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Multiple-input multiple-output (MIMO) systems are required to
communicate reliably at high spectral bands using a large num-
ber of antennas, while operating under strict power and cost con-
straints. In order to meet these constraints, future MIMO receivers
are expected to operate with low resolution quantizers, namely,
utilize a limited number of bits for representing their observed
measurements, inherently distorting the digital representation of
the acquired signals. The fact that MIMO receivers use their mea-
surements for some task, such as symbol detection and channel
estimation, other than recovering the underlying analog signal, in-
dicates that the distortion induced by bit-constrained quantization
can be reduced by designing the acquisition scheme in light of the
system task, i.e., by task-based quantization. In this work we sur-
vey the theory and design approaches to task-based quantization,
presenting model-aware designs as well as data-driven implementa-
tions. Such task-based quantizers are shown to notably outperform
conventional approaches which the desired information from low-
resolution measurements solely in the digital domain. Then, we
show how one can implement a task-based bit-constrained MIMO
receiver, presenting approaches ranging from conventional hybrid
receiver architectures to structures exploiting the dynamic nature
of metasurface antennas. This survey narrows the gap between
theoretical task-based quantization and its implementation in prac-
tice, providing concrete algorithmic and hardware design principles
for realizing task-based MIMO receivers.

1. Introduction

Modern wireless communications systems face a growing set of demands and
challenges. Cellular base stations (BSs) are required to reliably provide high
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throughput to an increasing number of user terminals (UTs), while maintain-
ing feasible cost and power consumption. An emerging technology to meet
these demands is to equip the wireless BSs with a large number of antenna
elements, realizing massive multiple-input multiple-output (MIMO) commu-
nications. Theoretical studies indicate that substantial gains in spectral effi-
ciency can be achieved by letting the number of BS antennas grow arbitrarily
large [1, 2]. An additional method to increase the network throughput is to
explore the millimeter wave (mmWave) frequency range [3], thus overcoming
the spectral congestion of traditional wireless bands. Such mmWave com-
munications is particularly suitable for massive MIMO systems: The short
wavelengths of mmWave signals allows packing a large number of antenna
elements at a small physical size, and the massive number of elements facil-
itates directed beamforming which is essential at mmWave bands.

While the theoretical gains of massive MIMO systems, particularly when
combined with mmWave transmission, are clear, implementing such sys-
tems in practice under strict cost and power constraints is a challenging
task. A major source of this increased cost are the analog-to-digital con-
vertor (ADC) components, which allow the analog signals observed by each
antenna element to be processed in digital. The power consumption of an
ADC is directly related to the signal bandwidth and the number of bits
used for digital representation [4]. Consequently, in massive MIMO systems,
where the number of antennas and ADCs operating at high frequency bands
is large, limiting the number of bits, thus operating under quantization con-
straints, is crucial to keep cost and power consumption feasible [3].

Focusing on uplink communications, i.e., when the BS acts as the re-
ceiver, quantization constraints imply that the BS cannot process the chan-
nel output directly but rather only an inaccurate distorted digital represen-
tation of it. The distortion induced by continuous-to-discrete quantization
mappings degrades the ability to extract information, such as the underly-
ing channel coefficients or the transmitted signal, from the observed channel
output. Consequently, methods for channel estimation and symbol detection
from quantized outputs are the focus of a large body of work, including, e.g.,
[5, 6, 7]. These schemes are carried out in the digital domain, i.e., they are
digital-only methods, assuming a fixed quantization system.

An alternative emerging approach to processing only in the digital do-
main, which is the focus of the current survey, is to jointly design the quan-
tization system along with the digital processing in light of the task as
proposed in [8]. Such task-based quantization systems convert their received
analog signal into a digital representation in a manner which preserves the
semantic information required to carry out the task, rather than recovering
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the analog signal, thus allowing to operate efficiently with standard ADCs
under relatively tight bit constraints [8, 9, 10, 11]. Task-based quantization
was shown to achieve notably improved accuracy in recovering the desired
task compared to conventional digital-only methods operating under the
same bit budget. Consequently, task-based quantizers, originally derived for
generic digital signal processing applications in [8], bear the potential of sig-
nificantly facilitating the design of massive MIMO receivers operating under
bit constraints [9]. This follows since in MIMO systems, acquisition is car-
ried out for specific tasks, most commonly channel estimation and symbol
detection. These can be treated as recovering information embedded in the
received signals, which in turn can be accurately and compactly extracted
in digital using task-based quantization.

In this work we survey recent results in task-based quantization. We
focus on its application for bit-constrained MIMO receivers, although task-
based quantization is relevant in many other applications including sensor
arrays, radar, medical imaging, and essentially any system which acquires
physical signals for some task while operating under bit constraints. We be-
gin by detailing model-aware methods for designing task-based quantizers.
These methods jointly design the overall acquisition system along with the
digital processing based on prior knowledge of the statistical model relating
the observed analog signal and the desired task information to be extracted
in digital. Our model-aware analysis characterizes the achievable accuracy
in recovering the desired information under bit constraints for tasks which
can be modeled as a linear function of the measurements as in, e.g., Rayleigh
fading MIMO channel estimation [9]. Then, we show how the proposed ap-
proach can be extended to more involved tasks by utilizing the mathematical
tool of principal inertia compoenents (PICs) [12]. Specifically, we show that
PICs can facilitate identifying a proper transformation of the measurements
from which the task can be treated as approximately linear, allowing to use
the proposed task-based quantizer. We specialize the derivation for tasks
where the desired information is encapsulated in quadratic functions of the
measurements, which is the case in, e.g., covariance estimation [13] and di-
rection of arrival (DOA) recovery [14]. For all considered tasks, task-based
quantization is shown to achieve substantially improved accuracy in recov-
ering the desired information compared to digital-only methods.

Next, we show how task-based quantization systems can be designed
without explicitly specifying the statistical relationship between the obser-
vations and the desired task information, by tuning the overall acquisition
system in a data-driven manner. We demonstrate how by combining ma-
chine learning (ML) tools with an accurate differentiable approximation of



134 Nir Shlezinger and Yonina C. Eldar

the quantization rule, one can learn task-based quantization mappings from
a set of labeled data. We demonstrate that learned task-based quantizers
facilitates the recovery of information embedded in the observations in a
complex manner when operating under tight bit constraints, while notably
outperforming purely digital approaches with the same bit budget. Finally,
we show how to implement MIMO receivers capable of dynamically adjusting
their acquisition system in light of the task, thus realizing tunable task-based
quantization. Our proposed design builds upon either conventional hybrid
receiver architectures [15, 16], dedicated pre-acquisition hardware [17], or
on exploiting the inherent configurability of receivers equipped with meta-
surface antennas [18, 19, 20], and we present hardware prototypes built in
our lab, demonstrating the feasibility of task-based quantization in MIMO
receivers.

The rest of this paper is organized as follows: Section 2 formulates the
system model and reviews some basics in quantization theory. Methods for
designing task-based quantizers based on prior model knowledge are detailed
in Section 3. Section 4 presents data-driven design strategies. In Section 5
we show how one can implement task-based quantization in bit-constrained
MIMO receivers, reviewing several candidate architectures and hardware
prototypes. Section 6 provides some concluding remarks.

Throughout the paper, we use boldface lower-case letters for vectors, e.g.,
x, where the ith element of x is written as (x)i. Boldface upper-case letters
are used for matrices, e.g., M , where (M)i,j denotes its (i, j)th element.
Sets are denoted with calligraphic letters, e.g., X . We use In to represent
the n × n identity matrix. Transpose, Euclidean norm, Kronecker product,
and stochastic expectation are written as (·)T , ‖·‖, ⊗, and E{·}, respectively,
and R is the set of real numbers. All logarithms are taken to basis two.

2. Preliminaries and problem formulation

2.1. Preliminaries in quantization theory

We begin by briefly reviewing the standard quantization setup, and recall
the definition of a quantizer:

Definition 1 (Quantizer). A quantizer Qn,k
M (·) with logM bits, input size

n, input alphabet X , output size k, and output alphabet X̂ , consists of: 1)
An encoding function gen : X n �→ {1, 2, . . . ,M} � M which maps the input
into a discrete index. 2) A decoding function gdk : M �→ X̂ k which maps

each index j ∈ M into a codeword qj ∈ X̂ k.
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Figure 1: Quantizer illustration.

We write the output of the quantizer with input x ∈ X n as x̂ =
gdk (g

e
n (x)) � Qn,k

M (x). Scalar quantizers operate on a scalar input, i.e.,
n = 1 and X is a scalar space, while vector quantizers have a multivariate
input. An illustration of a quantization system is depicted in Fig. 1.

In the standard quantization problem, a Qn,n
M (·) quantizer is designed to

minimize some distortion measure d : X n×X̂ n �→ R+ between its input and
its output. The performance of a quantizer is characterized using its quan-
tization rate R � 1

n logM , and the expected distortion E{d (x, x̂)}. For a

fixed input size n and codebook size M , the optimal quantizer is Qn,opt
M (·) =

argminQn,n
M

E
{
d
(
x, Qn,n

M (x)
)}

. Characterizing the optimal quantizer and
its trade-off between distortion and quantization rate is in general a very
difficult task. Optimal quantizers are thus typically studied assuming either
high quantization rate, i.e., R → ∞, see, e.g., [21], or asymptotically large
inputs, namely, n → ∞, via rate-distortion theory [22, Ch. 10].

2.2. Problem formulation

Here, we study task-based quantization [8], where the design objective of
the quantizer is some task other than minimizing the distortion between its
input and output. In the following, we focus on the generic task of acquir-
ing a random vector s ∈ Sk ⊆ Rk from a statistically dependent random
vector x ∈ Rn of larger dimensionality, i.e., n ≥ k. The set S represents the
possible values of the unknown vector: It can be continuous, representing
an estimation task; or discrete, for classification tasks. This formulation ac-
commodates a broad range of applications, including channel estimation and
symbol detection, that are the common tasks considered in MIMO communi-
cations receivers [9], as well as covariance recovery [13] and DOA estimation
[14]. The recovered estimate of s, denoted ŝ, is represented in digital using
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Figure 2: Hybrid quantization system model. For illustration, the task is
recovering a set of constellation symbols in uplink MIMO communications.

up to logM bits, dictating the bit budget allowed for task-based quantiza-
tion. The observed x is related to s via a conditional probability measure
fx|s. For example, in a communications setup. the conditional probability
measure fx|s encapsulates the noisy channel.

The performance limits of task-based quantization with asymptotically
large vectors, i.e., when n → ∞ while R = 1

n logM remains fixed, can be
characterized using indirect rate-distortion theory [23]. Specifically, for esti-
mation tasks with the mean-squared error (MSE) distortion objective, i.e.,
d(s, ŝ) = ‖s − ŝ‖2, the task-based quantization mapping which minimizes
the MSE for a fixed quantization rate R was derived in [24] for fixed-size vec-
tors. The resulting optimal strategy consists of applying vector quantization
to the minimum MSE (MMSE) estimate of s from x.

While vector quantizers allow to achieve more accurate digital represen-
tations of the acquired analog signal compared to their scalar counterparts
[25, Ch. 23], practical ADCs typically utilize scalar quantizers. In particular,
ADCs often apply the same continuous-to-discrete mapping to each sample,
which is most commonly based on a uniform partition of the real line, i.e.,
scalar uniform quantization [4]. Nonetheless, in the presence of a task, one
is not interested in recovering the analog signal, but rather estimate some
underlying information embedded in it. This motivates the analysis of how
to incorporate the presence of a task in the design of a quantization system
utilizing scalar ADCs, and whether the distortion induced by conventional
scalar quantization can be mitigated when recovering the task.

2.3. Hardware-limited task-based quantization

As discussed in the previous section, practical digital signal processing sys-
tems typically obtain a discrete representation of physical analog signals
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Figure 3: Block diagram of considered task-based quantization systems.

using scalar ADCs. In such systems, each continuous-amplitude sample is
converted into a discrete representation using a single quantization rule.
Therefore, in order to be able to account for the presence of a task in ac-
quisition while operating with scalar ADCs, one must introduce some level
of processing, in addition to that carried out in digital. We therefore con-
sider hybrid acquisition systems as illustrated in Fig. 2, which is a common
model in MIMO communication receivers [15, 16]. Hybrid architectures were
originally proposed as a method to reduce the number of costly RF chains
in MIMO receivers [15, 16], while here we exploit these structures to allow
quantization under bit constraints for tasks. In such hybrid systems, a set
of analog signals can be combined in analog prior to being converted to
digital, a property which we exploit in order to facilitate extracting some
desired information from them. This model can represent, e.g., sensor ar-
rays or MIMO receivers, and specializes the case of a single analog input
signal. While acquiring a set of analog signals in digital hardware includes
both sampling, i.e., continuous-to-discrete time conversion, as well as quan-
tization, we henceforth focus only the quantization aspect assuming a fixed
sampling mechanism. The joint design of sampling and quantization in light
of a task is left for future studies; initial results can be found in [26].

In the proposed hybrid architecture, the input to the ADC, denoted
z ∈ Rp, where p denotes the number of scalar quantizers, is obtained from
x using a pre-quantization mapping referred to as analog combining. Then, z
is quantized using p identical scalar quantizers with resolution M̃ � 
M1/p�
into a digital vector Q(z). The overall number of bits is p · log M̃ ≤ logM .
The ADC output is processed in digital to obtain the estimate ŝ ∈ Sk.
A schematic block diagram of the quantization system is depicted in Fig. 3.
Designing task-based quantizers can be formulated as the joint optimization
of the analog combining mapping, the scalar quantization rule, and the dig-
ital processing, such that the output ŝ will be an accurate estimate of the
task vector s, while operating under a fixed budget of up to logM bits.
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The characterization of task-based quantization systems of the form of

Fig. 3 consists of two complementary studies: First, we study in Section 3

how the overall system can be designed based on knowledge of the condi-

tional distribution fx|s relating the observations and the task in a model-

based fashion. Then, we discuss how task-based quantization mappings can

be learned from labeled data building upon ML tools, and in particular,

by utilizing deep neural networks (DNNs) to adapt task-based quantization

mappings, in Section 4. Our results demonstrate that by properly tuning

the hybrid architecture of task-based quantizers, one can approach the per-

formance limits dictated by indirect rate-distortion theory, achievable using

complex vector quantizers, while using conventional scalar ADCs operating

as part of an acquisition system of feasible hardware requirements. These

studies, which consider either purely model-based or purely data-driven de-

signs, can be used as a basis for future research on hybrid model-based and

data-driven systems, as in, e.g., [27], for task-based quantization.

3. Model-aware task-based quantization

In this section we detail how to design hybrid quantization systems to facil-

itate the recovery of the task vector s in the digital domain, based on prior

knowledge of the underlying statistical model. In particular, we discuss how

the analog combining, quantization rule, and digital processing components

of the system in Fig. 3 can be jointly optimized based on knowledge of

the conditional distribution relating the input x to the task vector s, de-

noted fx|s. We begin by presenting the model assumptions under which

the analysis is carried out in Section 3.1. After that we present the resulting

task-based quantization systems for estimation tasks of linear and quadratic

nature in Sections 3.2–3.3, respectively.

3.1. System model

In order to obtain a meaningful and tractable characterization of the task-

based quantization system of Fig. 3, we henceforth introduce two model

assumptions upon which we base our results in the remainder of this section:

A1 We consider the task of estimating the task s in the MSE sense, namely,

our performance measure is the MSE E{‖s− ŝ‖2}.
A2 We focus on uniform ADCs, and model the their operation in our

derivations as non-subtractive uniform dithered quantizers [28].
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Model assumption A1 implies that the fidelity of an estimate ŝ can be
represented as a sum of the MMSE and the excess MSE with respect to the
MMSE estimate s̃ = E{s|x}, as E{‖s− ŝ‖2} = E{‖s− s̃‖2}+E{‖s̃− ŝ‖2}.
Consequently, in the following we characterize the performance in terms
of the excess MSE E{‖s̃ − ŝ‖2}. Since s̃ is a function of x, we divide our
analysis based on the nature of this function, considering linear functions in
Section 3.2, extending to quadratic and more general forms in Section 3.3.

Model assumption A2 imposes a structure on the scalar quantization
mapping. To formulate the resulting input-output relationship of the ADCs,
let γ denote the support of the quantizer, and define Δ � 2γ

M̃
as the quan-

tization spacing. The output of the uniform ADC with input sequence
z1, z2, . . . , zp can be written as Q (zi) = q (zi + ui), where u1, u2, . . . , up are
i.i.d. random variables (RVs) uniformly distributed over

[
−Δ

2 ,
Δ
2

]
, mutually

independent of the input, representing the dither signal. The function q(·),
which implements the uniform quantization, is given by

(1) q(z) =

{
−γ +Δ

(
l − 1

2

)
z − lΔ ∈

[
−Δ

2 ,
Δ
2

]
, l ∈ {0, 1, . . . , M̃ − 1}

sign (z)
(
γ − Δ

2

)
|z| > γ.

When M̃ = 2, the resulting quantizer is a standard one-bit sign quantizer
of the form q(z) = c · sign(z), where c > 0 is determined by the support γ.

Dithered quantizers significantly facilitate the analysis, due to the follow-
ing favorable property: When operating within the support, the output can
be written as the sum of the input and an additive zero-mean white quantiza-
tion noise signal uncorrelated with the input. The drawback of adding dither
is that it increases the energy of the quantization noise, namely, it results
in increased distortion [28]. Nonetheless, the favorable property of dithered
quantization is also satisfied in uniform quantization without dithering for
inputs with bandlimited characteristic functions, and is approximately sat-
isfied for various families of input distributions [29]. Consequently, while
our analysis assumes dithered quantization, exploiting the resulting statis-
tical properties of the quantization noise, the proposed system is applicable
without dithering, as we demonstrate in our numerical study.

3.2. Linear estimation tasks

We begin by focusing on scenarios in which the stochastic relationship be-
tween the vector of interest s and the observations x are such that the
MMSE estimate of s from x is a linear function of x, i.e., ∃Γ ∈ Rk×n such
that s̃ = Γx. Accordingly, we restrict the analog combining and the digital
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Figure 4: Model-aware task-based quantization for linear tasks illustration.

mapping components in Fig. 3 to be linear, namely, z = Ax and ŝ = BQ(z),
for some A ∈ Rp×n and B ∈ Rk×p. An illustration of the considered system
architecture is depicted in Fig. 4. By focusing on these setups, we are able
to explicitly derive the achievable distortion and to characterize the system
which minimizes the MSE. This derivation reveals some non-trivial insights.
For example, we show that the optimal approach when using vector quantiz-
ers, namely, to quantize the MMSE estimate [24], is no longer optimal when
using standard scalar ADCs. Furthermore, as detailed in Section 3.3, our
analysis provides guidelines for designing task-based quantization systems
which can be used for more general relationships between s and x, such as
the recovery of quadratic tasks.

Let Σx be the covariance matrix of x, assumed to be non-singular. Be-
fore we study the overall task-based quantization system, we first derive the
digital processing matrix which minimizes the MSE for a given analog com-
biner A and the resulting MSE, stated in the following lemma [8, Lem. 1]:

Lemma 2. For any analog combining matrix A and support γ such that the
quantizers operate within their support, i.e., Pr

(∣∣ (Ax)l + ul
∣∣ > γ

)
= 0, the

digital processing matrix which minimizes the MSE is given by

(2a) Bo (A) = ΓΣxA
T

(
AΣxA

T +
2γ2

3M̃2
Ip

)−1

,

and the achievable excess MSE, denoted MSE (A) = minB E
{∥∥s̃− ŝ

∥∥2}, is
MSE (A)=Tr

(
ΓΣxΓ

T−ΓΣxA
T

(
AΣxA

T+
2γ2

3M̃2
Ip

)−1

AΣxΓ
T

)
.(2b)

The digital processing matrix in Lemma 2 is the linear MMSE estimator
of s from the vector Ax + e, where e represents the quantization noise,
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which is white and uncorrelated with Ax. This stochastic representation is a
result of the usage of non-overloaded dithered quantizers. Nonetheless, in the
following we use the model on which Lemma 2 is based to design task-based
quantizers operating with small yet non-zero probability of overloading, i.e.,
Pr

(∣∣ (Ax)l + ul
∣∣ > γ

)
≈ 0 for each l. In such cases modeling Ax and e

as uncorrelated becomes a reliable approximation. Therefore, in order to
use Lemma 2 to design task-based quantizers, we explicitly require to avoid
overloading with high probability. This is achieved by fixing γ to be some
multiple η of the maximal standard deviation of the input, allowing to bound
the overload probability via Chebyshev’s inequality [22, Pg. 64].

We now use Lemma 2 to obtain the analog combining matrix Ao which

minimizes the MSE and the resulting system. Define the matrix Γ̃ � ΓΣ
1/2
x ,

let {λΓ̃,i} be its singular values arranged in a descending order, and set

κ � η2
(
1− η2

3M̃2

)−1
. Note that for i > rank

(
Γ̃
)
, λΓ̃,i = 0. The resulting task-

based quantization system is stated in the following theorem [8, Thm. 1]:

Theorem 3. For the task-based quantization system under linear estimation

tasks, the analog combining matrix Ao is given by Ao = UAΛAV T
AΣ

−1/2
x ,

where V A ∈ Rn×n is the right singular vectors matrix of Γ̃; ΛA ∈ Rp×n is
a diagonal matrix with diagonal entries

(3a) (ΛA)2i,i =
2κ

3M̃2 · p

(
ζ · λΓ̃,i − 1

)+
,

with ζ set such that 2κ
3M̃2·p

∑p
i=1

(
ζ · λΓ̃,i − 1

)+
= 1; and UA ∈ Rp×p is a

unitary matrix which guarantees that UAΛAΛT
AUT

A is weakly majorized by
all possible rotations of ΛAΛT

A. The support of the ADC is given by γ2 = κ
p ,

and the digital processing matrix is equal to

(3b) Bo (Ao) = Γ̃V AΛT
A

(
ΛAΛT

A +
2γ2

3M̃2
Ip

)−1

UT
A.

The resulting minimal achievable excess MSE is

(3c) E

{
‖s̃−ŝ‖2

}
=

⎧⎪⎪⎨
⎪⎪⎩

k∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+
+1
, p≥k

p∑
i=1

λ2
Γ̃,i

(ζ·λΓ̃,i−1)
+
+1

+
k∑

i=p+1
λ2
Γ̃,i

, p<k.

Since the design objective is the MSE by A1, the optimal quantization
system utilizing vector quantizers is known to recover s̃ = Γx in the analog
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Figure 5: An illustration of the ADC input, its covariance, and the resulting
quantization mapping when quantizing the MMSE estimate (left) and for
the proposed combiner of Theorem 3 (right).

domain [24]. In the presence of scalar ADCs, Theorem 3 reveals two main
differences in the desired pre-quantization mapping: First, the analog com-
biner essentially nullifies the weak eigenmodes of the correlation matrix of
the MMSE estimate in (3a), as these eigenmodes are likely to become in-
distinguishable by finite resolution uniform scalar quantization. Then, the
unitary rotation matrix UA, which guarantees that the entries of z have the
same variance, minimizes the maximal variance of the quantized variables,
allowing to use relatively fine quantization at a given resolution without
risking high overloading probability. This combined operation of the ana-
log mapping trades estimation error and quantization accuracy, allowing to
optimize the digital representation in light of the task. An illustration of
this analog combiner and its quantization rule compared to recovering s̃ in
analog is depicted in Fig. 5.

The characterization of the task-based quantization system in Theorem 3
gives rise to the following non-trivial insights: 1) In order to minimize the
MSE, p must not be larger than the rank of the covariance matrix of s̃ [8,
Cor. 1]. This implies that reducing the dimensionality of the input prior to
quantization contributes to recovering the task vector as higher resolution
quantizers can be used without violating the overall bit constraint; and 2)
When the covariance matrix of s̃ is non-singular, quantizing the MMSE
estimate minimizes the MSE if and only if the covariance matrix of s̃ equals
Ik up to a constant factor [8, Cor. 4]. This indicates that, except for very
specific statistical models, quantizing the entries of the MMSE estimate
vector, which is the optimal strategy when using vector quantizers [24],
does not minimize the MSE when using uniform scalar ADCs.

To illustrate the gains of the task-based quantization system design
which arises from Theorem 3, we next numerically evaluate its achievable
MSE in a simulation study. We consider the estimation of a scalar intersym-
bol interference (ISI) channel from quantized observations. In this scenario,



Task-based quantization with application to MIMO receivers 143

Figure 6: ISI channel recovery.

the parameter vector s represents the coefficients of a multipath channel
with k taps. The channel is estimated from a set of n = 120 noisy observa-
tions x, given by (x)i =

∑k
l=1 (s)l ai−l+1 + vi, where ai is a deterministic

known training sequence, and {vi}ni=1 are samples from an i.i.d. zero-mean
unit variance Gaussian noise process independent of s. In particular, the
channel s is modeled as a k = 8 tap zero-mean Gaussian vector with co-
variance matrix Σs, given by

(
Σs

)
i,j

= e−|i−j|, i, j ∈ {1, 2, . . . , k}, and

ai = cos
(
2πi
n

)
for i > 0 and ai = 0 otherwise. Since s and x are jointly

Gaussian, the MMSE estimate is a linear function of x.
The MSE achievable by the task-based quantization system designed

via Theorem 3 operating with conventional non-dithered uniform quantiz-
ers is compared to the MSE in recovering the MMSE estimate in analog
prior to quantization, i.e., setting A = Γ. We also numerically evaluate up-
per and lower bounds on the minimal MSE under quantization constraints,
achievable via indirect rate-distortion theory by applying the rate-distortion
optimal source code to s̃ (and thus given explicitly only in the limit k → ∞
[30]), computed via [8, Prop. 1]. Finally, we evaluate the achievable MSE in
applying a vector quantizer designed to accurately represent x, from which
s is estimated in digital, computed via [8, Prop. 2]. The latter intuitively
represents the vector quantization system one would design without prior
knowledge of the task for which x is acquired, and is thus referred to as
task-ignorant vector quantizer. The MSE values are depicted in Fig. 6.

Observing Fig. 6, we note that the task-based quantizer substantially
outperforms task-ignorant vector quantization, and approaches the optimal
performance as M increases. In particular, when each scalar quantizer uses
at least five bits, i.e., logM ≥ 5k, the quantization error becomes negligible
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Figure 7: MIMO channel recovery.

and the overall distortion is effectively the minimum achievable estimation
error, i.e., the MMSE. Furthermore, we note that task-based quantization
outperforms recovering s̃ in analog, and the gain is most notable at small
values of M . These results demonstrate that by accounting for the presence
of a task via joint optimization of the analog combiner, quantization rule,
and digital processing, one can approach the optimal performance, dictated
by indirect rate-distortion theory, using standard uniform ADCs commonly
used in digital signal processing systems.

To evaluate the performance of task-based quantization in massive
MIMO systems, we consider the recovery of multi-cell MIMO channel based
on the setup detailed in [9, Sec. V]. Here, the system consists of 7 cells with
10 single-antenna UTs in each cell, and the receiver, that is equipped with
100 antennas, estimates its intra-cell 100×10 channel matrix from the chan-
nel output, which is corrupted by intercell interference and Gaussian noise
with variance of 10−3. The UTs are uniformly distributed in a hexagonal
cell of radius 400 m, following the model in [1], with receive side correlation
dictated by Jakes model with 0.4 wavelength element spacing [31]. Estima-
tion is carried out based on 40 pilot symbols determined by the first 10 rows
of the 40× 40 discrete Fourier transform (DFT) matrix.

The average MSE of the proposed task-based quantizer compared to the
indirect rate-distortion bound and the MMSE achievable without quantiza-
tion constraints is depicted in Fig. 7. The input vector x here represents the
channel outputs corresponding to all transmitted pilot symbols, and thus
the system designed via Theorem 3 combines samples received at different
time instances, which may be difficult to implement in practice. Therefore,
we also depict in Fig. 7 the MSE when the analog processing is restricted
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to combine only samples received at the same time instance using the same
linear mapping, i.e., spatial only combining, obtained using [9, Prop. 4].
Finally, we depict the MSE without analog combining, i.e., a digital only re-
ceiver, in which the digital processing is based on the linear MMSE channel
estimator from quantized measurements, and thus consists a bound on the
performance achievable using approximations of the linear MMSE estimator,
such the channel estimator proposed in [5].

Observing Fig. 7 we note that, similarly to the ISI channel in Fig. 6, the
MSE achievable using task-based quantization is within a very small gap
from the indirect rate-distortion curve for quantization rates larger than
R = 1.5. The task-based quantizer with spatial combining is capable of
achieving near-optimal performance for R > 3, due to its ability to exploit
the spatial correlation. It is also observed that the average MSE of estimating
the channel only in the digital domain is notably higher compared to task-
based quantization, which jointly operates in both analog and digital while
tuning the quantization rule accordingly, demonstrating the gains of task-
based quantization over digital-only designs.

3.3. Quadratic estimation tasks

In the previous section we showed that allowing the analog mapping to re-
duce dimensionality and rotate the quantized signal can contribute to the
overall recovery performance by balancing estimation and quantization er-
rors. However, this analysis was carried out only for scenarios in which s̃
is a linear function of x, resulting in E

{
s|z

}
being a linear function of the

input to the quantizers z. In many scenarios of interest, such as covariance
estimation [13] and DOA recovery [14] from quantized measurements, the
desired information can be extracted from a quadratic function of the mea-
surements, i.e., functions {xTCix}ki=1, where each Ci ∈ Rn×n is symmetric.

Here, we show how the analysis of the previous section can be applied for
designing task-based quantizers for the task of recovering non-linear func-
tions of x under quantization constraints, focusing on quadratic functions
and Gaussian inputs. Our strategy is based on identifying a family of analog
mappings h(·) for which z corresponds to the scenario studied in Section 3.2.
To that aim, we use PIC-based analysis [12], which provides a decomposition
of the statistical relationship between two RVs, that is directly related to
MMSE estimation. In particular, for a pair of RVs (x, y), the principal in-
ertia functions {fi(·)} and {gi(·)} formulate an orthonormal basis spanning
the Hilbert space of functions of x and y, respectively, which diagonalize
MMSE estimation, i.e., there exists a set of scalar coefficients {ρi} such that
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Figure 8: Quantization System of Fig. 2 with quadratic analog mapping.

E{fi(x)|y} = ρig+ i(y) and E{gi(y)|x} = ρifi(x). The benefit of using PICs

in our context is their ability to decompose functions of the observations in a

manner which reflects on the structure of the MMSE estimate. In particular,

here we use this tool to identify a transformation of the input x under which

recovering quadratic functions of it is converted to a linear manipulation.

Defining x̄ � vec(xxT ), this results in the following theorem [10, Thm. 1]:

Theorem 4. For any p× n2 matrix A with p ≤ n2, the MMSE estimate of

f(x) = xTCx from the vector z = A(x̄− E{x̄}) can be written as

(4) E
{
f(x)|z

}
= dTz + E{f(x)},

for some p× 1 vector d, which depends on C, A, and the covariance of x.

Theorem 4 implies that the task-based quantization system design guide-

lines proposed in Theorem 3 can be utilized to facilitate the recovery of

quadratic functions from quantized measurements by applying analog map-

pings of the form z = Ah(x) = A(x̄− E{x̄}). Here the matrix A ∈ Rp×n2

encapsulates the ability to reduce the dimensionality and to rotate the quan-

tized vector, and can be designed via Theorem 3 by replacing the input x

with x̄− E{x̄}. The resulting quantization system is depicted in Fig. 8.

Although Theorem 4 specifically considers functionals f(x) of a quadrat-

ic form, analogous schemes could be constructed for broader classes of func-

tions. The main feature of Theorem 4 is the ability to represent E{f(x)|z}
either exactly, or possibly approximately, as a linear function of z = Ah(x)

for some transformation h(·). Once the analog mapping satisfies this re-

quest, Theorem 3 can be applied to optimize the overall recovery accuracy

of the quantization system. Formulated in terms of PICs, the choice of h(·)
imposes structure on the joint distribution (x, z). Consequently, when the

task is to recover a function f(x) which can be decomposed using PICs as
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f(x) =
∑

αifi(x), any analog processing which results in z such that

E{f(x)|z} ≈
l∑

i=1

αiρi(z)i + E{f(x)},(5)

would allow to design the analog pre-quantization step using existing tools
derived for setups in which the MMSE estimate is linear. This implies that
when recovering some function f(x), the structure of the analog mapping
should be designed as to yield linear basis functions gi(z), allowing the
resulting system to be optimized using Theorem 3.

To demonstrate the ability of the proposed design to yield accurate task-
based quantizers, we simulate an empirical covariance estimation scenario.
Here, the input is given by x = [vT

1 , . . .v
T
4 ]

T , where {vi}4i=1 are i.i.d. 3 × 1
zero-mean Gaussian random vectors, i.e., n = 12. The entries of the co-
variance matrix of vi, denoted Σv, are (Σv)i,j = e−|i−j|. The parameter

of interest is the 3 × 3 empirical covariance matrix 1
4

∑4
i=1 viv

T
i , which is

completely determined by its upper triangular matrix, stacked as the de-
sired vector s̃, thus k = 6. For the considered scenario, we evaluate the MSE
achievable by the task-based quanziation system of Fig. 8 where the analog
combiner, quantization support, and digital processing are obtained via The-
orem 3. The task-based quantizer is compared to recovering the empirical
covariance in analog, as well as to directly quantizing x, i.e., a task-ignorant
scalar quantizer, and a hybrid system utilizing linear analog combiners based
on [8, Sec. V]. For all the above systems, in order to avoid overloading the
quantizers, the support is set to η times the maximal sum of the standard
deviation and absolute mean value of the entries of the input to the ADC,
where we let η increase linearly with the number of bits in the range [3, 6.5].
The achievable MSEs versus the number of bits are depicted in Fig. 9. Ob-
serving Fig. 9, we note that the task-based quantizer, which is designed to
balance the quantization and estimation errors, achieves the best MSE per-
formance. Quantizing s̃ directly results in notable quantization errors when
operating with a small number of bits, due to the need to set the support to
a relatively large value resulting in coarse quantization. This demonstrates
how the task-based quantization design proposed in Section 3.2 for linear
tasks can be extended to apply for recovering non-linear functions.

4. Deep task-based quantization

In Section 3 we designed hybrid analog-digital acquisition systems, which
consist of analog combining, scalar quantization, and digital processing, to
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Figure 9: Empirical covariance recovery.

accurately recover some underlying information embedded in the observed
analog signal. The systems proposed in Section 3 are model-aware, requiring
accurate knowledge of the statistical relationship between the observations
and the task, i.e., fx|s. Two notable challenges are associated with such
model-aware designs: 1) Accurate knowledge of the statistical model fx|s
may be unavailable in practice; 2) Even when fx|s is perfectly known, ana-
lytically tractable characterizations are obtained only for tasks of relatively
simple form, e.g., linear and quadratic functions, under the model assump-
tions A1–A2. This limits the design to estimation tasks A1, does not explore
arbitrary quantization rules A2, and may not lead to analytically tractable
systems when operating under complex statistical relationships.

An alternative approach to inferring the quantization system from the
model, is to learn it from a set of training samples in a data-driven fash-
ion. In particular, by utilizing ML methods, one can implement task-based
quantizers without the need to explicitly know the underlying model and
to analytically derive the proper quantization rule. Furthermore, when the
parameters of the hybrid analog-digital system are learned from data and
not specified analytically, the quantization mapping can be optimized along
with the system parameters instead of fixing a uniform rule as in (1). Fi-
nally, additional families of tasks, such as classification, can be considered
by properly setting the loss function utilized in the learning process.

In this section we present a generic DNNs architecture which utilizes ML
for task-based quantization with scalar ADCs, referred to as deep task-based
quantization [11]. We begin with the system architecture in Section 4.1, after
which we present how the quantization mapping is learned in Section 4.2.
We provide numerical results along with a discussion in Section 4.3.
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Figure 10: Deep task-based quantization system architecture.

4.1. System architecture

Deep task-based quantization operates in a data-driven manner, learning the
analog transformation, quantization mapping, and digital processing, from a
training data set, consisting of t independent realizations of s and x, denoted
{s(i),x(i)}ti=1. In general, the training samples may be taken from a set of
joint distributions, and not only from the true (unknown) joint distribution
of s and x. Here, the analog pre-quantization mapping and the digital post-
quantization processing are parameterized as layers of a DNN, as illustrated
in Fig. 10. By doing so, the overall task-based quantization system, includ-
ing the analog combining, quantization rule, and digital processing, can be
trained from data in an end-to-end manner using e.g., stochastic gradient
descent (SGD). While the proposed system focuses only on the quantization
aspect of ADCs, the resulting design approach can be extended to account
also for sampling in addition to quantization, as considered in [26].

In the proposed architecture, the scalar ADC, which implements the
continuous-to-discrete mapping, is modeled as an activation function be-
tween two intermediate layers, interfacing the analog processing and the
digital part. The trainable parameters of this activation function determine
the quantization rule, allowing it to be learned during training. The DNN
structure cannot contain any skip connections between the multiple layers
prior to quantization (analog domain) and those after quantization (digital
domain), representing the fact that all analog values must be first quan-
tized before processed in digital. The pre and post quantization networks
are henceforth referred to as the analog DNN and the digital DNN, respec-
tively. While the digital DNN can be implemented in software, the analog
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DNN requires dedicated configurable hardware. Such analog networks can
be implemented using neuromorphic electronic systems [32], or alternatively,
the analog processing can be constrained to represent the possible configu-
rations of the circuitry connecting the analog inputs and the ADCs, as we
discuss in Section 5 in the context of MIMO receivers. The system input
is the observed x, and θ denotes the network parameters. Two families of
tasks are considered:

• Estimation: Here, the system should learn to recover a set of k un-
known parameters taking values on a continuous set, i.e., S = R. By
letting ψθ(·) denote the mapping implemented by the overall system,
the output is given by the k × 1 vector ŝ = ψθ(x), which is used as a
representation of s. The loss function is the empirical MSE:

(6) L(θ) = 1

t

t∑
j=1

∥∥∥s(j) − ψθ

(
x(j)

)∥∥∥2
2
.

• Classification: In such tasks, the system should decide between a
finite number of options. Here, S is a finite set, and we use |S| to denote
its cardinality. The last layer of the digital DNN is a softmax layer,
and thus the network mapping ψθ(·) is a |S|k×1 vector, whose entries
represent the conditional probability for each different value of s given
the input x. By letting ψθ(x;α) be the output value corresponding
to α ∈ Sk, the decision is selected as the most probable one, i.e.,
ŝ = argmaxα∈Sk ψθ(x;α). The loss function is the empirical cross-
entropy:

(7) L(θ) = 1

t

t∑
j=1

− logψθ

(
x(j); s(j)

)
.

4.2. Learned quantization mappings

The proposed architecture implements scalar quantization as an interme-
diate activation in a joint analog-digital hybrid DNN. The overall network
is trained in an end-to-end manner using some variant of SGD with back-
propagation to minimize the loss function L(·). Such end-to-end training
can be either carried out offline on a separate machine, applying the learned
weights to tune the analog hardware, or alternatively, the system itself can
tune its parameters, given direct access to the analog signals and their cor-
responding labels during training. The quantization layer, which interfaces
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the analog and digital domains, converts its continuous-amplitude input
into a discrete quantity. The non-differentiable nature of such continuous-
to-discrete mappings induces a challenge in applying SGD for optimizing
the network parameters. In particular, quantization activation, which can
be modeled as a superposition of step functions determining the continuous
regions jointly mapped into a single value, nullifies the gradient of the cost
function. Thus, straight-forward application of SGD with back-propagation
fails to properly set the pre-quantization network.

This challenge can be tackled by approximating the non-differentiable
quantization mapping by a differentiable one, as proposed in [33]. This is
achieved by replacing the continuous-to-discrete transformation with a non-
linear activation function which has approximately the same behavior as the
quantizer. Specifically, we use a sum of shifted hyperbolic tangents, which are
known to closely resemble step functions in the presence of large magnitude
inputs. The resulting scalar quantization mapping is given by:

(8) q̃(z) =

M̃−1∑
i=1

ai tanh (ci · z − bi) ,

where {ai, bi, ci} are real-valued parameters. When the parameters {ci} in-
crease, the corresponding hyperbolic tangents approach step functions.

In addition to learning the weights of the analog and digital DNNs, this
approach allows to learn the quantization function, and particularly, the best
suitable constants {ai} and {bi}. These tunable parameters are later used
to determine the decision regions of the scalar quantizer, where the set {bi}
is used for the decision regions limits while {ai} determines the correspond-
ing discrete values assigned to each decision region. The parameters {ci},
which essentially control the resemblance of (8) to an actual continuous-
to-discrete mapping, do not reflect on the quantization rule, and are thus
not learned from training. The proposed optimization is achieved by includ-
ing the parameters {ai, bi} as part of the network trainable parameters θ.
Due to the differentiability of (8), one can now apply standard SGD with
back-propagation to optimize the overall network, including the analog and
digital DNNs as well as the quantization rule, in an end-to-end manner.
Once training is concluded, the learned q̃(·) activation (8) is replaced with
a scalar quantization mapping dictated by the tunable parameters {ai, bi}.
An illustration of how the differentiable mapping (8) is converted into a
continuous-to-discrete quantization rule is depicted in Fig. 11. The dashed
smooth curve in Fig. 11 represents the differentiable function after training
is concluded, and the straight curve is the resulting scalar quantizer.
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Figure 11: Differentiable approximation of the quantization rule illustration.

4.3. Numerical results

We next numerically demonstrate the achievable performance of deep task-
based quantization. In the following, we model the relationship between the
observed x and the task s as

(9) x = Hs+w,

for some fixed H ∈ Rn×k, where w ∈ Rn is a zero-mean Gaussian vector
with i.i.d. entries of variance σ2

w > 0.

We begin with an estimation task for which we can compare the data-
driven task-based system to its model-aware counterpart detailed in Sec-
tion 3.2. Here, we set σ2

w = 0.25, n = 120, k = 40, while s is a zero-mean
Gaussian vector with i.i.d. unit variance entries. The matrix H is set to

H =

[
Re

(
Φ⊗ I10

)
Im

(
Φ⊗ I10

)
−Im

(
Φ⊗ I10

)
Re

(
Φ⊗ I10

) ]
,

where Φ is the first 4 columns of the 12× 12 DFT matrix. This setting rep-
resents channel estimation in Rayleigh fading MIMO channels using orthog-
onal pilots [11, Sec. IV]. In Fig. 12 we numerically evaluate the average MSE
versus the quantization rate R of deep task-based quantization compared to
the fundamental performance limit dictated by indirect rate-distortion the-
ory, as well as to the performance of the model-aware task-based quantizer
discussed in Section 3. To guarantee fair comparison with the model-aware
system we set the pre and post quantization DNNs to consist of linear layers.
Following [8, Prop. 2], we set the number of scalar quanizers to p = k for



Task-based quantization with application to MIMO receivers 153

Figure 12: Estimation task.

both task-based quantizers. The data-driven system is trained using t = 215

labeled pairs, and all systems are tested using 210 test samples. We also
depict in Fig. 12 the average MSE of a task-ignorant system in which es-
timation is carried out only in the digital domain, using the method for
channel estimation from quantized measurements proposed in [5].

Observing Fig. 12, we note that the fact that data-driven quantizer is
not restricted to uniform quantizers allows it to outperform the model-aware
system of Section 3 especially in lower quantization rates. Furthermore, the

performance of both task-based quantizers is within a relatively small gap
of the fundamental performance limits. These results demonstrate the abil-
ity of deep task-based quantization to implement a feasible and optimal-
approaching quantization system in a data-driven fashion.

Next, we consider a classification task, where the objective is to minimize
the bit error rate (BER) in recovering symbols generated from a discrete
constellation. For such tasks the model-aware system of Section 3 is not

applicable as Assumption A1 does not hold. Again, the observations x are
related to the task vector s via (9). However, here the entries of s are i.i.d.
uniformly distributed over S = {−1, 1} representing, e.g., symbol detection
in MIMO communications. In particular, we use n = 12, k = 4, and set

the entries of H to (H)i,j = e−|i−j|. For the deep task-based quantizer we
use two layers in analog and two layers in digital. The output layer is a
softmax function with 2k probabilities, and the overall network is trained to

minimize the cross-entropy loss (7) using t = 5000 labeled samples. Unlike
the estimation task for which the number of quantizers p can be set according
to the analytical results in [8], here this value was determined based on
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Figure 13: Classification task.

empirical evaluations. In particular, we use p = 
kR�, resulting in each

scalar quantizer using at least n/k = 3 bits in the hybrid system.

The numerically computed BER averaged over 20000 trials versus the
signal-to-noise ratio (SNR) defined as 1/σ2

w of the deep task-based quan-

tizer with quantization rate R = 1 is depicted in Fig. 13 compared to the
maximum a-posteriori probability (MAP) rule operating for recovering s
from x, i.e., without quantization constraints, as well as the MAP rule for
recovering s from a uniformly quantized x with rate R = 1, representing

a task-ignorant digital only system. It is noted that the MAP detectors
require prior knowledge of H or σ2

w, while the data-driven quantizer is in-
variant of the underlying model and learns its mapping from training. In
order to study the resiliency of deep task-based quantization to inaccurate

training, we also compute the BER under channel state information (CSI)
uncertainty, namely, when the training samples are randomized from a joint
distribution of s,x in which the entries of the matrix H in (9) are corrupted

by additive i.i.d. Gaussian noise, whose variance is 20% the magnitude of
the corresponding entry. For comparison, we also evaluate the BER of the
MAP rule with the same level of CSI uncertainty.

Observing Fig. 13, we note that in the presence of accurate CSI, the BER

of our deep task-based quantizer is comparable to that achievable using the
MAP rule operating without quantization constraints. For comparison, the
quantized MAP rule, which operates only in the digital domain, achieves sig-

nificantly worse BER performance compared to the hybrid deep task-based
quatizer, demonstrating the benefit of applying pre-quantization processing
in the analog domain in order to utilize more accurate quantization while
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keeping the semantic information required to carry out the task. The re-
sults in Fig. 13 also demonstrate the improved robustness of the data-driven
system to inaccurate CSI. The performance of the model-based MAP de-
tector is very sensitive to CSI uncertainty, resulting in a notable increase
in BER due to the model mismatch. However, the performance of the deep
task-based quantizer trained under CSI uncertainty is within an SNR gap
of approximately 0.5–2 dB from its performance when trained using accu-
rate CSI. This demonstrates the gains of using DNNs for overcoming the
sensitivity of model-based approaches to inaccurate model knowledge.

5. Hardware implementation for MIMO receivers

In the previous sections we presented the concept of task-based quantization,
in which the components of a hybrid analog-digital system are jointly op-
timized to facilitate the recovery of some underlying information under bit
constraints. We considered two complementary strategies for tuning task-
based quantizers: a model-aware approach and a data-driven method. Here,
we discuss how the systems designed using either of the aforementioned
strategies can be realized, as well as which additional practical consider-
ations must be taken into account and how they can be incorporated in
the design. We focus here on task-based quantization for MIMO receivers,
in which multiple signals are acquired for some task other than recover-
ing them in digital, and where quantization constraints play an important
role.

Conventional MIMO receivers obtain their observations using a set of
antennas, where each antenna is connected to a dedicated scalar ADC, typi-
cally implementing a uniform quantization mapping. Consequently, the main
challenge in realizing hybrid task-based quantizers for MIMO receivers stems
from the need to introduce additional processing in analog prior to quan-
tization. Furthermore, this analog combining is required to be dynamically
configurable, allowing it to be adapted when operating in dynamic environ-
ments. In the following we elaborate on two strategies for implementing such
hybrid MIMO receivers: First, in Section 5.1 we discuss hybrid receivers with
dedicated analog combining hardware. Then, we present how the emerging
technology of dynamic metasurface antennas (DMAs) can be exploited to
introduce controllable analog combining in Section 5.2.

5.1. Dedicated analog combiner hardware

A common strategy to implement MIMO receivers, particularly when
equipped with a large number of antennas and when operating in high spec-
tral bands, is to introduce dedicated analog circuitry between the antennas
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Figure 14: Analog combiner prototype demonstration setup.

and the ADCs. The original motivation for implementing such hybrid re-
ceivers is to reduce the number of costly RF chains, namely, the main pur-
pose of the analog combiner is to reduce the dimensionality of the acquired
signals allowing the receiver to operate with less RF chains than antennas
[15, 16]. The typical implementation of such analog combiners is based on
an inter-connection of phase shifters and adders, either connecting a con-
trollable phase-shifted version of the signal observed at each antenna to each
ADC, resulting in a fully-connected phase shifter network, or alternatively,
by dividing the antennas into subsets, each phase shifted and connected to a
distinct ADC, referred to as partially-connected phase shifter network [16].

The resulting system model of a hybrid MIMO receiver thus includes
an additional linear processing prior to acquisition, similarly to the model
used in our derivation in Section 3.2, and can thus be exploited for realizing
task-based quantization. In particular, for a hybrid receiver with a fully-
connected phase shifter network, the resulting matrix A in Section 3.2 is
subject to an additional constraint which stems from the usage of adjustable
phase shifters, that only the phase of its entries can be configured, i.e.,
|(A)i,j | = 1 for each i ∈ {1, . . . , p} and j ∈ {1, . . . , n}. This constraint can
accounted for by identifying the unconstrained analog combining matrix via,
e.g., Theorem 3, and projecting it to the feasible set of fully-connected phase
shifter networks, similarly to [16, Alg. 2]. Alternatively, when using a data-
driven design as proposed in Section 4, one can account for the additional
design constraints by letting the trainable parameters of the analog network
to be the phases of the entries of the matrix A.

The difficulties associated with using phase shifter networks as analog
combiners for task-based quantization can be mitigated by introducing ad-
justable gains into the analog circuitry. For example, the prototype proposed
in [17], depicted in Fig. 14, implements a complex-gain analog combiner
operating in the sub-6 GHz band using digitally controllable vector mul-
tipliers. A controllable gain analog combiner operating in the 25–30 GHz
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Figure 15: DMA system model illustration.

band based on RF integrated circuits was proposed in [34]. The resulting
model of a hybrid receiver equipped with such analog combiners effectively
allows to control both the gain and phase of each entry of the matrix A
individually in run-time, thus allowing to implement the task-based quan-
tization systems proposed in the previous sections. The main drawback of
such implementations compared to phase shifter networks is the cost and
complexity associated with controllable complex gain analog circuits.

5.2. Analog combining via dynamic metasurface antennas

The analog combiners discussed in the previous section require the MIMO
receiver to be equipped with a dedicated analog combining hardware inter-
facing its antenna elements and the ADCs. An alternative strategy to achieve
configurable analog combining without additional dedicated circuitry imple-
ments the pre-quantization processing as part of the antenna architecture,
by using DMAs. The conventional gains of DMAs over standard antenna
arrays stem from the fact metasurfaces typically use much less power and
cost less [35], while facilitating the implementation of a large number of ele-
ments in a given physical area. An additional gain of DMAs is their ability to
implement tunable combining as an inherent byproduct of their architecture.

In particular, DMAs consist of a set of microstrips, each embedded with
configurable radiating metamaterial elements [36]. When used as a receive
antenna, the signals observed by the elements are captured at a single output
port for each microstrip, feeding an ADC. The relationship between these
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signals and the micropstip output is dictated by two main properties: 1) Each
element of index l of microstrip i acts as resonant electrical circuit, whose
frequency response is described by the Lorentzian form [36]

(10) bi,l(ω) =
Fi,lω

2

(ωR
i,l)

2 − ω2 − jωχi,l
,

where Fi,l, χi,l, and ωR
i,l are the oscillator strength, damping factor, and an-

gular resonance frequency, respectively, which are all externally configurable
parameters. 2) Each signal which propagates from an element to the out-
put port undergoes a different path, and thus accumulates a different delay.
The delay accumulated by the signal captured at the lth element of the ith
micropstrip can be modeled as a filter with frequency response hi,l(ω). The
signal observed at the output port of the ith micrtopstrip can thus be writ-
ten as the sum of outputs of the filters bi,l(ω)hi,l(ω) whose inputs are the
signals observed by the corresponding elements, as illustrated in Fig. 15.

The resulting model relating the observed signals and the DMA output
ports, which are the signals fed to the ADCs, represents a form of frequency-
selective analog combining. Specifically, the fact that the parameters of the
Lorentzian response in (10) can be modified element-wise, indicates that
the inherent processing carried out inside each micropstrip can be tuned to
facilitate acquisition under bit constraints by tuning the resulting combining
as part of a task-based quantizer, see, e.g., [19]. Consequently, when using
a MIMO receiver with a DMA-based antenna array, one can implement
a form of task-based quantization without requiring additional dedicated
analog combining hardware by properly tuning the frequency response of
each element along with the quantization mapping and the digital processing
utilizing either of the methods discussed in Sections 3–4.

The architectures detailed in this section can all be used to realize task-
based quantization in MIMO receivers, by exploiting either the model-aware
design guidelines proposed in Section 3, or alternatively, by learning the task-
based quantization mapping from labeled data as suggested in Section 4.
Combining the architectures detailed in this section with the design methods
proposed in the previous sections thus narrows the gap between the theory of
task-based quantization and its concrete implementation in MIMO receivers.

6. Conclusion

In this paper we reviewed the theory and design methods for task-based
quantization systems. Such systems carry out acquisition using simple bit-
limited scalar ADCs. The associated distortion is mitigated by accounting
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for the system task in acquisition, via jointly optimizing some level of analog
pre-processing along with the quantization rule and digital post-processing
in light of the system task. We first presented model-aware design methods
which infer the operation of the system components based on prior knowl-
edge of the statistical model relating the observations and the information
of interest to be recovered in digital. We then proposed an alternative design
approach which does not require knowledge of the underlying model, and
learns its task-based quantization mapping from a set of labeled samples
using ML tools. Finally, we presented several hardware architectures which
can facilitate the implementation of task-based quantization mechanisms in
MIMO receivers. The combined results detailed in this survey pave the way
to the realization of MIMO receivers operating accurately and efficiently
under strict bit constraints by using task-based quantization techniques.
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