can be made zero generically without affecting the columns 0 · · · i− 1,

for the determination of which a division with the diagonal element (the

pivot!) is called for (see also the example of (34)). The same holds for the

other diagonal elements up to i − 1. Hence, only the elements i and i + 1

on the main diagonal can be made zero generically, while the resulting Li+1
i+1

will have a kernel of rank 2 only when the element L1i
0(i+1) = 0 as well—but

there is a small (and discrete) collection of cases where the two-dimensional

co-kernel of Li+1
i+1 cannot be spanned by vectors whose projection on the last

two components is non-singular. The reasoning that follows will nonetheless

apply to such cases as well—actually one could make due with a factorization

of H i+1
i+1 that is not lower-upper.

The introduction of a double singularity in the determination of Hi+1

then effectively makes any whole hierarchical Hankel H extending Hi+1

atomic. This is like in the 1D case, where extensions of a singular Hi are

unique (Proposition 1); in 2D there are more possibilities, but generically

there is only a single case, when, as assumed, Hi is non-singular. This can

be seen as follows.

Proposition 13. Suppose, at step i + 1,

[
a
b

]
Hi+1 = 0 while Hi is non

singular, and a, b independent (row) vectors. Then all subsequent Hk
i+1 are

uniquely determined for all orders k > i+ 1.

Proof. The equation

[
a
b

]
Hi+1 = 0, when written out in terms of the

moments in Hi+1 results in what is called a Macaulay system of equations

(see e.g., [9] and the references therein on this type of equation). With

respect to Hk
i+1 for k ≥ i+1, given Hi and splitting

[
a
b

]
=

[
a0:i ai+1

b0:i bi+1

]
we have

[
ai+1

bi+1

]
Hk

i+1 = −
[
a0:i

b0:i

]
Hk

0:i for all k ≥ i+1 recursively defining

each successive Hk
i+1 starting with the known H i+1

i+1 . It turns out that the

system

[
ai+1

bi+1

]
H i+1

i+1 = −
[
a0:i

b0:i

]
H i+1

0:i is redundant of order 2 in this case
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(by counting equations and variables), and we show now that it is also non-

singular (notice that this also results in

[
a
b

]
Xi+1 = 0). This is because

any x/=0 that would make x

[
ai+1

bi+1

]
= 0 also results in x

[
a0:i

b0:i

]
Xi = 0

with x

[
a0:i

b0:i

]
/=0 and hence Hi singular (for both x

[
a0:i

b0:i

]
and x

[
ai+1

bi+1

]
cannot be zero at the same time, since a and b have been chosen independent
of each other). Subsequently, all the following Hk

i+1 are determined for all
k ≥ i+1 and allHk are of the same rank asHi+1 — a characteristic property
of an atomic system.

There are of course many other possibilities to extend Hi to higher or-
ders: one can first introduce a single singularity at some k1 > i, and then
another one at a larger order k2 > k1, thereby introducing a differentiation
in the resulting degrees of X and Y . All these possibilities still have to be
explored, as well as their effects on approximations of pdf’s that interpolate
the original data.

Once a singular extension of order two has been obtained—say at order
n—the further moment matrices

∨
Hk (k ≥ n) will all be of the same rank,

and the resulting atomic distribution can be obtained fairly easily by first
evaluating the marginals, and next filling in the detailed distributions per
abscis or ordinate, as was shown by the examples.

Toward the nD case

The theory extends to the nD case just by appending more variables in the
list:

(62) X := col
[
1 X Y Z · · · X2 XY XZ Y 2 · · · etc...

]
.

This leads again to a global generalized Hankel H = XX ′, with individual
blocks that exhibit ‘local’ generalized Hankel structures in turn. Also in this
case one may define a generating matrix G(z1, z2, · · · ) as before, and if this
generating matrix is rational, it will lead to atomic distributions in the same
way as in the 2D case. To extend the 2D parametrization to the nD case
will require more work than done for the 2D case: the local matrices are
not simply Hankel any more, but a block Hankel mixture of Hankel blocks.
It seems possible to develop a hierarchical theory that generalizes the 2D
theory presented, because this theory already shows how to handle a two
tier Hankel hierarchy, and the ideas generalize.
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5. Conclusions

1. The main result of the paper is a method to establish a Jacobi-like
parametrization for all possible extensions of a given, fully ordered set of
increasing moments of two coupled stochastic variables, and this for the
non-singular case. At stage i of the parametrization, corresponding to
the inclusion of degree 2(i+1), 4i+5 independent parameters are added
to the parametrization, which also corresponds to the total number of
moments of degree 2i+1 and 2i+2 added (these moments are of course
not independent, and hence do not amount to a parametrization). Al-
though the algebra has not been fully worked out yet, the method seems
to extend to n variables, modulo a stark increase in complexity.

2. Although the singular case has not been fully worked out in this pa-
per, the paper shows how it can be tackled for more than one stochastic
variable. Singular extensions lead to atomic or partially atomic realiza-
tions of pdf’s that match the given number of (fully ordered) moments.
In particular, it appears that at any stage of the parametrization, the
parametrization can be stopped, resulting in an overall atomic solution.
In the case of two variables, It suffices to create an extension that results
in a total singularity of rank two for the full continuation of the Hankel
matrix to be determined. This is because the number of conditions in-
troduced by the singular vectors equals the number of free parameters
at each stage of an extension.

3. The theory presented rests on (1) a generalization of the Akhiezer or-
thonormalization method for polynomials that are orthogonal with re-
spect to a positive definite Hankel Gramian and (2) specific structural
properties of generalized Hankel matrices of the type related to stochastic
moment series (these are not block Hankel, but have strong Hankel-like
block symmetries with blocks that vary in dimensions).

4. Many issues concerning the method presented are open. Here is a short
list (to the best of my knowledge):

– parametrizations for the general nD case (hopefully with a more
streamlined way of handling symmetries than presented in this pa-
per);

– the development of a functional approximation theory for the pdf’s
resulting from the parametrizations and the derivation of simplified,
approximate models from them;

– (perhaps also) the parametrization for other cases of sufficient statis-
tics other than Gaussian (e.g., Levi-Pareto derived statistics);
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– all the necessary numerics has to be developed as well, not to men-

tion

– various applications.
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Levinson realization algorithm for optimal linear predictors based on a

network synthesis approach. IEEE Trans. Circuits Syst., 25(9):663–675,

September 1978. MR0510691

http://www.ams.org/mathscinet-getitem?mr=0571758
http://www.ams.org/mathscinet-getitem?mr=0611491
http://www.ams.org/mathscinet-getitem?mr=1639649
http://www.ams.org/mathscinet-getitem?mr=0912138
http://www.ams.org/mathscinet-getitem?mr=0510691


Stochastic models based on moment matching 247

[7] Fred L. Fontaine and Sankar Basu. The partial realization problem
for complex hamburger series and complex lossless multiport networks.
IEEE Trans. on CAS-I, 45:161–177, January 1999. MR1683246

[8] H. Hamburger. Ueber eine erweiterung des stieltjesschen momentprob-
lems. Math. Ann., 81,82:235–319, 120–164, 1920–21. MR1511978

[9] Ph. Dreesen K. Batselier and B. De Moor. On the null spaces of the
macaulay matrix. LAA, 460:259–289, 2014. MR3250542

[10] T. Kailath. Lectures on Linear Least-Squares Estimation, CISM
Courses and Lectures, No. 140. Springer Verlag, Wien, New York, 1976.

[11] T. Kailath. Linear Systems. Prentice Hall, New York, 1980. MR0569473

[12] T. Kailath. Lectures on Wiener and Filtering, CISM Courses and Lec-
tures, No. 140. Springer Verlag, Wien, New York, 1981.

[13] N. Levinson. The Wiener RMS error criterion in filter design and pre-
diction. J. Math. Phys., 25:261–278, 1947. MR0019257

[14] L. Miranian. Matrix-valued orthogonal polynomials on the real line:
some extensions of the classical theory. Journal of Physics A, 38:5731–
5749, 2005. MR2168386

[15] I. Schur. Uber Potenzreihen, die im Innern des Einheitskreises
beschränkt sind, I. J. Reine Angew. Math., 147:205–232, 1917. Eng.
Transl. Operator Theory: Adv. Appl., vol. 18, pp. 31–59, Birkhäuser
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