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Rate-distortion functions of non-stationary Markoff
chains and their block-independent approximations

Mukul Agarwal

It is proved that the limit of the normalized rate-distortion func-
tions of block independent approximations of a time-homogeneous,
finite-state irreducible, aperiodic Markoff chain is independent of
the initial distribution of the Markoff chain and thus, is also equal
to the rate-distortion function of the Markoff chain.

1. Introduction

Consider a random source which evolves on a finite set. It follows from
existing literature, see for example [1] and [2] (Pages 491-500, in partic-
ular, see Definition (9.8.3) and Theorem 9.8.3 for achievability), that the
limit of the normalized rate-distortion functions of block-independent ap-
proximations of a stationary, ergodic source is equal to the rate-distortion
function of the source. Specializing this theorem to time-homogeneous, irre-
ducible, aperiodic Markoff chains, it follows that the limit of rate-distortion
functions of block-independent approximations of an irreducible, aperiodic
Markoff chain which starts in the stationary distribution is equal to the
rate-distortion function of this Markoff chain. In what follows, all Markoff
chains considered will be time homogeneous, and that, the Markoff chain is
time homogeneous will not be stated explicitly again. It is known that the
rate-distortion function of an irreducible, aperiodic Markoff chain is inde-
pendent of its initial distribution (follows from [3]). In this paper, it will be
proved that the limit of the normalized rate-distortion functions of block-
independent approximations of an irreducible, aperiodic Markoff chain is in-
dependent of its initial distribution. It follows, then, that the rate-distortion
function of an irreducible, aperiodic Markoff chain and the limit of the nor-
malized rate-distortion functions of its block independent approximations
are equal and these functions are independent of the initial distribution of
the Markoff chain.

The intuition behind these results is that for an irreducible, aperiodic,
finite state Markoff chain, the distribution of the Markoff chain at a certain
time tends to the stationary distribution at a rate independent of the initial
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distribution, and the evolution of the Markoff chain for the finite amount
of time when the distribution gets ‘close enough’ to the stationary distribu-
tion can be ‘neglected’ for the purpose of calculation of the rate-distortion
function. Then, a limiting argument so that the distribution of the Markoff
chain tends to the stationary distribution does the job. In the proofs, we
also use the fact that the rate of convergence is, in fact, exponential in the
time elapsed.

Literature on rate-distortion theory is vast. The seminal works are [1] and
[4]. A work for rate-distortion theory for random processes is [5]. Much of the
classical point-to-point literature on rate distortion theory gets subsumed
under the books [2] and [3]. Another reference is [6]. The reader is refered to
these three books and references therein for the literature on rate-distortion
theory. In particular, the reader is referred to [3] because non-stationary
sources are dealt with in great detail in this book, and the concern here is
with a non-stationary process, albeit, a non-stationary Markoff chain. For
understanding Markoff chains, the reader is referred to [7], [8], and [9], and
for understanding convergence rates of Markoff chains, the reader is referred
to [10].

2. Notation and definitions

X and Y denote the source input and source reproduction spaces respectively.
Both are assumed to be finite sets. Asume that X = Y. Assume that the
cardinality of X is greater than or equal to 2. d : X × Y → [0,∞) is the
single-letter distortion measure. Assume that d(x, x) = 0 ∀x ∈ X and that
d(x, y) > 0 if x �= y. Denote

Dmax � max
x∈X,y∈Y

d(x, y), Dmin � min
{x∈X,y∈Y|d(x,y)>0}

d(x, y)(1)

In what follows, the distortion levels will be assumed to be strictly greater
than 0. For xn ∈ Xn, yn ∈ Yn, the n-letter rate-distortion measure is defined
additively:

dn(xn, yn) �
n∑

i=1

d(xn(i), yn(i))(2)

where xn(i) denotes the ith component of xn and likewise for yn.
Let X1, X2, . . ., be a Markoff chain with transition probability matrix

P , where each Xi is a random-variable on X. For x, x′ ∈ X, pxx′ denotes the
probability that the Markoff chain is in state x′ at time t+1 given that it is
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in state x at time t. Let pxx′ be independent of t, that is, the Markoff chain is
time homogeneous. Assume that the Markoff chain is irreducible, aperiodic.
This implies that it has a stationary distribution, henceforth denoted by π,
which will be reserved exclusively for the stationary distribution. In order
to specify the Markoff chain completely, we need to specify its initial distri-
bution. If X1 ∼ π′ denote the Markoff chain (X1, X2, . . .) by X[π′,P ]. Recall
that P is the transition probability matrix of the Markoff chain. X[π′,P ] will
be called the Markoff X[π′,P ] chain. X

n
[π′,P ] will denote (X1, X2, . . . , Xn).

The above mentioned assumptions that X = Y, d(x, x) = 0 and d(x, y) >
0 is x �= y, that the distortion levels are strictly greater than zero, and that,
the Markoff chain is irreducible, aperiodic, will be made throughtout this
paper and will not be re-stated.

A rate R source-code is a sequence:
< en, fn >∞

1 , where en : Xn → {1, 2, . . . , 2�nR�} and fn : {1, 2, . . . , 2�nR�} →
Yn.

We say that rate R is achievable for source-coding the Markoff X[π′,P ]

source within distortion-level D under the expected distortion criterion if
there exists a rate R source code < en, fn >∞

1 such that

lim sup
n→∞

E

[
1

n
dn(Xn

π′ , fn(en(Xn
[π′,P ])))

]
≤ D(3)

The infimum of all achievable rates is the rate-distortion function RE
X[π′,P ]

(D).

The block-independent approximation (henceforth shortened to BIA)
XT

[π′,P ] source is a sequence of random vectors (S1, S2, . . . , Sn, . . .), where

Si are independent, and ∀i, Si ∼ XT
[π′,P ]. To simplify notation, we will

sometimes denote (S1, S2, . . .) by S. Sn will denote (S1, S2, . . . , Sn). Note
that BIA XT

[π′,P ] source is an i.i.d. vector source and will also be called

the vector i.i.d. XT
[π′,P ] source. Since the BIA XT

[π′,P ] source is an i.i.d vec-
tor source, the rate-distortion function for it is defined in exactly the same
way as for an i.i.d. source. The details are as follows: The source input
space for the BIA XT

[π′,P ] source is XT and the source reproduction space

is YT . Denote these by S and T respectively. A generic point in S is a T -
length sequence s. The ith component of s is denoted by s(i). A generic
point in T is a T -length sequence t. The ith component of t is denoted by
t(i). The single letter distortion measure is denoted by d′ and is defined as
d′(s, t) �

∑T
j=1 d(s(j), t(j)). For sn ∈ Sn, tn ∈ Tn, the n-letter distortion

measure d′n is defined additively: d′n(sn, tn) �
∑n

i=1 d
′(sn(i), tn(i)). Note

that s can be thought of as either a scalar in S or a T dimensional vector in
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XT . With this identification, d′ = dT and d′n can be thought of as dnT . A rate
R source code is a sequence < en, fn >∞

1 , where en : Sn → {1, 2, . . . , 2�nR�}
and fn : {1, 2, . . . , 2�nR�} → Tn. We say that rate R is achievable for
source-coding the BIA XT

[π′,P ] source within distortion-level D under the
expected distortion criterion if there exist a sequence of rate R source codes
< en, fn >∞

1 such that

lim sup
n→∞

E

[
1

n
d′n(Sn, fn(en(Sn)))

]
≤ D(4)

The infimum of all achievable rates corresponding to a given distortion level
D is the operational rate-distortion function at that distortion level, hence-
forth denoted by RE

XT
[π′,P ]

(D). The normalized rate-distortion function at

block-length T and distortion level D is defined as

1

T
RE

XT
[π′,P ]

(TD)(5)

and the limit is

lim
T→∞

1

T
RE

XT
[π′,P ]

(TD)(6)

The theorems in this paper prove the equality of RE
X[π′,P ]

(D) and (6), and

that these functions do not depend on π′. The statements of these theorems
are stated in Section 3. Before that, we carry out a discussion on the rate-
distortion function of a non-stationary Markoff chain.

3. Main result

Theorem 1 (Rate distortion function of a Markoff chain does not depend on
the initial distribution). RE

X[π′,P ]
(D) = RE

X[π,P ]
(D) where π is the stationary

distribution and π′ is an arbitrary probability distribution on X

Proof. Follows from [3], Chapter 12, in particular, Section 12.8, by noting
that a Markoff source which does not start in the stationary distribution is
an AMS source. An independent proof tailored for Markoff chains can be
found in Appendix A.

Theorem 2 (The normalized rate-distortion functions of BIA of a Markoff
chain is independent of the initial distribution). For D > 0,

lim
T→∞

1

T
RE

XT
[π′,P ]

(TD) exists, and is independent of π′(7)
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This theorem will be proved in Section 5.

Theorem 3 (The normalized rate-distortion function of BIA of a Markoff
chain is equal to the rate-distortion function of the Markoff chain and both
are independent of the initial distribution).

RE
X[π′,P ]

(D) = RE
X[π,P ]

(D) = lim
T→∞

1

T
RE

XT
[π,P ]

(TD) = lim
T→∞

1

T
RE

XT
[π′,P ]

(TD)

(8)

where π is the stationary distribution and π′ is an arbitrary distribution on
X.

Proof. Follows from Theorems 1, 2 and [2], Pages 490-500.

In order to prove Theorem 2, we need more notation and this is the
subject of the next section. The theorem is proved in the section following
the next. In particular, Jτ (X

T
[π′,P ]) is defined in order to make precise, the

intuition stated in Section 1, and is the random variable corresponding to the
Markoff chain after ‘removing’ the first τ times slots, and thus, as τ → ∞,
for T > τ , the initial distribution of the Markoff chain J[τ ](X

T
π′,P ) tends to

the stationary distribution of the Markoff chain.

4. Further notation

The information-theoretic rate-distortion function of the vector i.i.d. XT
[π′,P ]

source is denoted and defined as

RI
XT

[π′,P ]

(D) � inf
W

I(XT ;Y T )(9)

where XT ∼ XT
[π′,P ] and W is the set of W : S → P(T) (that is, W is a

conditional PMF from S to T) defined as

W �

⎧⎨
⎩W

∣∣∣∣∣∣
∑

s∈S,y∈T
pXT

[π′,P ]
(s)W (t|s)d′(s, t) ≤ D

⎫⎬
⎭(10)

where pXT
[π′,P ]

denotes the distribution corresponding to XT
[π′,P ]. Note that

this is the usual definition of the information-theoretic rate-distortion func-
tion for an i.i.d. source; just that the source under consideration is vector
i.i.d. Recall, also, the rate-distortion function, that the information-theoretic
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rate-distortion function for an i.i.d. source is equal to the operational rate-
distortion function of the source (requires some assumptions which are met
in this paper because the input and reproduction spaces are finite).

Let s ∈ S. Denote by Vτ the projection transformation. Vτ (s) � (s(τ +
1), s(τ + 2), . . . s(T )). Fix s. Denote A � {t ∈ S | Vτ (t) = Vτ (s)}. Under the
distribution induced by XT

[π′,P ], the probability of the set A is

π′ (τ)(s(τ + 1))

T−1∏
i=τ+1

ps(i)s(i+1)(11)

for some distribution π′ (τ) on X which satisfies π′ (τ)(x) → π(x) as τ → ∞
∀x ∈ X. Note further, that if π′ = π, π′ (τ) = π. For x ∈ X, denote π′ (τ)(x) =
π(x) + δ(τ)(x) where δ(τ)(x) → 0 as τ → ∞. δ(τ)(x) may be negative.

Denote by Jτ (X
T
[π′,P ]), the probability distribution on XT−τ which causes

the probability of a sequence r ∈ XT−τ to be

π′ (τ)(r(1))
T−1∏
i=1

pr(i)r(i+1)(12)

Note that Jτ (X
T
[π′,P ]) is the marginal of XT

[π′,P ] on the last T −τ dimensions.

An i.i.d. source can be formed from Jτ (X
T
[π′,P ]) by taking a sequence of inde-

pendent random vectors, each distributed as Jτ (X
T
[π′,P ]). This will be called

the vector i.i.d. Jτ (X
T
[π′,P ]) source. The rate-distortion function for the vec-

tor i.i.d. Jτ (X
T
[π′,P ]) source in defined in the same way as the rate-distortion

function for the vector i.i.d. XT
[π′,P ] source: For T − τ length sequences, the

single-letter distortion measure is defined as d′′(p, q) =
∑T−τ

i=1 d(p(i), q(i))
where p ∈ XT−τ , q ∈ YT−τ . The n-letter rate-distortion measure is defined
additively: d′′n(pn, qn) =

∑n
i=1 d

′′(pn(i), qn(i)) where pn ∈ (XT−τ )n and qn ∈
(YT−τ )n. A sequence of rateR source codes is a sequence< en, fn >∞

1 , where
en : (XT−τ )n → {1, 2, . . . , 2�nR�} and fn : {1, 2, . . . , 2�nR�} → (YT−τ )n. The
rate-distortion functions for i.i.d. Jτ (X

T
[π′,P ]) source when the distortion mea-

sure is d” is defined analogously as for the i.i.d. XT
[π′,P ] vector source; the

details are omitted. Denote the operational rate-distortion function for the
vector i.i.d. Jτ (X

T
[π′′,P ]) source by RE

Jτ (XT
[π′,P ]

)(·) and denote the information-

theoretic rate-distortion function for the same source by RI
Jτ (XT

[π′,P ]
)(·).

For the same reason as that stated before regarding d′, d′′ = dT−τ and
d′′n can be thought of as dn(T−τ).
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5. Proof of the Theorem 2

Before we prove the theorem note the following, which is a trivial conse-
quence of the definition of convexity, see for example, [11]:

Lemma 1. Let f : [0,∞) → [0,∞) be a convex ∪ non-increasing function.
Let f(0) = K. Let 0 < a < a′. Then,

f(a)− f(a′) ≤ K

a
(a′ − a)(13)

Proof.

Definition of convexity(14)

⇒
(
1− a

a′

)
f(0) +

a

a′
f(a′) ≥ f(a) ⇒ f(a′)− f(a)

a′ − a
≥ f(a)− f(0)

a− 0

⇒ f(a)− f(a′)

a′ − a
≤ f(0)− f(a)

a
⇒ f(a)− f(a′) ≤ K

a
(a′ − a)

This lemma will be used crucially in the proof of the theorem, which
follows below.

Proof of Theorem 2:

Proof. By the rate-distortion theorem, RE
XT

[π′,P ]

(TD) = RI
XT

[π′,P ]

(TD). Com-

paring definitions with [2], Page 491,

1

T
RI

XT
[π,P ]

(TD) (notation in this document) = RT (D) (notation in [2])

(15)

In order to charify the above, what we mean is that our notation (left hand
side of the above equation) is different from the notation used in [2]. The
notation used in [2] is the right hand side of the above equation. We make
this correspondence because we want to use results from [2] in what follows.
By Theorem 9.8.1 in [2], it follows that

lim
T→∞

1

T
RE

XT
[π,P ]

(TD) exists(16)

(16) will be used crucially towards the end of the proof.

The intuition stated in Section 1 is made precise here, in the following
three steps:
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1. Bound the difference between RE
Jτ (XT

[π′,P ]
)(·) and RE

Jτ (XT
[π,P ])

(·).
2. Relate RE

Jτ (XT
[π′,P ]

)(·) and RE
XT

[π′,P ]

(·).
3. Use these relations to prove the desired result by computing various

bounds.

The first step in the proof is to come up with a bound for the difference

between RE
Jτ (XT

[π′,P ]
)(·) and RE

Jτ (XT
[π,P ])

(·). To this end, we first do the same

for RI
Jτ (XT

[π′,P ]
)(·) and RI

Jτ (XT
[π,P ])

(·). To this end, denote the distribution cor-

responding to Jτ (X
T
[π′,P ]) on XT−τ by Q′, and the distribution corresponding

to Jτ (X
T
[π,P ]) by Q. The l1 distance between Q′ and Q,

l1(Q′, Q) �
∑

xt−τ∈XT−τ

∣∣Q′(xT−τ )−Q(xT−τ )
∣∣

(17)

=
∑

xt−τ∈Xt−τ

|π′(τ)(xt−τ (1)− π(τ)(xt−τ (1)|
T−τ−1∏
i=1

pxt−τ (i)xt−τ (i+1)

=
∑
x∈X

|δ(τ)(x)| × 1

� δ(τ)

In the above calculation, we have used the fact that if π′ = π, π′ (τ) = π.

Condition (Z) stated in [12] holds based on the assumptions we have

made, Lemma 2 in [12] can be applied, and it follows that for τ sufficiently

large (reasoning stated below after a few lines) and any T > τ ,

∣∣∣∣ 1

T − τ
RI

Jτ (XT
[π′,P ]

)((T − τ)D)− 1

T − τ
RI

Jτ (XT
[π,P ])

((T − τ)D)

∣∣∣∣(18)

≤ 1

T − τ

7d∗

d̃
δ(τ) log

(
|X|T−τ |Y|T−τ

δ(τ)

)

In (18), δ(τ) log 1
δ(τ) is defined as zero if δ(τ) is zero. |XT−τ | and |YT−τ | denote

the cardinalities of the input and output spaces on which the random source

Jτ (X
T
[π′,P ]) is defined. d

∗ is defined as

d∗ � max
xT−τ∈XT−τ ,yT−τ∈YT−τ

d′′(xT−τ , yT−τ ) = (T − τ)Dmax(19)
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and d̃ is defined as

d̃ � min
{xT−τ∈XT−τ ,yT−τ∈YT−τ | d′′(xT−τ ,yT−τ )>0}

d′′(xT−τ , yT−τ ) = Dmin(20)

It follows from (18) that

∣∣∣∣ 1

T − τ
RI

Jτ (XT
[π′,P ]

)((T − τ)D)− 1

T − τ
RI

Jτ (XT
[π,P ])

((T − τ)D)

∣∣∣∣(21)

≤ 7
Dmax

Dmin
δ(τ) log

(
|X|T−τ |Y|T−τ

δ(τ)

)

= 7
Dmax

Dmin

[
δ(τ) log

1

δ(τ)
+ (T − τ) log(|X||Y|)δ(τ)

]

From Fact 3 and Fact 4 in [10], it follows, by noting that δ(τ) =∑
x∈X |π′ (τ)(x) − π(x)| ≤ |X|maxx∈X |π′ (τ)(x) − π(x)|, that for sufficiently

large τ ,

δ(τ) ≤ |X|CτJ−1λτ−J+1
∗(22)

for some λ∗ < 1, some constant J and some constant C. We will take

τ =
√
T . Also, we have stated above that (18) holds, but that this requires

τ to be sufficiently large. This is because by Lemma 2 in [12], we need τ

large enough so that

δ(τ) ≤ Dmin

4Dmax(T − τ)
(23)

which is possible for T sufficiently large and τ =
√
T , considering the fact

that δ(τ) → 0 as τ → ∞ exponentially fast in τ by (22) and that, the

polynomial factors in τ in the expression (22) for δ(τ) do not matter (see, for

example, [11]), and this is another reason why we require τ to be sufficiently

large. It follows, then, from (21), (22), and the equality of the information-

theoretic and operational rate-distortion functions for i.i.d. sources, that

with τ =
√
T ,

∣∣∣∣ 1

T − τ
RI

Jτ (XT
[π′,P ]

)((T − τ)D)− 1

T − τ
RI

Jτ (XT
[π,P ])

((T − τ)D)

∣∣∣∣(24)

� αT → 0 as T → ∞ for some αT
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where αT → 0 as T → ∞ follows for the same reason of exponential fall
of δ(τ) with τ as stated above. The bound (24) will be used crucially later,
towards the end of the proof.

Next step is to relate RE
Jτ (XT

[π′,P ]
)(·) and RE

XT
[π′,P ]

(·). We will argue the

following:

RE
XT

[π′,P ]

((T − τ)D + τDmax) ≤ RE
Jτ (XT

[π′,P ]
)((T − τ)D)(25)

and

RE
Jτ (XT

[π′,P ]
)(TD) ≤ RE

XT
[π′,P ]

(TD)(26)

Very rough idea to prove (25) is the following: Given a sequence of rate
R source codes for the vector i.i.d. Jτ (X

T
[π′,P ]) source, we can use the same

sequence of rate R source-codes for the vector i.i.d. XT
[π′,P ] source by not cod-

ing the time-slots which were not projected onto when defining Jτ (X
T
[π′,P ]).

These banished slots will incur a maximum distortion of τDmax per symbol
of XT

[π′,P ]. (25) follows. See Appendix B for precise argument.

Very rough idea to prove (26) is the following: Consider a two-dimen-
sional random vector (A,B) on some space and the i.i.d. source got by
taking i.i.d. copies of (A,B). Consider a distortion measure which is additive
over the two dimensions. Consider, also, the i.i.d. source formed by taking
identical copies of A. Then, for a given distortion level, the rate-distortion
function of the vector i.i.d. (A,B) source is greater than or equal to the
rate-distortion function of the i.i.d. A source. This is stated more rigorously
in Appendix B. Note that Jτ (X

T
[π,P ]) is a projection of XT

[π,P ] onto certain
dimensions and the distortion measure over these dimensions is additive.
(26) follows from this.

Next, we get to Step 3. In what follows, τ =
√
T . Assuming TD > τDmax

(which holds for T sufficiently large if τ =
√
T ), by replacing D in (25) by

TD − τDmax

T − τ
(27)

and by (26), it follows that

RE
Jτ (XT

[π′,P ]
)(TD) ≤ RE

XT
[π′,P ]

(TD) ≤ RE
Jτ (XT

[π′,P ]
)(TD − τDmax)(28)

It follows from (28) by rearranging, that

0 ≤ RE
XT

[π′,P ]

(TD)−RE
Jτ (XT

[π′,P ]
)(TD)(29)
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≤ RE
Jτ (XT

[π′,P ]
)(TD − τDmax)−RE

Jτ (XT
[π′,P ]

)(TD)

By noting that RE
Jτ (XT

[π′,P ]
)(D) is a non-increasing, convex ∪ function of D

which is upper bounded by (T − τ) log |X| at D = 0, it follows, for T suffi-

ciently large, by Lemma 1 that

RE
Jτ (XT

[π′,P ]
)(TD − τDmax)−RE

Jτ (XT
[π′,P ]

)(TD) ≤ τDmax log |X|
T − τ

TD − τDmax

(30)

From (30) and (29), it follows that

lim
T→∞

∣∣∣∣ 1T RE
XT

[π′,P ]

(TD)− 1

T
RE

Jτ (XT
[π′,P ]

)(TD)

∣∣∣∣ = 0(31)

Note further, by noting that RE
Jτ (XT

[π′,P ]
)(TD) ≤ (T − τ) log |X|, that

lim
T→∞

∣∣∣∣ 1T RE
Jτ (XT

([π′,P ]
)(TD)− 1

T − τ
RE

Jτ (XT
[π′,P ]

)(TD)

∣∣∣∣
(32)

≤ lim
T→∞

τ

T (T − τ)
(T − τ) log |X| = 0

Also, by noting that RE
Jτ (XT

[π′,P ]
)(D) is a non-increasing, convex ∪ function

of D which is upper bounded by (T −τ) log |X|, it follows by use of Lemma 1

that

lim
T→∞

∣∣∣∣ 1

T − τ
RE

Jτ (XT
[π′,P ]

)(TD)− 1

T − τ
RE

Jτ (XT
[π′,P ]

)((T − τ)D)

∣∣∣∣ ≤
(33)

lim
T→∞

1

T − τ

(T − τ) log |X|
(T − τ)D

τD → 0 as T → ∞

It follows, then, from (31), (32), (33), by use of the triangle inequality, and

by noting that

lim
n→∞

an + lim
n→∞

bn + lim
n→∞

cn = lim
n→∞

(an + bn + cn)(34)

if the three limits on the left hand side exist (follows from definitions, see
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for example [11]), that

lim
T→∞

∣∣∣∣ 1T RE
XT

[π′,P ]

(TD)− 1

T − τ
RE

Jτ (XT
[π′,P ]

)((T − τ)D)

∣∣∣∣ = 0(35)

From (24) and (35), it follows by the use of triangle inequality, that for T
sufficiently large,

∣∣∣∣ 1T RE
XT

[π′,P ]

(TD)− 1

T − τ
RE

Jτ (XT
[π,P ])

((T − τ)D)

∣∣∣∣ ≤ αT + κT(36)

for some κT → 0 as T → ∞.
The above equation holds for π′ = π too, that is, for T sufficiently large,

∣∣∣∣ 1T RE
XT

[π,P ]
(TD)− 1

T − τ
RE

Jτ (XT
[π,P ])

((T − τ)D)

∣∣∣∣ ≤ αT + ηT(37)

for some ηT → 0 as T → ∞.
From (36) and (37), by use of the triangle inequality, it follows, that for

T sufficiently large,
∣∣∣∣ 1T RE

XT
[π′,P ]

(TD)− 1

T
RE

XT
[π,P ]

(TD)

∣∣∣∣ ≤ 2αT + ηT + κT(38)

From (38) and (16), and by noting that αT , κT , ηT → 0 as T → ∞, it follows
that

lim
T→∞

1

T
RE

XT
[π′,P ]

(TD) exists and is independent of π′(39)

This finishes the proof.

The assumptions X = Y, d(x, x) = 0, d(x, y) > 0 if x �= y which have
been made are not necessary, and can be replaced by weaker assumptions.
Nothing is lost in terms of idea of the proof by making these assumptions,
and making these assumptions prevents one from thinking of pathological
cases; for these reasons they have been made.

6. Discussion and research directions

6.1. A note on the definition of the distortion incurred by a
source-code

To be entirely correct, the distortion produced by a source-code for a Markoff
source should be defined as follows: Let n be the block-length. Denote Ui �
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X in
(i−1)n+1. Each Ui is thus, a random vector of length n. Let < en, fn >∞

1 be
a source to code the source X[π′,P ]. When the block length is n, we would like
to use the source-code successively over all intervals of time of block-length
n. Thus, it is more logical to define the distortion as:

lim sup
n→∞

sup
i∈N

E

[
1

n
dn(Ui, f

n(en(Ui)))

]
(40)

and correspondingly define the rate-distortion function. The author believes
(but it still requires a proof) that this does not change the theorems stated in
this paper for the same reason as why the statements in this paper are true,
that is, because, a Markoff chain converges to the stationary distribution at a
rate which is independent of the initial distribution of the Markoff chain (and
further, this rate of convergence is exponential as we shall see later, though
this fact may not be needed in proving that this change of definition of
distortion does not make a difference to the statements of the theorem). Note
that if π′ = π, the stationary distribution, the sup in the above definition
can be removed since the distribution of X(i−1)n+1 is independent of i.

6.2. Order m time homogeneous Markoff chains

In an order m time homogeneous Markoff chain, the distribution of Xi

may depend on Xi−1, Xi−2, . . . , Xi−m in a way which is independent of
i. Consider an order m Markoff chain X[π′,P ] = (X1, X2, X3, . . .) where
now, the initial distribution is the distribution of (X1, X2, . . . , Xm) and
the transition matrix P is a transition matrix giving the distribution of
Xi given (Xi−1, Xi−2, . . . , Xi−m). Define Yi = X im

(i−1)m+1. Then, Y[γ′,Q] =

(Y1, Y2, Y3, . . .) is a Markoff chain where γ′ and Q are defined in terms of
π′ and P respectively. Assume that Y[μ,Q] = (Y1, Y2, Y3, . . .) is irreducible,
aperiodic. Then, Theorems 1, 2, 3 hold for the Markoff chain Y[γ′,Q] and its
block-independent approximations. Based on this, the author conjectures
that Theorems 1, 2, 3 should also be true for the Markoff chainX[π′,P ] and its
block independent approximations. The idea here is that (X1, X2, . . . , Xim+
r) where r < m is the same as (Y1, Y2, . . . , Ym, Xim+1, Xim+2, . . . , Xim+r)
and the length of the sequence (Xim+1, Xim+2, . . . , Xim+r), that is, r is much
less than the length of the sequence (X1, X2, . . . Xim as i gets larger and
larger. In order to prove the result rigorously, an ‘interpolation’ argument so
that (Xim+1, Xim+2, . . . , Xim+r) can be incorporated after (Y1, Y2, . . . , Ym),
is needed. Many of the ideas used in this paper would be likely needed to find
such an interpolation argument. This is a conjecture at this point and re-
quires proof; however, the author would be surprised, for the above reasons,
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if Theorems 1, 2, 3 do not hold for order m Markoff chains which satisfy the
irreducibility, aperiodicity condition, as stated above.

6.3. ψ-mixing sources or a variant?

A set of sources to which this result may be generalizable with the proof
technique used is ψ-mixing sources or close variants, appropriately defined.
See [13], [14] and [15] for mixing of sources and [14], [15], in particular,
for results on ψ-mixing sources. The main property (among others) that
made ψ-mixing sources amenable to the result in [15] is the decomposition
in Lemma 1 in [15], wherein, a stationary ψ-mixing source is written as a
convex combination of an i.i.d. distribution and another general distribution
where the i.i.d. distribution dominates as memory is lost with time. Precisely,
the equation is Equation (19) in [15]:

Pr(Xt+τ+T
t+τ+1 ∈ B|Xt

1 ∈ A) = (1− λτ )PT (B) + λτP
′
t,τ,T,A(B)(41)

where λτ → 0 as τ → ∞. This lemma, though, required stationarity. If a
variant of (41) would hold for non-stationary sources, then, there is a possi-
bility that the result in this paper be generalized to such sources. Irreducible,
aperiodic Markoff chains statisfy this property, with PT (B) taken as the sta-
tionary distribution, and P ′ is some distribution depending on the initial
distribution of the Markoff chain. An important bound in proving Theorem
2 in this paper is the l1 distance between Q and Q′, see (17). This result will
hold for sources which satisfy (41) or a variant. Similarly, proving (25) and
(26) in the proof of Theorem 2 or similar equations may also be possible.
The rest of the proof of Theorem 2 is bounding various differences of ‘close
by’ rate-distortion functions and this may be possible too. This is just an
idea at this point and needs to be studied carefully to see if any of this is at
all possible.

6.4. Other extensions

In addition to the extensions discussed in the previous two sub-sections,
it would be worthwhile trying to generalize the theorem in this paper to
ergodic sources to the extent possible; this would not only make the re-
sult general, but also shed light on the ‘internal workings’ of rate-distortion
theory. Further, it would be worthwhile trying to prove this result using
existing literature, in particular, see if it follows directly from some result,
for example, in [3]; this would help with generalization and insight into the
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‘internal workings’ of rate-distortion theory, too. It would also be worthwhile
to explore whether the theorems in this paper hold for AMS sources, the
definition for which can be found in [3]. Theory of large deviations might
also have a role to play in the extensions to more general ergodic sources.

6.5. Recapitulation

In this paper, it was proved that the limit of the normalized rate-distortion
functions of block independent approximations of an irreducible, aperiodic
Markoff chain is independent of the initial distribution and is equal to the
rate-distortion function of the Markoff chain. Various extensions have been
discussed.
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Appendix A. Proof of Theorem 1

Proof. The proof given here, makes precise, the intuition stated in Sec-
tion 1. Consider two Markoff chains X[π′,P ] = (X ′

1, X
′
2, . . .) and X[π′′,P ] =

(X ′′
1 , X

′′
2 , . . .), where π′ and π′′ probability distributions on X. Denote

(X ′
1, X

′
2, . . . , X

′
n) by X ′n and (X ′′

1 , X
′′
2 , . . . , X

′′
n) by X ′′n. Let τ be an in-

teger. Think of n as large and τ to be much smaller than n. Denote the
distribution of X ′

τ by μ′ and the distribution of X ′′
τ by μ′′. Denote, ε′ =∑

x∈X |μ′(x) − π(x)| and ε′′ =
∑

x∈X |μ′′(x) − π(x)|, where π is the station-
ary distribution of the Markoff chain (note that both Markoff chains have
the same transition probability matrix P ). For every ε > 0, ∃τ∗ε such that
ε′ < ε

2 and ε′′ < ε
2∀τ ≥ τ∗ε . Let < en, fn >∞

1 be a source-code. Let the block-

length be n. Think of n large and τ∗ε << n. Use (en, fn) to code K ′n �
(X ′

τ∗
ε +1, X

′
τ∗
ε +2, . . . , X

′
τ∗
ε +n) and K ′′n � (X ′′

τ∗
ε +1, X

′′
τ∗
ε +2, . . . , X

′′
τ∗
ε +n). Denote

the distribution of K ′n(τ∗ + 1) by μ1 and the distribution of K ′′n(τ∗ + 1)
by μ2. Note that

∑
x∈X |μ1(x)−π(x)| < ε

2 and
∑

x∈X |μ2(x)−π(x)| < ε
2 . By

the triangle inequality, it follows that
∑

x∈X |μ1(x)− μ2(x)| < ε. Then,

∣∣∣∣E
[
1

n
dn(K ′n, fn(en(K ′n)))

]
− E

[
1

n
dn(K ′′n, fn(en(K ′′n)))

]∣∣∣∣(42)
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=

∣∣∣∣∣∣
∑

x1,x2,...,xn∈X
μ1(x1)

n∏
i=2

pxi−1xi
dn(xn, fn(en(xn)))−

∑
x1,x2,...,xn∈X

μ2(x1)

n∏
i=2

pxi−1xi
dn(xn, fn(en(xn)))

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

x1,x2,...,xn∈X
(μ1(x1)− μ2(x1))

n∏
i=2

pxi−1xi
dn(xn, fn(en(xn)))

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑

x1,x2,...,xn∈X
|μ1(x1)− μ2(x1)|

n∏
i=2

pxi−1xi
dn(xn, fn(en(xn)))

∣∣∣∣∣∣

≤ Dmax

∣∣∣∣∣∣
∑

x1,x2,...,xn∈X
|μ1(x1)− μ2(x1)|

n∏
i=2

pxi−1xi

∣∣∣∣∣∣

= Dmax

∣∣∣∣∣∣
∑
x1∈X

|μ1(x1)− μ2(x1)|
∏

x2,...,xn∈X
pxi−1xi

∣∣∣∣∣∣
= Dmax

∣∣∣∣∣
∑
x1∈X

|μ1(x1)− μ2(x1)| × 1

∣∣∣∣∣ , since x1 is fixed in the product

≤ Dmaxε

For δ > 0 (think of δ small), D > 0, let < e′n, f ′n >∞
1 be a source-code

with rate ≤ RE
[π′,P ](D) + δ to code the X[π′,P ] source with distortion D.

Construct a source code < e′′n, f ′′n >∞
1 to code the X[π′′,P ] source as fol-

lows. When the block-length is n+τ∗ε , code X
′′
1 , X

′′
2 , . . . , X

′′
τ∗
ε
arbitrarily, and

code (X ′′
τ∗
ε +1, X

′′
τ∗
ε +2, . . . , X

′′
τ∗
ε +n) using (e′n, f ′n). It follows, by calculation of

the distortion achieved for (X ′′
1 , X

′′
2 , . . . , X

′′
τ∗+n) by use of this code, in the

process, using (42), and by noting that τ∗

τ∗+n is a decreasing function of n,
that

RE
X[π′′,P ]

(
D +

τ∗ε
τ∗ε + n

Dmax + εDmax

)
≤ RE

X[π′,P ]
(D) + δ(43)

ε can be made arbitrarily small, τ∗ε will depend on ε and n can be made arbi-
trarily large. It follows that for every α > 0, every δ > 0, RE

X[π′′,P ]
(D+α) ≤

RE
X[π′,P ]

(D)+ δ. By the continuity of RE
X[π′,P ]

(D) in D, it follows that ∀δ > 0

RE
X[π′′,P ]

(D) ≤ RE
X[π′,P ]

(D)+δ. It follows, then, since δ > 0 can be arbitrarily
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small, that RE
X[π′′,P ]

(D) ≤ RE
X[π′,P ]

(D). By interchanging π′ and π′′, it follows

that, RE
X[π′,P ]

(D) ≤ RE
X[π′′,P ]

(D) Thus, RE
X[π′,P ]

(D) = RE
X[π′′,P ]

(D).

Appendix B. Proofs of (25) and (26)

To prove (25):

Proof. Let < en, fn >∞
1 be the source code for the i.i.d. vector Jτ (X

T
[π,P ])

source.
Note that en : (XT−τ )n → {1, 2, . . . , 2�nR�} and
fn : {1, 2, . . . , 2�nR�} → (YT−τ )n.
Let sn ∈ Sn be a realization of Sn, the n-blocklength vector i.i.d. XT

[π,P ]
source which needs to be coded.

sn = (sn(1), sn(2), . . . sn(n)) where each sn(i) ∈ S:
sn(i) = (sn(i)(1), sn(i)(2), . . . , sn(i)(T )).
Recall the projection operator, Jτ (s

n(i)) = (sn(i)(τ + 1), . . . , sn(i)(T )).
Denote Jn

τ (s
n) = (Jτ (s

n(1)), Jτ (s
n(2)), . . . , Jτ (s

n(n))).
Then, Jn

τ (s
n) is an element of (XT−τ )n. Denote fn(en(Jn

τ (s
n))) = t′n.

Note that t′n = (t′n(1), t′n(2), . . . , t′n(n)) where
t′n(i) = (t′n(i)(1), t′n(i)(2), . . . , t′n(i)(T − τ)).
Fix a random y ∈ Y. Define the extension transformation,
Eτ (t

′n(i)) = (y, y, . . . , y, t′n(i)(1), t′n(i)(2), . . . , t′n(i)(T −τ)), where the
initial y’s occur τ times.

Denote En
τ (t

′n) = (Eτ (t
′n(1)), Eτ (t

′n(2)), . . . , Eτ (t
′n(n))).

Note that < en ◦Jn
τ , E

n
τ ◦fn >∞

1 is a rate R source code to code the i.i.d.
vector XT

[π,P ] source and that, d′n(sn, En
τ (f

n(en(Jn
τ (s

n))))) ≤ d′′n(s′n, t′n)+

nτDmax. (25) follows.

To prove (26):

Proof. Let (A,B) be a random vector on A × B. Let (A1, B1), (A2, B2), . . .
be a sequence where (Ai, Bi) are independent of each other and (Ai, Bi) ∼
(A,B). This sequence is the vector i.i.d (A,B) source. A × B is the source
space. Let the source reproduction space be A′ ×B′. d1 : A×A′ → [0,∞) is
a distortion measure. d2 : B

′ × B′ → [0,∞) is a distortion measure. Assume
that A,A′,B,B′ are finite sets. Define: d0((a, b), (a

′, b′)) � d1(a, a
′)+d2(b, b

′).
dn1 and dn2 , d

n
0 are respectively defined additively from d1, d2 and d0. We can

then define the rate-distortion functions for the i.i.d. A source and the i.i.d.
(A,B) source, denoted, respectively, by RE

A(·) and RE
(A,B)(·). Then,

RE
A(D) ≤ RE

(A,B)(D)(44)
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(44) is proved as follows: Given a code to code the i.i.d. (A,B) source, think
of Bis as a source of common randomness, and use the obvious variant of
the same code for coding the i.i.d. A source. Since the same code is used,
(44) follows. Existence of a random code with a certain distortion implies
the existence of a deterministic code with the same or lesser distortion. From
this, (44) follows for deterministic codes.
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