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Direct coupling analysis (DCA) has been widely used to infer
residue-residue contacts in protein structures but rarely to those
in RNA structures. Here we analyze the performances of two pop-
ular algorithms of DCA, DCA under mean-field approximation
(mfDCA) and pseudo-likelihood maximization approximation
(plmDCA), in the inference of RNA contacts and found that, unlike
proteins, their performances are similar in this case. Furthermore,
a deep learning model of fully convolutional neural network (FCN)
is used to improve the performance of DCA and the result is better
than that of the original DCA.

1. Introduction

Ribonucleic acids (RNA) are chains consisting of four kinds of nucleotides
distinguished by their bases adenine (A), guanine (G), cytosine (C) and
uracil (U). The secondary structures of RNAs are special patterns of A-U,
G-C and G-U pairing in living cell and are very important to their biolog-
ical functions [1] and tertiary structures [2, 3, 4]. Therefore, many compu-
tational methods have been proposed to predict RNA secondary structures
in the last decades [5]. They can be divided as single-sequence approach
[6, 7] or multiple-sequences approach [5]. The single-sequence approach usu-
ally adopts free-energy minimization method based on Nissinov algorithm
and its accuracy is about 70% [7, 8, 9, 10, 11, 12]. The multiple-sequence
approach uses conservation of homologous sequences to infer their common
secondary structure and the accuracy is about 70-80% [5, 13]. Therefore,
there is still a large improvement space for RNA secondary structure pre-
diction.

Recently it was shown that RNA secondary structure might be deter-
mined by coevolutionary nucleotide pairs [14, 15], i.e., the two nucleotides
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Figure 1: Schematic diagram of the relationship between coevolutionary nu-
cleotides in sequences (left) and base pairs or contacts in secondary and
tertiary structures (right).

in coevolution among homologous sequences of a RNA form contact or base
pair in its secondary and tertiary structures (Figure 1). The coevolutionary
nucleotide pairs could be inferred by the Direct Coupling Analysis (DCA)
[16, 17]. In fact, DCA has been widely used to predict the residue-residue
contacts in protein structures and between proteins [16, 17, 18, 25, 24, 22, 21,
20, 19]. However, DCA was rarely applied to the prediction of RNA struc-
tural contacts. At present, there are many DCA algorithms with different
approximations. Two popular DCA algorithms are those using mean-field
approximation (mfDCA) [16] and pseudo-likelihood maximization approxi-
mation (plmDCA) [26]. Previous studies have shown that the accuracies of
protein contact predictions based on DCA depended on the approximations
used and plmDCA usually has higher accuracy in protein contact predictions
than mfDCA [19].

In the present paper, we shall analyze the performance of plmDCA and
mfDCA in the inference of RNA structural contacts (base pairs) and show
that, unlike protein, their performances are similar in this case. We shall
also use a deep learning model to improve the accuracy of DCA to pick
out more native base pairs and show that the accuracy can be increased by
5%.

2. Methods and materials

2.1. Direct coupling analysis

The basic principle of DCA is briefly described in the following and more
details can be found in previous papers [15, 16, 26].
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Figure 2: Direct and indirect correlations between base pairs. The correla-
tions between A and B and between B and C are direct ones and the cor-
relation; A and C has no direct correlation and their correlation is induced
by transitive correlations.

Coevolutionary nucleotide pairs of a RNA can be inferred from its ho-
mologous sequences by using correlation-based methods, such as mutual in-
formation (MI). However, an important drawback of these methods is that
they cannot distinguish direct and indirect correlations (Figure 2). Only the
nucleotides in direct correlation are considered to be in contact in the 3D
structure. DCA was proposed to disentangle direct correlations from indirect
correlations.

DCA assumes that the occurrence probability of a RNA sequence A1,
. . . , AL is determined by a Potts model:

(1) P (A1, . . . , AL) =
exp

[∑
i<j eij(Ai, Aj) +

∑
i hi(Ai)

]
Z

which can be derived if P (A1, . . . , AL) satisfies maximum-entropy model
with the constraints that single and pair probabilities are determined by

Pi(Ai) =
∑

{Ak|k �=i}
P (A1, . . . , AL)(2)

Pij(Ai, Aj) =
∑

{Ak|k �=i,j}
P (A1, . . . , AL)(3)

where the residue Ai with i = 1, . . . , 5 can be A, C, G, U or gap “-”. The
parameters eij(Ai, Aj) and hi(Ai) are related to pairwise and single energies
of the nucleotides; Z is the normalization constant or partition function. We
need to infer the parameters eij(Ai, Aj) and hi(Ai) from the Potts model.
This is a problem of maximum likelihood.



282 Xiaoling He et al.

For the Potts model the maximum likelihood problem can be converted

to the problem of minimizing the negative log-likelihood function [26]

(4)

l(e, h) = − 1

M

M∑
m=1

logP (Am
1 , . . . , Am

L )

= logZ −
L∑
i=1

5∑
i=1

fi(Ai)hi(Ai)−
L∑

i,j=1
i<j

5∑
i,j=1

fij(Ai, Aj)eij(Ai, Aj)

where fi(Ai) and fij(Ai, Aj) are observed single and pair probabilities given

the aligned homologous sequences Am
1 , . . . , Am

L with m = 1, . . . ,M . Since

the terms in Z =
∑

A1,...,AL
exp [

∑
i<j eij(Ai, Aj) +

∑
i hi(Ai)] increases ex-

ponentially with the sequence length, it is computationally infeasible in prac-

tice for RNAs of normal size and so different approximations have been pro-

posed to deal with this problem, e.g., mean-field approximation and pseudo-

likelihood maximum approximation.

Under the mean-field approximation, Z is expanded as Taylor’s series

around zero coupling. Keeping the linear term lead to the well-known mean-

field equations [16]

(5)
P (Ai)

P (A5)
= exp

⎡
⎣hi(Ai) +

∑
Ai

∑
j �=i

eij(Ai, Aj)fj(Aj)

⎤
⎦

and the direct couplings between nucleotides can be estimated by the inverse

of the reduced covariance matrix

(6) eij(Ai, Aj) = −(C−1)ij(Ai, Aj)

and eij(Ai, A5) = eij(A5, Aj), where Cij(Ai, Aj)=fij(Ai, Aj)−fi(Ai)fj(Aj)

is the covariance matrix.

Under the pseudo-likelihood maximum approximation [26], all variables

are assumed to be independent and the P (Am
1 , . . . , Am

L ) is approximated by

(7) P (Am
1 , . . . , Am

L ) =

L∏
r=1

P (Am
r |Am

i �=r)

where the conditional probability P (Am
r |Am

i �=r) that observes one variable
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Am
r given observations of all the other variables Am

i �=r is given by

(8) P (Am
r |Am

i �=r) =

exp

[∑L
i=1
i �=r

eri(A
m
r , Am

i ) + hr(A
m
r )

]
∑

Am
r
exp

[∑L
i=1
i �=r

eri(A
m
r , Am

i ) + hr(Am
r )

]

where eri(A
m
r , Am

i ) means eri(A
m
i , Am

r ) when i < r. In this case, the terms
in the normalization constant for each variable are greatly decreased and
the pseudo-likelihood maximum is computationally tractable.

In practice, DCA score is used to describe the strength of interaction
between two nucleotides. The DCA score between nucleotides i and j is
calculated by [15, 16, 26]

(9) Scoreij =

5∑
Ai,Aj=1

PD
ij (Ai, Aj) log

(
PD
ij (Ai, Aj)

fi(Ai)fj(Aj)

)

where

(10) PD
ij (Ai, Aj) =

exp [eij(Ai, Aj) + h̃i(Ai) + h̃j(Aj)]

Zij

In this equation Zij , h̃i(Ai) and h̃j(Aj) are determined iteratively by
satisfying the condition:

∑
ij P

D
ij (Ai, Aj) = 1 and imposing

(11)

fi(Ai) =

5∑
Aj=1

PD
ij (Ai, Aj)

fj(Aj) =

5∑
Ai=1

PD
ij (Ai, Aj)

The co-evolutionary nucleotide pairs are inferred by using our DCA online
server: http://biophy.hust.edu.cn/DCA. A set of 16 RNAs (Table 1) are
selected to analyze the performance of DCA because 1000 homologous seque-
nces can be picked out from their families and so have enough sequences to
do DCA.

2.2. Fully convolutional neural network

The fully convolutional neural network (FCN) consisting of nine layers of
convolutional layers achieved good results in image segmentation [27]. Re-

http://biophy.hust.edu.cn/DCA
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Table 1: Performances of mfDCA and plmDCA on a set of 16 RNAs

Rfam PDB L
#native
contacts

mfDCA plmDCA
PPV STY MCC PPV STY MCC

RF00005 1FIR 76 25 0.58 0.44 0.50 0.58 0.44 0.50
RF00167 1Y26 71 21 1.00 0.81 0.90 1.00 0.81 0.90
RF00059 2GDI 80 20 0.60 0.60 0.60 0.60 0.60 0.60
RF00162 2GIS 94 26 0.78 0.69 0.73 0.74 0.65 0.69
RF01051 3IRW 90 23 0.77 0.74 0.75 0.77 0.74 0.75
RF00504 3OWI 86 25 0.95 0.80 0.87 1.00 0.84 0.92
RF01786 3Q3Z 75 17 0.67 0.71 0.68 0.67 0.71 0.68
RF01734 3VRS 52 11 0.92 0.75 0.83 1.00 0.81 0.90
RF01831 4LVV 89 24 0.91 0.83 0.87 0.91 0.83 0.87
RF00029 1KXK 70 23 0.76 0.57 0.65 0.76 0.57 0.65
RF01057 2KZL 55 14 0.85 0.79 0.81 0.85 0.79 0.81
RF02541 3U4M 80 21 0.80 0.76 0.78 0.75 0.71 0.73
RF01734 4ENC 52 11 0.92 0.75 0.83 1.00 0.81 0.90
RF00168 3DIG 173 50 0.74 0.58 0.66 0.82 0.72 0.64
RF00379 4QK8 120 28 0.77 0.82 0.79 0.75 0.82 0.79
RF00162 4KQY 119 36 0.83 0.67 0.74 0.83 0.67 0.74

Mean 0.80 0.71 0.75 0.81 0.71 0.76

ferring to this, our deep learning model is an FCN consisting of an input

layer, nine hidden layers, and an output layer. The detailed structure of the

model is shown in Figure 3 and is described in detail below:

1) The input layer: the size of input feature map is L×L×1, the L of the

first dimension and the second dimension is the length of the target

RNA sequence and limited to be less than 500 in this work, and the

third dimension is the DCA score of the corresponding base pair.

2) The first layer: it includes two convolutional layers and one pooling

layer. The number of convolution kernels of each convolutional layer is

32. After the two convolutional layers, the feature map size is changed

from L×L×1 to L×L×32; The pooling layer size is 2×2, and the fea-

ture map size is changed from L×L×32 to L/2×L/2×32 through this

pooling layer.

3) The second and third layers are similar in structure to the first layer

except that the number of convolution kernels of the convolutional

layer is increased.

4) The fourth layer: In order to prevent over-fitting, a Dropout layer (the

value is 0.5) is added behind the two pooling layers, and after the

fourth layer, the feature map size becomes L/16×L/16×256.
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Figure 3: The structure of our FCN consisting of an input layer, nine hidden
layers, and an output layer.

5) The fifth layer: This layer also adds a Dropout layer (the value is 0.5).

Because there is no pooling layer, the size of the data will not shrink

and the shape of the fifth layer of data becomes L/16×L/16×512.

6) The sixth layer: It includes a UpSampling2D layer, a convolution layer,

a concatenate layer, two convolutional layers; The UpSampling2D layer

is the upsampling layer and can be seen as the reverse operation of

the pooling layer. The upsampling factor is 2×2, the data is doubled,

the feature map size becomes L/8×L/8×512; The concatenate layer

connects the feature map of the Conv6 1 layer with the feature map

of the Dropout4 layer according to the specified axis (here, the third

dimension).

7) The seventh, eighth, and ninth layers are similar to the sixth layer.

After the ninth layer, the feature map size becomes L×L×32.

8) The output layer: It contains two convolutional layers. In the first con-

volutional layer the number of convolution kernels is 2, the feature map

size becomes L×L×2; In the second convolutional layer, the number

of convolution kernels is 1, the convolution kernel size is 1×1, the ac-

tivation function is Sigmod. The output feature map size is L×L×1,

the first and second dimensions is the length of the RNA sequence,

and the third dimension reflects the pairing probability of each pair

of bases, being between 0 and 1. In our model, if the probability is

greater than 0.9, the base pair is considered as paired.

9) For all convolutional layers from the first to the ninth layers, the acti-

vation function is ReLU, the convolution kernel size is 3×3, the step
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size is 1; the padding (filling mode) is “same” (input and the out-
put shape is the same); the initializer of each layer weight matrix is
“he normal”. In this work, if this value is greater than 0.9, it is consid-
ered to be paired. In this model, the Adam optimizer is used [28], and
the learning rate is set to 0.0001. The loss function uses binary cross
entropy. The epoch is set to 500. The codes of the deep learning model
used here are not implemented by us but from the website at https://
github.com/zhixuhao/unet, the architecture of which was inspired by
Ronneberger et al. [29] and implemented by Zhixuhao using Keras.

During the training process, the DCA score of each target RNA are
processed into a matrix of L×L×1, and the predicted secondary structure
of the target RNA is processed into a matrix of L×L×1 as the output. If the
nucleotide pair of the (i, j) position has a pairing relationship, the position
of this matrix (i, j, 1) is marked as 1, otherwise, the flag is 0. Comparing
the results predicted by the model with the native secondary structure, the
parameters are continuously updated, so that the loss function of the model
converges to a minimum point, and then the model is used to predict the
new target. The training process is to fit the predicted secondary structure
to the native one.

The RNAstrand dataset and PDB dataset were usually used to bench-
mark various methods of RNA secondary structure prediction [5]. Here they
are used as training set and testing set for FCN, respectively. The original
RNAstrand dataset contains 1987 sequences and the PDB dataset contains
121 sequences. The secondary structures (base pairs) of these RNA sequences
have been determined experimentally. The native secondary structures of
RNAs in the PDB dataset are extracted from their 3D structures by us-
ing RNAView [30]. These two datasets can be downloaded in the data sets
section on the website: http://iimcb.genesilico.pl/comparna/ [5]. We only
select the sequences with length less than 500 and so the training set finally
contains 1128 sequences with sequence lengths from 40 to 499 nucleotides.
The sequences in testing set whose similarity are more than 85% with se-
quences in training dataset are removed and so the testing dataset finally
contains 84 sequences with sequence lengths from 29 to 233 nucleotides and
the number of homologous sequences from 6 to 1023.

2.3. Performance

To estimate the performance of the DCA and FCN predictions, they are
compared to the residue-residue contacts in the native structures, i.e., the

https://github.com/zhixuhao/unet
https://github.com/zhixuhao/unet
http://iimcb.genesilico.pl/comparna/
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native contacts, which are defined as the canonical and wobble base pairs (A-
U, G-C and G-U) in the native structures. Pseudoknots are not considered
in this work and they are considered as tertiary interactions. We use the
precision (PPV), Sensitivity (STY) and Matthews correlation coefficients
(MCC) [31, 32] to measure the performance of DCA and FCN as usual.
They are defined as follows:

(12)

PPV =
TP

TP + FP

STY =
TP

TP + FN

MCC =
TP × TN − FN × FN√

(TP + FP )× (FP + TN)× (TN + FN)× (FN + TP )

where TP denotes true positive (predicted native contact); FP, false positive
(predicted nonnative contact); TN, true negative (correctly predicted residue
that is not in contact with other residues in the native structure); FN, false
negative (not predicted native contact).

3. Results and discussion

3.1. Performance of plmDCA and mfDCA

Figure 4 shows the performances of plmDCA and mfDCA for the predictions
of the N largest DCA scores for two RNAs (PDB ID: 4LVV and 2KZL). It
shows how PPV, STY and MCC change with N. It can be seen that for
the four RNAs they change in similar way: the PPV decreases while STY
increases with N increases.

To get a balanced result for PPV and STY, we studied how the average
performances (MCC) of mfDCA and plmDCA change with the pairs of theN
largest DCA scores over a set of 16 RNAs (Table 1). Figure 5 shows that the
average performance is the best when N is about 0.25L for both mfDCA and
plmDCA. In these cases, the mean values of PPV, STY and MCC are 0.80,
0.71 and 0.75 for mfDCA and 0.81, 0.71 and 0.76 for plmDCA (see Table 1).
Therefore, the PPV or STY values of both mfDCA and plmDCA are similar
and the PPV values are higher than the STY values, i.e., the performances
of mfDCA and plmDCA are similar. This is very different from proteins
where the performance of plmDCA is 10% better than mfDCA. This result
indicates that the DCA algorithms may behave differently for protein and
RNA. By the way, it is easy to obtain high PPV, e.g. the PPVs of mfDCA



288 Xiaoling He et al.

Figure 4: Performances of mfDCA (left) and plmDCA (right) in contact
prediction for two RNAs (PDB IDs: 4LVV and 3DIG). Here “Top N pairs”
denotes the predictions of the N largest DCA scores.

and plmDCA are 0.9 and 0.86 when N = 0.1L, respectively, but in this case
their STYs become lower and are 0.31.

It is easy to understand why STY increases with N. To understand why
PPV rapidly decreases with N, we plotted the residue-residue distances of all
residue pairs of a RNA vs. plmDCA scores (Figure 6). It has a distribution
with a dense noise background and a long tail at the high-score end. Almost
of the pairs in the long tail have residue-residue distances below 8 Å and
so can be considered as native contacts. But the native contacts within
the noise background are difficult to be picked out. This why PPV rapidly
decreases with N . For mfDCA the situation is the same.

Inspired by Figure 6, previously we proposed a histogram analysis of
DCA scores to improve the PPV of DCA in the inference of contacts in
protein structure [4]. If we properly choose the bin size, the histogram also
has a distribution of DCA scores like Figure 7. A part of bins only has a few
pairs, especially the bins in the long tail, and these pairs can be considered
as native contacts. But we found that for RNA this method gave lower
performance than above. Therefore, in the following we try to use deep
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Figure 5: The average performance of mfDCA (top) and plmDCA (bottom)
vs. the predictions of the N largest DCA scores (Top N pairs) with N =
0.1L, 0.2L, . . . , L over a set of 16 RNAs.

Figure 6: Residue-residue distances of all pairs (sequence separation greater
than four) against their plmDCA scores for the RNA 4LVV. The horizontal
line is the contact distance cutoff at 8 Å.
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Figure 7: The distribution of the DCA scores with bin size of 0.01 for a RNA
(PDB ID: 4LVV).

learning model to improve the performance of DCA in inference of RNA

structural contacts.

3.2. Deep learning results of mfDCA

It should be pointed out that current DCA algorithms cannot give an exact

inference of all native contacts. The contact map of a RNA structure is

very similar to an image and so we can use a FCN to treat the DCA scores

because it performed very well for image recognition. The input of FCN is a

L∗L∗1 matrix whose element (i, j) is the original DCA score for the residue

pair (i, j), where i and j denote the ith and jth residues in the sequence of

the RNA. The output of FCN is also a L∗L∗1 matrix in which the value of

the element (i, j) represent the probability that the residue pair (i, j) forms

contact. Here we consider that the pair (i, j) forms contact if the probability

is not less than 90%. Since mfDCA and plmDCA have similar performance,

we use FCN only to the result of mfDCA.

Table 2 shows the results of FCN for mfDCA. In the table “N” is the

number of the residue pairs with the probability ≥ 90% in the output matrix

of FCN and the results of mfDCA are calculated also according to the pairs

of the N largest DCA scores. It can be seen from Table 2 that FCN can in-

creases the performance (PPV, STY, and MCC) of mfDCA in the inference

of RNA contact maps by 5% (Figure 8). Although the improvement of FCN

to mfDCA is not very significant, it shows that deep learning method indeed
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Table 2: Performance of mfDCA and mfDCA-FCN on the PDB dataset of
84 RNAs

PDB L
#native
contacts

N
mfDCA plmDCA

PPV STY MCC PPV STY MCC

1VX6 X 118 35 51 0.76 0.83 0.79 0.87 0.91 0.89
2KDQ B 29 10 7 0.75 0.30 0.47 1.00 0.70 0.83
2KE6 A 48 18 3 0.50 0.06 0.16 0.00 0.00 0.00
2KUR A 48 19 2 1.00 0.05 0.23 0.00 0.00 0.00
2KUU A 48 18 0 0.00 0.00 0.00 0.00 0.00 0.00
2KUV A 48 19 2 0.00 0.00 0.00 0.00 0.00 0.00
2KUW A 48 18 6 0.00 0.00 0.00 0.00 0.00 0.00
2L3J B 71 30 1 0.00 0.00 0.00 0.00 0.00 0.00
2L94 A 45 18 20 0.25 0.11 0.16 0.95 1.00 0.97
2LC8 A 56 18 3 1.00 0.06 0.23 1.00 0.06 0.23
2MIY A 59 17 9 0.60 0.18 0.32 0.86 0.35 0.55
2MS1 B 71 17 20 0.80 0.94 0.87 0.80 0.94 0.87
2N1Q A 155 50 4 0.00 0.00 0.00 1.00 0.08 0.28
2N7M X 92 26 15 0.39 0.19 0.27 0.42 0.19 0.28
2WRQ Y 76 9 21 0.43 1.00 0.65 0.43 1.00 0.65
2WWQ V 77 19 20 0.95 0.95 0.95 0.95 0.95 0.95
2XKV B 96 11 35 0.24 0.64 0.39 0.30 0.73 0.46
2XQD Y 76 21 21 0.91 0.91 0.90 0.95 0.95 0.95
2ZZM B 84 15 21 0.52 0.73 0.62 0.57 0.80 0.68
2ZZN D 71 22 20 1.00 0.91 0.95 1.00 0.91 0.95
3A2K C 77 22 20 1.00 0.91 0.95 1.00 0.91 0.95
3A3A A 86 30 24 1.00 0.73 0.86 1.00 0.77 0.88
3AKZ H 74 20 19 0.95 0.90 0.92 0.95 0.90 0.92
3AMU B 78 19 20 0.90 0.95 0.92 0.90 0.95 0.92
3GX2 A 94 28 34 0.81 0.61 0.70 0.96 0.96 0.96
3IVN B 69 23 24 0.95 0.78 0.86 0.95 0.87 0.91
3IWN A 93 28 24 0.94 0.61 0.76 1.00 0.57 0.76
3J16 L 75 21 18 1.00 0.86 0.93 1.00 0.86 0.93
3J20 0 76 21 21 0.91 0.91 0.90 0.95 0.95 0.95
3J20 1 77 20 20 0.95 0.95 0.95 0.95 0.95 0.95
3J3D C 75 19 20 0.90 0.95 0.92 0.90 0.95 0.92
3J3E 8 123 15 6 0.60 0.20 0.35 0.00 0.00 0.00
3J3F 8 157 19 10 0.80 0.42 0.58 0.70 0.37 0.51
3J3V B 119 27 44 0.65 0.82 0.73 0.64 0.85 0.74
3J46 p 76 14 21 0.67 1.00 0.82 0.67 1.00 0.82
3J5B 1 76 18 21 0.81 0.94 0.87 0.86 1.00 0.93
3J5N W 77 18 20 0.95 1.00 0.97 0.90 0.94 0.92
3J7A 7 74 7 20 0.00 0.00 0.00 0.00 0.00 0.00
3JB9 C 105 29 24 1.00 0.66 0.81 0.96 0.76 0.85
3JB9 N 90 6 0 0.00 0.00 0.00 0.00 0.00 0.00
3JYX 4 157 12 8 0.63 0.42 0.51 0.71 0.42 0.55
3LA5 A 71 25 28 0.86 0.76 0.81 0.92 0.92 0.92
3NPB A 119 37 30 0.68 0.46 0.56 0.92 0.60 0.74



292 Xiaoling He et al.

Table 2: Continued

PDB L
#native
contacts

N
mfDCA plmDCA

PPV STY MCC PPV STY MCC

3O58 3 158 22 14 0.85 0.50 0.65 0.85 0.50 0.65
3RKF A 67 24 23 1.00 0.79 0.89 0.96 0.88 0.91
3SD1 A 89 29 16 1.00 0.55 0.74 1.00 0.48 0.69
3SN2 B 29 12 12 0.82 0.75 0.78 0.91 0.83 0.87
3UZL B 85 16 19 0.68 0.81 0.74 0.68 0.81 0.74
3W1K J 92 31 27 0.96 0.74 0.84 0.92 0.74 0.83
3W3S B 98 33 31 0.85 0.67 0.75 0.96 0.76 0.85
3WC1 P 73 15 19 0.74 0.93 0.83 0.79 1.00 0.89
3WQY C 75 23 20 1.00 0.87 0.93 1.00 0.87 0.93
3ZEX C 169 29 8 0.86 0.21 0.42 0.50 0.10 0.23
3ZND W 78 8 20 0.30 0.75 0.47 0.30 0.75 0.47
4A1C 2 154 20 9 0.88 0.35 0.55 0.63 0.25 0.40
4AOB A 94 29 34 0.90 0.62 0.75 1.00 0.93 0.97
4BY9 A 72 11 6 0.50 0.18 0.30 0.75 0.27 0.45
4C4Q N 233 81 21 0.20 0.03 0.07 0.94 0.21 0.45
4ENB A 51 15 10 1.00 0.67 0.82 1.00 0.53 0.73
4ENC A 52 15 6 1.00 0.40 0.63 1.00 0.40 0.63
4FRG B 84 24 11 0.88 0.29 0.50 1.00 0.33 0.58
4FRN A 102 28 13 1.00 0.32 0.57 0.78 0.25 0.44
4JF2 A 76 24 6 0.50 0.08 0.20 1.00 0.17 0.41
4KR2 C 68 20 25 0.83 0.95 0.89 0.91 0.95 0.93
4KR3 C 69 22 27 0.83 0.91 0.87 0.95 0.91 0.93
4L81 A 96 31 22 0.61 0.36 0.46 0.71 0.39 0.52
4LCK F 102 21 27 0.48 0.48 0.47 0.64 0.67 0.65
4MGN B 71 21 22 0.91 0.91 0.90 0.91 0.91 0.90
4MGN C 85 22 19 0.93 0.64 0.77 0.93 0.64 0.77
4MGN D 72 21 22 0.91 0.91 0.90 0.91 0.91 0.90
4OQU A 97 32 21 0.65 0.34 0.47 0.69 0.34 0.48
4P5J A 83 27 26 0.88 0.56 0.70 0.86 0.67 0.75
4P8Z A 188 59 7 0.00 0.00 0.00 0.83 0.09 0.27
4QK8 A 120 35 21 0.82 0.40 0.57 0.94 0.46 0.66
4W24 8 156 14 10 0.20 0.14 0.17 0.30 0.21 0.25
4W28 6 76 17 27 0.42 0.59 0.49 0.44 0.59 0.50
4WF9 Y 114 16 43 0.39 0.69 0.52 0.37 0.69 0.50
4WJ4 B 76 22 21 0.95 0.91 0.93 1.00 0.96 0.98
4X0B B 77 15 21 0.67 0.93 0.79 0.71 1.00 0.84
4XW7 A 64 19 13 0.90 0.47 0.65 0.69 0.47 0.57
4ZNP A 73 21 13 1.00 0.48 0.69 1.00 0.52 0.72
5CCB N 77 22 22 0.86 0.82 0.84 1.00 0.96 0.98
5DDR A 61 17 12 0.82 0.53 0.66 1.00 0.59 0.77
5DI4 A 48 6 12 0.50 0.67 0.58 0.71 0.83 0.77
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Figure 8: The performances of mfDCA and mfDCA-FCN.

can help to do this. One of the reasons for the not very significant improve-
ment is that the types of the testing set and the training set are different.
The training set is from the RNAstrand database in which the contact in-
formation (the secondary structures) was not determined from experimental
tertiary structures while the testing set is from the PDB database in which
the contact information was inferred from experimental tertiary structures.
Therefore, the contact information in the training set is not accurate as
that in the testing set and this may influence the performance of FCN. An-
other reason is that the training set is not larger enough because only a
few thousand RNA structures have been solved at present. We believe that
the performance of FCN in treating mfDCA will become better if more and
more RNA structures are obtained experimentally in the future.

Finally, it should be pointed out that the performance of FCN also de-
pends on the accuracy of DCA while the latter depends on the quality of
multiple sequences alignment. Current methods of multiple sequence align-
ment not only give false-positive information of co-evolution but also con-
sider explicitly no physicochemical properties of amino acids or nucleotides
that are important to determine the structures of proteins and RNAs. To
solve this problem, the idea of a recent work by Yin and Yau might be
helpful [33]. Instead of using multiple sequence alignment, they represented
the sequences of a protein from different species by their physicochemi-
cal properties and analyzed phylogenetic tree by calculating the Euclidean
distances between Fourier transforms of these physicochemical sequences.
By calculating the correlations between the distance matrices of two pro-
teins, they showed that their method was more accurate than the method
based on multiple sequence alignment in inference of protein-protein inter-
actions.
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