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Similarity analysis of protein sequences using
a reduced k-mer amino acid model
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Based on the properties of amino acid side chain, the 20 natural
amino acids are divided into a simplified feature space, and the
original protein sequence could be represented by a reduced amino
acid sequence, which contains only four residues. Associating with
this reduced protein sequence representation, the k-mer natural
vector is defined and utilized to describe the similarity analysis of
protein sequences, in which the frequencies and positional infor-
mation of k-mers appearing in a reduced amino acid sequence are
characterized by a feature vector. The similarity analysis of pro-
tein sequences can be easily and fast performed without requiring
evolutionary models or human intervention. In order to show the
utilities of our new method, it is applied on the real protein datasets
for similarity analysis, and the obtaining results demonstrate that
our new approach can precisely describe the similarities of protein
sequences, and also strengthen the computing efficiency, compared
with multiple sequence alignment. Therefore, our reduced k-mer
amino acid representation model is a very powerful tool for ana-
lyzing and annotating protein sequence.

Keywords and phrases: Similarity analysis, protein sequence, a re-
duced amino acid model, k-mer natural vector, multiple sequence align-
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1. Introduction

With the advantage of sequencing technology, more and more protein se-
quences are available now. The rapidly growth of protein sequence data cre-
ates many challenges to our bio-scientists, who need to find several credible
tools to efficiently analyze a large number of protein sequences, and to dis-
close the secrets hidden in these data. Similarity analysis of protein sequences
is one of the major topics in bioinformatics, which is the work to identify
the similarities and dissimilarities of protein sequences. Since similar protein
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sequences are expected to have similar structures and biological functions,
the similarity analysis of protein sequences has applications in structure and
functional site prediction, sub-cellular location prediction, functional clas-
sification, evolutionary relationships of protein species, etc (Liu and Wang,
2006; Zhang and Wang, 2010; Liao et al., 2010; Rokas, 2011; Li et al., 2016;
Hou et al., 2017; Wu et al., 2018).

Some laboratory testing methods have already been proposed for pro-
tein analysis. Although these wet-lab methods can verify the similarities of
protein sequences, they are laborious and time consuming. Hence, computa-
tional methods accompanying with the advantages of economy are springing
up and widely used in protein analysis (Krogh et al., 1994; Altschul et al.,
1997; Bhasin and Raghava, 2004; Edgar, 2004; Tamura et al., 2013; Nikhila
and Nair, 2018). Most of the computing methods are alignment-based meth-
ods that could describe the similarities of protein sequences, but they often
associate with longer running time and higher memory burden, and some
of them cannot deal with the whole-genome data (Yau et al., 2015; Ping
et al., 2017; He et al., 2017). Alignment-free methods based on the numer-
ical characterization of sequence are developed and successfully applied in
protein analysis (Yau et al., 2008; Deng et al., 2011; Yu et al., 2011; Yin and
Yau, 2015).

Of all alignment-free methods, the k-mer model method is one of the
best developed one, in that, the sequence analysis could be performed much
faster, and also be applied in the whole-genome comparison. However, the
relationships of k-mers appearing in a sequence are more or less neglected
by former k-mer model methods (Yu, 2013; Wen et al., 2014a; 2014b; He
et al., 2017). To avoid losing the sequence-order information in a protein se-
quence, Chou (2001) outlined the pseudo amino acid composition (PseAAC)
to reflect the sequence order information by a series of correlation factors
that form the components of a vector. In addition, utilizing the biochemi-
cal properties of 20 amino acids, He et al. (2017) proposed a feature vec-
tor to describe the composition of amino acids in a protein sequence. But
their cluster method cannot accurately depict the relationships of protein
sequences. Although the k-mer model methods and its variants have been
widely applied in protein studies, the dimension of numerical vector derived
from protein sequence is very high when k is large, and the complexity of
biological strings built on a 20-letter of amino acid is much higher than that
built from only four letters of DNA or RNA (Ulitsky et al., 2006; Zhang and
Yu, 2010).

Based on the properties of amino acid side chains, the 20 natural amino
acids are replaced with one of four reduced amino acid residues, which con-
stitute a simplified feature space. Therefore, each protein sequence is simply
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represented by a reduced amino acid sequence. Associating with this reduced

protein sequence representation, the k-mer natural vector is proposed to nu-

merically characterize protein sequences. Furthermore, our new method is

applied in the similarity analysis of proteins, and the obtaining results can

fully show its utilities both in accuracy and efficiency.

2. Materials and methods

2.1. A reduced amino acid model

In protein synthesis process, amino acids are linked together into a polypep-

tide chain on the ribosome, in which the covalent bond between two amino

acid residues is formed. There are 20 different amino acids existing in na-

ture. Recently, much effort has been made to simplify protein sequence for

better understanding and practical purposes (Li et al., 2008; Zhang and Yu,

2010). In these models, the composition for protein sequence is much simpler

than the real one. Motivated by the properties of amino acid side chain, the

20 natural amino acids are divided into four reduced amino acid sets: hy-

drophobic amino acid, hydrophilic amino acid, acidic amino acid and basic

amino acid, which are listed with one-letter code as follows:

1. Hydrophobic amino acid: A, V, L, I, P, M, F, G;

2. Hydrophilic amino acid: Q, S, T, C, N, Y, W;

3. Acidic amino acid: D, E;

4. Basic amino acid: K, R, H.

According to above classification for 20 natural amino acids, each group

contains several amino acid residues which interact with others in a similar

way. Without loss of generality, we assume that the representative amino

acid residues for four groups are A, Q, D and K, respectively, which are

the first amino acids in each group. Thus, a protein primary sequence can

be simply represented by a four-letter reduce sequence that is composed

of A, Q, D and K. If we take the first 20 amino acid residues of NADH

Dehydrogenase 5 (ND5) sequence from Human as an example, the original

protein sequence of ‘MSRSGVAVADESLTAFNDLK’ can be simplified by

a reduced amino acid sequence of ‘AQKQAAAAADDQAAAAQDAK’. It

is obvious that the reduced amino acid sequence effectively decreases the

complexity of original protein sequence.
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2.2. K-mer model for a reduced amino acid sequence

Similar to the description for k-mer model of genetic sequence, the k-mer
model for a reduced amino acid sequence is introduced as follows: Sup-
pose a reduced amino acid sequence s of length L, ‘S1S2 · · · SL’, where
Sl ∈ {A,Q,D,K}, l = 1, 2, · · · , L. A string of consecutive k bases within
a reduced amino acid sequence is called a k-mer. The k-mer appearing in
the sequence could be enumerated by using a sliding window of length k,
shifting one base each time from position 1 to L − k + 1, until the entire
sequence has been scanned.

For any given k, there are 4k different possible permutations of k-mers
that may appear in a reduced amino acid sequence: s[1], s[2], . . . , s[4k].

2.3. K-mer natural vector

For each reduced amino acid sequence s, the k-mer natural vector is defined
to be the concatenation of the following three vectors, each of which is of
length 4k (Wen et al., 2014a):

1. The k-mer counting vector
(
ns[1], ns[2], · · · , ns[4k]

)
, where ns[i] is the

number of k-mer s [i] occurring in sequence s.
2. The k-mer mean distance vector

(
μs[1], μs[2], · · · , μs[4k]

)
, where μs[i] is

the arithmetic mean of the distances of the k-mer s[i] to the first base.
If a specific k-mer s [i] does not exist, μs[i] is defined to be zero.

3. The k-mer normalized central moment vector
(
D

s[1]
2 , D

s[2]
2 , · · · , Ds[4k]

2

)
,

the component of which (D
s[i]
2 ) is the variance for the distances of

k-mer s [i] to the first base, which is defined as follows:

D
s[i]
2 =

ns[i]∑

j=1

(
s [i] [j]− μs[i]

)2

ns[i] · (L− k + 1)
,

where ns[i] denotes the number of k-mer s [i] appearing in the sequence
s, L is the length of sequence s, s [i] [j] is the distance of jth k-mer
s [i] from the first base in sequence s, and μs[i] is the arithmetic mean
of the distances of the k-mer s[i] to the first base.

If the distribution of each k-mer is different, two reduced amino acid
sequences cannot be similar even though they contain the same set of k-
mers and the same total distance measurement. Although each subset in the
numerical parameters could not sufficient to depict a sequence, the combined
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numerical parameters are sufficient to characterize each reduced amino acid
sequence. The k-mer natural vector contains the positional information of
k-mers, which are often neglected by former k-mer model methods, and we

have verified that 3 ∗ 4k-dimensional k-mer natural vector (ns[i], μs[i], D
s[i]
2 )

is sufficient to characterize each sequence (Wen et al., 2014a).

2.4. The choice of k

For k-mer model methods, the parameter k has a great influence on obtaining
results and computing efficiency. There is no a criterion to tell us how to
choose a suitable k in previous k-mer methods. Therefore, it is important and
difficult to select a suitable k for all kinds of proteins. To choose the optimum
k* for k-mer natural vector, we apply our reduced k-mer amino acid model
on two real protein datasets from ND5 sequence and beta-globin sequence,
which has been widely explored. Comparing with the results obtained by the
methods of ClustalW and MUSCLE, we infer that the optimal k* should be
within a range of [ceil(log4min(L)), ceil(log4max(L))+2], where L is the set
of lengths for protein sequences considered. The optimal k* over the range
of k is chosen based on the following strategy: if the result of phylogenetic
tree for the value k is relatively stable to that of k + 1, we choose k* = k;
otherwise k* is equal to the maximum over the range of k chosen.

Once each protein sequence is numerically characterized by a k-mer nat-
ural vector, the cosine distance metric can be utilized to calculate the rela-
tive distance for each pair of protein sequences, which has been widely used
in k-mer model methods (Berry et al., 1999; Stuart et al., 2002; Qi et al.,
2004; Wen et al., 2014a; 2014b). Then, the phylogenetic tree can be drawn
through the method of Neighbor Joining (NJ) using MEGA 6.06 (Tamura
et al., 2013).

3. Results and discussion

Similarity analysis of protein sequences is an important tool to analyze and
predict the structure and function of protein sequences. To investigate the
performance of our reduced k-mer amino acid model, the similarity analysis
of protein sequences is performed on two real datasets of ND5 sequence and
beta-globin sequence to illustrate the utilities of our new approach.

3.1. Similarity analysis of 9 ND5 sequences

We first apply our new method in the similarity analysis of 9 ND5 sequences,
the length of which are from 602 to 610. The ND5 sequence has been widely
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Table 1: The relative distance among 9 DN5 protein sequences based on our
new method

Species 1 2 3 4 5 6 7 8 9
1. AP 000649

Human
0

2. NP 00822
Gorilla

0.250 0

3. NP 008196
Common
chimpanzee

0.162 0.253 0

4. NP 008209
Pigmy
chimpanzee

0.137 0.236 0.045 0

5. NP 006899
Fin whale

0.458 0.482 0.419 0.434 0

6. NP 007066
Blue whale

0.438 0.467 0.396 0.409 0.163 0

7. AP 004902
Rat

0.473 0.514 0.497 0.484 0.503 0.489 0

8. NP 904338
Mouse

0.468 0.441 0.458 0.452 0.503 0.480 0.392 0

9. NP 007105
Opossum

0.440 0.495 0.447 0.439 0.534 0.516 0.488 0.488 0

discussed in the phylogeny and population genetic diversity of species for

their high mutation rate. Until now, several methods have been proposed to

analyze the ND5 sequences (Yao et al., 2008; Li et al. 2008; Wen and Zhang,

2009; Zhang and Yu, 2010; Liao et al., 2010; He et al., 2011; Yao et al.,

2014; Yu et al., 2017). Based on our reduced k-mer amino acid model, to

quantify the similarities of protein sequences, the relative distances among 9

ND5 sequences are shown in Table 1 with k = 6, and the NJ tree describing

the evolutionary relationship of protein species is also shown in Figure 1.

Meanwhile, the ClustalW is utilized to demonstrate the utilities of our new

method, which is a widely used multiple sequence alignment algorithm to

calculate the best matches for selected sequences, and depict the similarities

of divergent species. The relative distance matrix and NJ tree for 9 ND5

sequences gotten by ClustalW are shown in Table 2 and Figure 2, respec-

tively.

From Table 1, the pair of common chimpanzee and pigmy chimpanzee

is the most similar one with the smallest relative distance. In addition, hu-

man, gorilla, common chimpanzee and pigmy chimpanzee are similar to each



Similarity analysis of protein sequences 51

Figure 1: The NJ tree for 9 ND5 sequences based on the reduced k-mer
amino acid model. The 9 DN5 sequence are clustering into groups of (hu-
man, gorilla, common chimpanzee and pigmy chimpanzee), (fin whale, blue
whale) and (mouse, rat, opossum), which are similar to the results of mul-
tiple sequence alignment and published papers.

Table 2: The relative distance among 9 DN5 protein sequences based on
ClustalW

Species 1 2 3 4 5 6 7 8 9
1. AP 000649

Human
0

2. NP 00822
Gorilla

0.104 0

3. NP 008196
Common
chimpanzee

0.067 0.096 0

4. NP 008209
Pigmy
chimpanzee

0.069 0.093 0.048 0

5. NP 006899
Fin whale

0.375 0.390 0.370 0.368 0

6. NP 007066
Blue whale

0.377 0.387 0.370 0.368 0.034 0

7. AP 004902
Rat

0.456 0.469 0.461 0.453 0.410 0.407 0

8. NP 904338
Mouse

0.443 0.453 0.448 0.443 0.422 0.415 0.241 0

9. NP 007105
Opossum

0.467 0.496 0.475 0.461 0.488 0.488 0.496 0.472 0
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Figure 2: The NJ tree for 9 ND5 sequences based on multiple sequence
alignment by ClustalW.

Table 3: The runtime comparisons for the reduced k-mer natural vector
model and multiple sequence alignment by ClustalW*

Dataset Reduced k-mer amino
acid model

Multiple sequence
alignment by ClustalW

ND5 sequence 1.480 seconds 2.741 seconds
Beta-globin sequence 1.767 seconds 9.052 seconds

*The configuration for our current laptop is Intel Core i5-2450 dual cores 2.50 GHZ
with 8.00 Gb memory.

other, as well as the groups of (fin whale, blue whale) and (mouse, rat). How-
ever, the opossum looks a little far from others species. These results on the
similarities/dissimilarities of 9 ND5 proteins are similar to the results shown
in Table 2 obtained by multiple sequence alignment and and published pa-
pers (Yao et al., 2008; Li et al. 2008; Wen and Zhang, 2009; Zhang and Yu,
2010; Liao et al., 2010; He et al., 2011; Yao et al., 2014; Yu et al., 2017).
Furthermore, comparing Figures 1 and 2, the evolutionary relationships of
9 DN5 proteins are similar to each other. In addition, it is of interest to
find the clustering of (rat, mouse, opossum) in Figure 1, because they are
all belonging to the Metatheria, which could not be found from the NJ tree
shown in Figure 2. Moreover, the running time for our reduced k-mer amino
acid model is much shorter than that used by ClustalW (see Table 3).

3.2. Similarity analysis of 88 beta-globin sequences

The beta-globin sequences from 88 species are then analyzed using our new
method, which are the most common hemoglobin in adult human and often
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utilized to explore the evolutionary relationships of species (Yau et al., 2008;
Yu, 2013). This dataset has already been grouped by a new protein cluster
method (He et al., 2017), and variance in length is from 140 to 148. The NJ
tree of 88 beta-globin sequences was shown in Figure 3 with k = 5, based
on our reduced k-mer amino acid model.

Look at Figure 3, 88 beta-globin sequences are correctly clustered into 20
different groups: Carnivora, Primates, Insectivora, Perissodactyla, Roden-
tia, Hyracoidea, Sirenia, Proboscidea, Diprotodontia, Galliformes, Anser-
iformes, Passeriformes, Columbiformes, Testudines, Perciformes, Cyprini-
formes, Salmoniformes, Gadiformes, Crocodylia and Anura, which are sim-
ilar to the results obtained by He et al. (2017). Perciformes, Cypriniformes,
Salmoniformes and Gadiformes are all Teleosts, they group together, which
conforms to the conclusion in Cladistic analysis (Near et al., 2012). In ad-
dition, Galliformes, Anseriformes, Passeriformes and Columbiformes are be-
longing to the Galloanserae, the main group of modern birds (Sibley et al.,
1988). This clustering is supported with morphological data and DNA se-
quence data (Chubb, 2004; Kriegs et al., 2007). Our phylogenetic tree agrees
with the standard biological taxonomy and evolutionary relationship of
species. However, these results could not be found from the Figure 2 of
He et al. (2017).

To further verify the utilities of our new method, multiple sequence
alignment are also performed on the same dataset. The NJ tree of 88 beta-
globin sequences gotten from multiple sequence alignment by ClustalW is
shown in Figure 4, in which species are colored the same as in Figure 3.
Comparing Figures 3 and 4, on the whole, the evolutionary relationships
of 88 beta-globin sequences are consistent with each other. In addition, the
computing efficiency for our k-mer natural vector model method is higher
than that used by ClustalW (see Table 3).

4. Conclusions

Integrating with a simplified amino acid residue representation, k-mer natu-
ral vector is defined and utilized to describe the similarity analysis of protein
sequences, in which the frequencies and positional information of k-mers
appearing in a reduced amino acid sequence are characterized by a feature
vector. Our reduced k-mer amino acid model contains the information on
relationships of k-mers, overcoming the deficiency of former k-mer model
methods. With this new method, the features of k-mers hidden in the se-
quence can be effectively extracted, and each protein sequence is numeri-
cally characterized by a k-mer natural vector. Therefore, similarity analysis



54 Jia Wen et al.

Figure 3: The NJ tree for 88 beta-
globin sequences based on the reduced
k-mer amino acid model. The 88 beta-
globin sequences are correctly clustered
into 20 groups: Carnivora, Primates, In-
sectivora, Perissodactyla, Rodentia, Hyra-
coidea, Sirenia, Proboscidea, Diprotodon-
tia, Galliformes, Anseriformes, Passeri-
formes, Columbiformes, Testudines, Per-
ciformes, Cypriniformes, Salmoniformes,
Gadiformes, Crocodylia and Anura. This
phylogenetic tree agrees with the conclu-
sions in standard biological taxonomy and
evolutionary relationship of species.
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Figure 4: The NJ tree for 88 beta-globin se-
quences based on multiple sequence align-
ment by ClustalW. The 88 beta-globin se-
quences are clustered into 20 groups: Car-
nivora, Primates, Perissodactyla, Insectivora,
Sirenia, Hyracoidea, Proboscidea, Roden-
tia, Diprotodontia, Crocodylia, Testudines,
Passeriformes, Columbiformes, Galliformes,
Anseriformes, Anura, Salmoniformes, Cyprini-
formes, Gadiformes, and Perciformes.



56 Jia Wen et al.

of protein sequences can be easily and fast performed without requiring
evolutionary models or human intervention.

We illustrate the utilities of this new method in the similarity analysis
of protein sequences on two real datasets, and the obtaining results demon-
strate that our reduced k-mer amino acid model can precisely describe the
similarities of protein sequences, which is similar to the results of multiple
sequence alignment and published papers, and agrees with the conclusions
in standard biological taxonomy and evolutionary relationship of species.
In addition, we also get the new finding. For example, it is meaningful to
find the clustering of (rat, mouse, opossum) from the similarity analysis of
ND5 sequences, because they are all belonging to the Metatheria. Moreover,
our new method greatly strengthens the computing efficiency, compared
with multiple sequence alignment. Therefore, the reduced k-mer amino acid
model is a very powerful tool for analyzing and annotating protein sequence.
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