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Motivation: Surface generation and visualization are some of the
most important tasks in biomolecular modeling and computation.
Eulerian solvent excluded surface (ESES) software provides ana-
lytical solvent excluded surface (SES) in the Cartesian grid, which
is necessary for simulating many biomolecular electrostatic and ion
channel models. However, large biomolecules and/or fine grid reso-
lutions give rise to excessively large memory requirements in ESES
construction. We introduce an out-of-core and parallel algorithm
to improve the ESES software.

Results: The present approach drastically improves the spatial
and temporal efficiency of ESES. The memory footprint and time
complexity are analyzed and empirically verified through extensive
tests with a large collection of biomolecule examples. Our results
show that our algorithm can successfully reduce memory footprint
through a straightforward divide-and-conquer strategy to perform
the calculation of arbitrarily large proteins on a typical commod-
ity personal computer. On multi-core computers or clusters, our
algorithm can reduce the execution time by parallelizing most of
the calculation as disjoint subproblems. Various comparisons with
the state-of-the-art Cartesian grid based SES calculation were done
to validate the present method and show the improved efficiency.
This approach makes ESES a robust software for the construction
of analytical solvent excluded surfaces.

Availability and implementation: http://weilab.math.msu.
edu/ESES.
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1. Introduction

As a principal tool to study the biomolecular world, molecular modeling
and analysis have an increasing impact in computational biology. The accu-
racy and efficiency of molecular modeling and analysis are often crucial in
enabling more sophisticated downstream research. Researchers have made
persistent efforts in reconstructing and visualizing the details of biomolecules
through various simplifications, including the ball-and-stick model by von
Hofmann, dated back to 1865, and the ribbon diagram by Richardson for
illustrating protein structures. However, in order to simulate physical phe-
nomena like the electrostatic distribution of macromolecules in a cellular
environment, a much more elaborate model is needed to describe the in-
terface between solvent and solute regions. The van der Waals surface (i.e.,
“atom and bond” model by Corey and Pauling in 1953) was introduced to
describe such interfaces, where each type of atoms was described by a sphere
with the corresponding van der Waals radius. For various simulations and
geometric smoothness, concepts of solvent accessible surface (SAS) [7, 18]
and solvent excluded surface (SES) [12, 17] were built on top of the van der
Waals radii. SAS captures the trajectory of the center of a probe atom rolling
on the van der Waals surface as the interface delineating the boundary of
regions accessible by the center of any solvent molecule. SES is defined by
the boundary of the union of all possible outside probe balls, and thus con-
sists of three types of patches. Specifically, convex patches, where the probe
touches one of the atoms of the molecule, saddle patches, where the probe
touches two atoms, and concave patches, where the probe touches three or
more atoms, are parts of an SES for a biomolecule.

All of these models still fail to guarantee the interface smoothness, as
singularities and sharp edges cannot be completely avoided for the afore-
mentioned geometry models for biomolecules. Minimal molecular surface
(MMS) based on the mean curvature flow was introduced to resolve this
issue [2, 3]. Various Gaussian surfaces [4, 5, 8, 9, 23, 25], skinning surface
[6] and flexibility-rigidity index (FRI) surface [16, 22] have been proposed
to achieve a similar goal. Another limitation for these models is that they
only reflect the static or instantaneous shape in vacuum. In practice, solvent
and solute interactions, making a static interface inaccurate for certain bio-
physical analysis. Thus, various solvent-solute interactive boundaries were
proposed [10, 21]. However, despite its weaknesses, SES remains the most
favorable model among biophysicists, due to its simplicity and effectiveness
in capturing the interface of solvent and solute through its definition, with
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which various physical phenomena can be described with a reasonable ac-
curacy.

Many software packages were developed to calculate SES [19]. Among
them, MSMS is of considerable influence [20]. Built on top of MSMS, there
are various software packages for different purposes. For the Lagrangian
representation, a triangle mesh can be directly constructed for the three dif-
ferent types of patches followed by a concatenation. Nevertheless, MSMS is
known for its efficiency and robustness issues, which often occur when large
protein molecules and fine resolutions are required [14]. Moreover, many
biophysical phenomena are happening not only on the surface, but inside
the encapsulated volume of the molecules. To address these issues and meet
the requirements of volumetric output, Liu et al. [14] introduced an Eule-
rian solvent excluded surface (ESES) approach as an alternative for surfaces
represented as intersections and normals with a regular Cartesian grid. The
ESES algorithm starts with a list of atoms describing the molecule enclosed
by a regular Cartesian grid. Based on the three different types of patches
for SES, all grid points are classified as either inside or outside with respect
to SES. Finally, intersection points are computed on each mesh line with
two ends on opposite side of the interface. It is also straightforward to be
converted into the Lagrangian representation, i.e., a triangle mesh, through
the marching cubes algorithm. Although high accuracy and robustness are
well addressed with this method, it often suffers from the lack of efficiency
as well as overly large memory requirements, as a full regular grid has to
be maintained. The ESES algorithm is sequential, which results in long ex-
ecution time especially when the grid resolution increases due to a fine grid
spacing or large protein complexes with many atoms [13].

In this work, we propose an out-of-core parallelizable version of ESES,
in which we divide the bounding box of the molecule into tiled sub-blocks
based on the localized nature of the problem. By performing the computa-
tion based on local information, one can avoid keeping the whole grid and
all the atoms in memory, and at the same time, distribute the computation
to multiple processors. Thus, for large molecules or fine grids, both space
and time efficiency can be substantially improved. By restricting the active
subdomains that are being executed, the whole procedure can always be
done on a personal computer (PC) with a fixed memory, e.g., 2GB. Test-
ing and comparison are done on the 2016 core set of PDBbind database
(http://www.pdbbind.org.cn/), with additional validation by users world-
wide through the authors’ website for the project.

The rest of the paper is organized as follows. Section 2 discusses design
of the improved algorithm with locality. Section 3 is devoted to the space
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and time complexity analysis of the proposed algorithm. The validation and
comparison of our results are carried out in Section 4. Section 5 concludes
the paper with a comment on future work.

2. Algorithm

2.1. Recap of ESES

As we aim at improving the efficiency of ESES [14], we assume the same
input, a list A of atoms, represented by the center location ci and the cor-
responding van der Waals radius ri for each atom,

(1) A = {(ci, ri)}i=1...N ,

where N is the number of atoms.
We also assume the same output: first, a 3D array of Boolean indicating

whether each grid point is inside the molecule surface,

(2) Inside [i, j, k] =

{
1, (ih, jh, kh) ∈M
0, otherwise,

where h is the grid spacing, and M is the volume enclosed by SES; and
second, a set of intersection points between grid edges and the SES

(3) I = {s, t, λst}st∈E ,

where s and t are grid points with st representing the corresponding edge,
and E is the grid edge set with two grid points adjacent to each other and
Inside[s] 6= Inside[t]. The location of the intersection point can be computed
through

(4) p = λsts + (1− λst)t.

Note that, using the connectivity construction procedure in the standard
marching cubes algorithm, we can also output a triangle mesh based on the
Eulerian output.

2.2. Overview

The main idea for reducing the main memory requirement is through a sim-
ple domain decomposition without the need to explicitly handle the bound-
ary matching problem. Owing to the locality of the ESES algorithm, we
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can straightforwardly decompose the computational domain into many non-
overlapping subdomains. With each subdomain retaining only a small num-
ber of atoms that are less than the largest van der Waals radius away from
the subdomain boundary, we have all the information necessary to determine
the inside and the outside information, as well as the intersections of the SES
surface and the grid edges within the subdomain. Thus, we can successfully
reduce the memory footprint by controlling the size of each subdomain so as
to fit within the main memory limit of a typical PC. The memory storage
for the list of atoms relevant for the subdomain is negligible compared to
the storage requirement for the subgrid, since the grid spacing in practical
applications would typically be smaller than the van der Waals radius of the
smallest atom.

As shown in Figure 1, patches rendered with different color belong to
different subdomains, and they can be independently constructed by inter-
section detection locally within the corresponding subdomain, followed by
using the marching cubes algorithm. With a direct concatenation of all the
output, we can construct the whole molecular surface. It is also possible for
the downstream applications to choose only the subdomains relevant for the
calculation that they perform.

When designing a parallelizable out-of-core algorithm, the first and fore-
most problem to deal with is to analyze the dependence among different steps
of the procedure or different parts of the data. In this section, we examine
the four main stages of the ESES algorithm [14]:

• construction of the grid and the analytical expression for patches of
the SES,

• classification of the grid points to the inside points or the outside points
of the SES,

• calculation of the intersection between grid edges and the SES,

• and assembly of the output.

When performed in a subdomain of the entire domain, the first three
steps need to performed in the given order, but they do not have data
dependence to the calculation done on any other subdomain. For instance,
the classification of any grid point can be locally determined by the nearby
atoms, more precisely, atoms at a distance less than the sum of the probe
radius and the largest van der Waals radius. Similarly, where the intersection
is on a grid edge depends only on the SES analytical patch expressions
determined by nearby atoms. Thus we can set up one thread per subdomain,
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Figure 1: Illustration of subdomain based algorithm. The bounding
box of the whole molecular surface is divided into several non-overlapping
subdomains, which can be computed independently with a small memory
footprint. Finally, patches of the SES from each subdomain can be assembled
into a watertight surface identical to the one constructed with ESES. Note
that the patches form a watertight surface, the gaps between the adjacent
patches from different subdomains are added for visualization only.

without any possibility of race conditions, i.e., our output is independent on
the timing of each thread.

If file I/O exchanges are done through sequential devices such as a hard
drive, the final output step would have to be done after finishing the previous
three steps. On the other hand, if the final output is to reside in a random
access memory, once the size of output for each subdomain is determined, it
is possible to assemble the output in sublinear time. If the file system allows
for concatenation without moving data blocks, it is also possible for each
thread to write to a different file, and concatenate them in a time linear
manner with respect to the number of subdomains.
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As in ESES, for the robustness of the calculation, there are some grid
points left undetermined as inside or outside in the second step, and only
finalized in the third step after the intersections of nearby grid edges are
determined [14]. Nevertheless, this procedure will only have a local data
dependence. Thus, partitioning the whole grid into several subdomains does
not change the final classification of such points. As confirmed by our large
set of test results, the uncertain grids are rare as indicated by [14], and when
they indeed exist, their classification in the subdomain based approach is
identical to that in the original ESES.

In sum, we can safely assume that there is no communication of infor-
mation between intermediate results from different subdomains. This im-
plies that we can do out-of-core calculation by loading only one subdomain,
and/or parallelizing the calculation by simultaneously initiating one thread
per subdomain.

2.3. Decomposition to subdomains

The entire calculation domain in ESES is a regular Cartesian grid inside a
cuboid. Typically, it is constructed as a tight bounding box of the list of
the atoms, padded with a few additional layers of grid cells to provide some
margin for easy handling of the boundary cells.

Therefore, it is a natural choice to design the subdomain as non-
overlapping cubes with the same number of grid cells in each of the three
dimensions. The domain can be extended slightly if the size of the original
entire domain in any direction is not a multiple of the size of the subdomain.
We will call a cubic subdomain as a block, following the similar term used
in CUDA parallel thread mapping design.

By focusing on the local computation within each block, the memory
footprint is mainly determined by the size of the block, since we only need
to keep one block in the main memory at a time. Some memory storage
is required to store the list of atoms relevant for the analytical SES patch
construction. If we store the entire list of atoms, for large molecules, it can
still require a large block of memory, and may require more time to perform
the nearest neighbor search. Fortunately, due to the localized nature of the
calculation, it is possible to determine whether an atom is inside or within a
small distance from a block. The rest of the atoms do not need to reside in
the memory, and one can treat the calculation inside the block as if it were
for a smaller molecule, without any unfavorable effect on the final output.
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Figure 2: 2D Index mapping Example. All the indices are 0-based. Given
a cell with global coordinates (i, j) in block (k, l) (green) and its local coor-
dinates (m,n) within the block, the one-to-one mapping is straightforward
as illustrated. Note that (m,n) would require fewer bits to store than (i, j).
This is typical in parallel processing such as CUDA threads.

2.4. Index mapping

After the computation is done for each individual block, we need to map
the result within that block to the original domain. The index mapping is
similar to the CUDA parallel thread mapping design for 3D. We illustrate
the basic idea in 2D through Figure 2. Each block has coordinates (bx, by, bz)
indicating the position of its top left back corner. Assuming that the grid
cell count along one edge of each block is (bs), for a grid point with local
coordinates (i, j, k) in the block, its corresponding global coordinates are
found through the following function

(5) LocalToGlobal(i, j, k; bx, by, bz) = (bsbx + i, bsby + j, bsbz + k).

2.5. Subdomain boundary treatment

While the subdomains are not overlapping with the outer boundary of the
total computational domain, they may intersect at a zero-measure set, such
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as a common rectangle, a common line segment, or a common point. Thus,
during the final assembly of the output from all the blocks, the boundary
grid points and boundary grid edges are to be carefully handled. Otherwise,
redundant information for grid point classification and intersection points
on subdomain boundaries may appear in the output. For instance, whether
a grid point is inside may be duplicated up to 8 times, if it is at the corner
point shared by 8 subdomains. Similarly, the intersection information may
also be duplicated up to 4 times, if a grid edge is shared by 4 subdomains.

One way to eliminate the redundancy is to add a post-processing step.
However, using ideas commonly used for eliminating such redundancies, we
can directly avoid the generation of redundant data. This more efficient
approach is based on the partitioning of the domain into truly disjoint sub-
domains, each of which has the form of a half-open half-closed box, in other
words, the Cartesian product of three half-open half-closed intervals:

[bsbx, bsbx + bs)× [bsby, bsby + bs)× [bsbz, bsbz + bs).

Thus, only the grid points and grid edges that lie on the left, top and
back faces of the subdomain are considered for the output, while the front,
right and bottom faces are ignored as shown in Figure 3. When taking the
union of the output from the blocks, we eventually omit all the grid points
and grid edges that are on the front, right and bottom boundary faces of
the entire domain. Fortunately, by leaving the sufficient margin as mentioned
earlier, the whole domain is a bounding box of the molecule, and no inside
points or intersection points exist on those faces.

2.6. Pipeline

Algorithm 1 provides the pseudocode of the main procedures for the par-
allelized version of ESES. The function ESES is identical to the original
procedure introduced in [14]. Each block (subdomain) uses a unified data
structure to store all the necessary information for the part of ESES com-
putation within that block, including the subgrid, the list of relevant atoms,
and the output—inside/outside information for grid points and intersection
locations on grid edges.

3. Spatial and temporal complexity analysis

Our treatment does reduce the total memory requirement but not the total
amount of computation. The number of grid point classification operations
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Figure 3: Redundancy elimination. For each subdomain, we only keep
the information on faces with a normal along negative axis directions (red),
the other faces (yellow) are omitted because they have already been ac-
counted for by adjacent subdomains. After concatenation (dashed line), only
the output for faces of the entire grid with normals along the positive axis di-
rections is missing. However, with the margin padded to the molecule when
constructing the domain, they do not contain any intersection information
to begin with.

Algorithm 1 ParaESES Algorithm

1: function ParaESES(data, probeRadius, gridSize,margin)
2: CreateBlocks(data, blocks)
3: for all b ∈ blocks do in parallel
4: AssembleRelevantAtoms(b)
5: GlobalToLocalIndexMapping(b, bLocal)
6: ESES(bLocal, probeRadius, gridSize,margin)
7: RemoveDuplicates(bLocal)
8: LocalToGlobalIndexMapping(b, bLocal)
9: critical

10: OutputInfo(b)
11: end critical
12: end for
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to perform, and the number of edge and SES intersection tests are not re-
duced. Nevertheless, as we divide these task into subdomains of the entire
domain, we can either handle the previously intractable problem on a com-
modity PC with few gigabytes of memory, or greatly reduce the amount of
time on a computer cluster or a multi-core computer.

As the number of atoms grows larger or as the resolution becomes finer,
the number of grid cells increases asymptotically at O(whd/s3), where s is
the grid spacing, and w, h, and d are the width, height, and depth of the
bounding box of the molecule respectively. When dealing with large proteins
in the original ESES [14] on fine grids, the memory storage is essentially
cubic to the number of cells along an edge of the box domain. For instance,
a grid with the size of 1000×1000×1000 would require roughly n Giga-Byte
if each grid point or grid cell requires n Byte storage. As ESES requires the
data to reside in the main memory for the grid point classification and grid
edge intersection, it cannot fit in the memory of a regular PC, even with
virtual memory.

Our straightforward domain decomposition into blocks can effectively
shrink the memory footprint, i.e., the maximum memory requirement at any
point of the calculation, since all the information required for the localized
calculation is associated with the block (or subdomain). No matter how large
the original grid size is, we can treat the problem as if it is for the subgrid of
size b3s, as long as we choose each block to be of size bs×bs×bs. Specifically,
there will be b3s grid points to classify, and 3(bs − 1)b2s grid edges to check
for intersections when processing one block. The overhead introduced to
handle the boundary of the blocks is negligible, since for each block, there
will be 3b2s duplicate grid points and 6(bs − 1)bs duplicate grid edges to
check. So in terms of each grid block, there will be an approximate ratio of
O(1/bs) overhead. As mentioned in the previous section, we introduced a
procedure to determine which atoms can influence a particular block, which
brings an overhead that is also negligible to the dominating time and space
requirement for the grid. This part of the overhead can be further reduced
by any spatial data-structure such as a kd-tree, since the construction of the
list of atoms within a block is just a query for spatial database entries within
a certain spatial range. However, an overly small block size can increase the
proportion of the memory the overhead requires, so we do not recommend to
aggressively reduce the block size. Fortunately, in practice, even the memory
of any modern smart phone can easily accommodate the block size with
bs = 32.

If multi-core machines or clusters with multiple computers are available,
one can use our block-based design to achieve essentially a speedup factor
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controlled by the number of available cores, assuming each core has access
to a memory space that can store one block. In an ideal case with infinitely
available cores, the time complexity is dropped to O(b3s), which is entirely
determined by a single block size.

4. Validation and application

We performed our tests on a PC with Intel(R) Xeon(R) CPU E5-1630 v3
@ 3.70GHz and 8GB memory. For parallel computing, we used OpenMP
(https://computing.llnl.gov/tutorials/openMP/). We first tested our
algorithm on an extremely large multiprotein complex to verify the capabil-
ity of our algorithm. Then, we analyze the impact of using different block
sizes and numbers of threads in terms of the execution time and memory
footprint at various grid spacings. Based on the resulting statistics with
varying parameter settings, we have confirmed empirically that the memory
footprint and execution time indeed behaved as predicted in our analysis
above.

All molecular structures used in our validation were downloaded from
Protein Data Bank (PDB, https://www.rcsb.org/). The protein-ligand
complexes used in our application were obtained from PDBbing (http:
//www.pdbbind.org.cn/). All structures were processed with pdb-to-xyzr
(https://github.com/Pymol-Scripts/Pymol-script-repo/blob/
master/modules/MSMS/i64Linux2/pdb_to_xyzr) to assume appropriate
van der Waals radii in addition to atomic coordinates.

4.1. Validation on multiprotein complex

In our tests, the algorithm was able to produce the SES successfully for
multiprotein complexes with an arbitrary list of atoms at a very high res-
olution. For instance, Figure 4 shows a multiprotein complex consisting of
tubulin, Drosophila melanogaster kinesin-13 KLP10A and microtubule [1]
constructed by protein 3j2u with 15575 atoms shown in Figure 5 as the
building block. There are 42 such blocks plotted in this multiprotein com-
plex. This typical protein assembly is crucial for investigating the recognition
and deformation of tubulins in a microtubule. Due to its excessively large
size, such a complex is always an obstacle to handle in theoretical model-
ing. However, with our software, by only assigning 8 threads to perform the
block-based tasks in parallel, the combined memory footprint is controlled to
the reasonable amount of 2GB. The whole procedure took about 10 minutes
to generate the SES output, including the grid point classification and the

https://computing.llnl.gov/tutorials/openMP/
https://www.rcsb.org/
http://www.pdbbind.org.cn/
http://www.pdbbind.org.cn/
https://github.com/Pymol-Scripts/Pymol-script-repo/blob/master/modules/MSMS/i64Linux2/pdb_to_xyzr
https://github.com/Pymol-Scripts/Pymol-script-repo/blob/master/modules/MSMS/i64Linux2/pdb_to_xyzr
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Figure 4: Illustration of the SES generation of multiprotein com-
plex. Here we show the assembly of 3j2u proteins with different chains
being marked by different colors. Inner ring: microtubule; intermediate ring:
kinesin-13 head domain; and outer ring: curved tubulin protofilament.

intersection information. We were also able to mark different chains in the
large protein assembly in the process, with auxiliary information provided
by our algorithm, which is the nearby atoms of intersections points. This
demonstrates the versatility of our algorithm when used in downstream ap-
plications, such as solving the Poisson-Boltzmann equation for electrostatic
analysis [13].

4.2. Single-thread analysis

Protein 5z10, shown in Fig. 6 left, reported by [24] is tested as an example
for single-thread performance. This protein is a typical mechanosensitive ion
channel constructed by three identical blade-like subunits. It is found that
by probing the state of surrounding membrane, the channel opens with the
distortion of these three blades.
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Figure 5: Illustration of the building block protein 3j2u. It shows
Drosophila melanogaster kinesin-13 head domain (yellow) binding to tubulin
protofilament (silver and blue) and microtubule (red and green).

Figure 6: Two models, proteins 5z10 (left) and 5vkq (right), on which tests
and statistics of the present algorithm are performed.
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Figure 7: Memory footprint comparison at various grid spacings
(Å) for protein 5z10 (single-thread). Curves with circular, square and
diamond nodes are corresponding to no block assigned, block size 128 as-
signment, and block size 64 assignment, respectively.

We provide some memory footprint statistics in Figure 7 with only a
single thread launched. As the plot indicates, if we do not incorporate the
block design and use the original method with the entire grid residing in the
memory at all time, the memory footprint increases for fine grids, shown
by the curve with circular nodes. If we use blocks with size bs = 128, the
memory footprint drops significantly, simply because only a single block
needs to reside in the memory for the single thread, in addition to other
auxiliary information, as shown by the curve with square nodes. For the
block size bs = 64, the curve with diamond nodes shows that the memory
footprint is further reduced. By assigning blocks, the memory footprint is
dominated and restricted by the information stored within a single block,
which is controlled only by the block size and is independent of the grid
sizes. Therefore, memory footprint of our approach is well-controlled.

The statistics of execution time is provided in Figure 8 for molecule 5z10
with only a single thread. The execution time for different block sizes did
not vary significantly. This behavior is expected, since we did not change
the total amount of the calculation, for the single-thread version, only the
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Figure 8: Execution time comparison at various grid spacings (Å)
for protein 5z10 (single-thread). Curves with circular, square and dia-
mond nodes are corresponding to no block assigned, block size 128 assign-
ment, and block size 64 assignment, respectively.

memory footprint is reduced. Note that change was made to the grid point
classification or grid edge intersection detection parts. Stated differently,
there is no change in analytical nature of the original ESES algorithm.

4.3. Multi-thread analysis

Protein 5vkq, shown in Fig. 6 right, reported by [11] is used as an example
to test multi-thread performance. This protein is a typical mechanosensitive
ion channel in bacteria. Its long and spring shaped domains are tethered with
microtubules, which will open when it senses the motion of the cytoskeleton
environment.

If we initiate N threads in parallel, we expect that the memory footprint
is roughly N times the numbers when the number of N is large. In practice,
we observed that it is actually smaller due to that some of the overhead is
shared by the threads, especially when N is small. In Figure 9, we present
the statistics of memory footprint for protein 5vkq with 8 threads launched
in parallel. The curve with circular nodes serves as a baseline when we
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Figure 9: Memory footprint comparison at various grid spacings
(Å) for protein 5vkq (8-threads). Curves with circular, square and di-
amond nodes are corresponding to no block assigned, block size 128 assign-
ment, and block size 64 assignment, respectively.

stick to the original ESES algorithm, which shows an excessive memory
requirement. When launching 8 threads, obviously the memory footprint
shifted higher compared to launching a single thread simply because we
need to load the execution context for all 8 blocks. Nevertheless the memory
footprint is still significantly reduced compared to the baseline, unless the
number of threads matches the number of blocks. In addition, we still control
the memory footprint by the number of threads launched. The curve with
square nodes shows the memory usage with block size bs = 128, and the
curve with diamond nodes shows the case with block size bs = 64.

The execution time statistics for the same 8-thread experiment for pro-
tein 5vkq are shown in Figure 10. The curve with circular nodes gives us
a baseline when we stick to the original ESES algorithm. In this example,
the execution time was reduced significantly simply by launching several
threads at the same time. It is not a perfect 8-times improvement, as pre-
dicted by Amdahl’s Law [15], because there are always critical sections that
need serial execution such as file I/O. We also found that a smaller block
size (curve with diamond nodes) also brings some additional improvements
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Figure 10: Execution time comparison at various grid spacings (Å)
for protein 5vkq (8-threads). Curves with circular, square and diamond
nodes are corresponding to no block assigned, block size 128 assignment,
and block size 64 assignment, respectively.

as in the single-thread mode. It is most likely due to the same reason that
the memory allocation is easier for smaller blocks. Taking into account both
the spatial and temporal statistics, we observed that by reducing the block
size, we can significantly reduce the memory footprint without any negative
impact on the time performance and algorithm accuracy.

Finally, we apply the present approach to a large set of protein-ligand
complexes. We consider the PDBbing v2016 core set of 290 protein-ligand
complexes. Our results in terms of grid dimension, block dimension, surface
area, and surface enclosed volume are given for each protein in Appendix A1.
These results can be used by independent researchers to validate their own
surface generations. The computational parameters are set to probe size
1.4Å, grid spacing 0.4Å, grid extension 0.8Å and block size 64. Note that
the proposed method has no effect on the ESES generation quality. The
proposed method can thus be used as an efficient replacement to ESES, and
be applied to any solvent excluded surface based molecular modeling and
analysis.
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Figure 11: Execution time analysis. The scatter plot of execution time
vs the number of atoms is given for 290 proteins when 8 threads are used.

5. Conclusion

We present a divide-and-conquer approach to solve the memory explosion
issue when dealing with large macromolecules at high grid resolutions. The
approach is based on the localized nature of the computations involved in
Eulerian solute-excluded surfaces (ESESs) [14]. In the present approach, we
partition the entire computational domain into subdomains (blocks) that
can fit into a given size of memory space. The memory requirement is de-
termined by the data in the block(s) used in the current calculation. In
this manner, we can control the upper bound of the memory footprint, and
allow the user to run our software on a typical commodity personal com-
puter (PC). Taking the advantage of the locality, we also incorporate the
power of parallel computing to further enhance the performance. With such
a practical implementation, we can significantly extend the applicability of
the earlier ESES algorithm by lifting its constraints of memory requirements
and running on a single CPU. The present improvement does not change
the analytical nature of the original ESES algorithm. The proposed method
is validated on the ESES generation of an excessively large protein complex
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and a couple of large proteins. Application is considered to 290 protein-
ligand complexes.

There is still a room for further improvements. In the potential analytical
patch construction, especially for the saddle and concave patches, we simply
consider all possible pairs of atoms which are at a distance below a threshold
determined by the van der Waals radii. Apparently, there is a redundancy in
such an approach, since some patches are buried inside the molecular surface
and may be pre-culled to save computation. As future work, we wish to
explore fast calculations that can eliminate such patches before classifying
grid points. Another direction to explore is to consider GPU computing,
since a similar parallelized design can be applied when mapping them to
GPU threads and blocks instead of CPU cores. A central issue in carrying
out a GPU implementation is how the analytical SES patch construction and
the associated high order polynomial root finding at grid edge and surface
intersection can be efficiently adapted to the less powerful ALU units on
GPUs. Further simplifications may be desirable to harness the power of
GPU for this problem.
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Appendix A. Surface generation test

Table A1: Surface generation results of the PDBbing v2016
core set sorted by the number of atoms.

Protein
ID

#Atoms Grid Dim Block
Dim

Area
(Å2)

Volume
(Å3)

time(s)

3dxg 1856 105x101x117 2x2x2 5777.88 16569.2 13.0162
3d6q 1856 105x102x117 2x2x2 5793.47 16601.3 19.8521
1w4o 1856 105x99x116 2x2x2 5776.42 16575.4 14.2584
1o0h 1856 104x108x117 2x2x2 5753.33 16456.4 14.2019
1u1b 1856 103x129x94 2x3x2 5790.07 16722.8 12.3264
4lzs 2121 95x132x127 2x3x2 6585.37 18644.5 19.2717
3u5j 2121 95x135x127 2x3x2 6686.26 18677.5 17.7138
4wiv 2121 138x85x125 3x2x2 6749.24 18694.1 16.3995
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4ogj 2121 129x110x110 3x2x2 6710.66 18851.7 16.8964
3p5o 2121 96x135x125 2x3x2 6718.7 18764.6 17.1206
3lka 2408 110x112x101 2x2x2 7040.19 21685.7 16.9318
3ehy 2408 110x112x100 2x2x2 7039.49 21574.7 15.2638
3nx7 2408 112x112x101 2x2x2 6960.15 21681.9 14.4231
3tsk 2425 109x100x119 2x2x2 7057.27 22082.1 14.6475
4gr0 2425 109x101x115 2x2x2 6962.62 21868.1 15.4103
3nq9 2584 120x120x112 2x2x2 7368.2 23464 22.7301
5aba 3025 111x126x136 2x2x3 8747.75 27568.7 25.6786
4agq 3025 113x126x138 2x2x3 8885.8 27571.7 19.5389
5a7b 3047 111x130x136 2x3x3 8943.39 27637.8 27.9725
4agp 3047 114x126x138 2x2x3 8877.19 27718.7 27.5211
4agn 3069 112x126x137 2x2x3 8966.61 27884.4 29.8699
2qnq 3128 104x139x143 2x3x3 8577.43 27855.4 20.697
3cyx 3128 106x134x142 2x3x3 8566.31 27591.5 21.0516
1eby 3134 107x136x147 2x3x3 8604.66 28389.9 21.5876
3o9i 3134 152x103x111 3x2x2 8526.46 27838 19.3083
1a30 3138 107x136x140 2x3x3 8459.42 27734.2 32.6073
4abg 3204 109x118x135 2x2x3 8104.51 29113.2 27.3888
1uto 3220 123x99x132 2x2x3 8037.53 29010 17.8095
3gy4 3220 123x107x133 2x2x3 7993.9 29061.3 20.5542
1k1i 3220 124x108x131 2x2x3 8127.1 29250 20.144
1o3f 3220 121x132x111 2x3x2 8059.72 29193.8 19.3656
3kr8 3248 140x132x106 3x3x2 9356.53 29196.6 20.4359
2yki 3259 122x124x126 2x2x2 9171.29 29287.1 19.6484
4kzq 3278 137x130x103 3x3x2 9356.27 29733.6 19.8373
4kzu 3278 139x131x108 3x3x2 9308.97 29802.4 20.4075
4j21 3292 149x125x107 3x2x2 9533.27 30100.4 20.4142
4j3l 3292 125x150x106 2x3x2 9398.54 29849.4 19.9642
1yc1 3313 119x110x129 2x2x3 9072.47 29432.3 20.9225
3ozt 3357 200x148x114 4x3x2 10015 30240.5 40.6189
3ozs 3357 196x150x114 4x3x2 9996.25 30152.6 26.3215
3oe5 3357 193x149x113 4x3x2 9925.33 30107 27.2306
3oe4 3357 193x149x114 4x3x2 9980.64 30163 27.2095
3nw9 3365 107x115x144 2x2x3 8131.95 30170.6 19.38
3b27 3388 128x126x159 3x2x3 9731.4 30503.3 24.2988
2fxs 3409 151x128x132 3x3x3 9203.98 30434.6 23.9637
2yge 3420 151x130x134 3x3x3 9285.46 30724.4 27.1157
2iwx 3426 155x129x133 3x3x3 9345.14 30760.3 27.0977
2vw5 3426 157x129x134 3x3x3 9341.02 30901.6 28.3237
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3rlr 3449 121x121x156 2x2x3 9914.87 30865.4 23.8025
1lpg 3665 125x136x114 2x3x2 9706.24 32892.4 20.5021
4crc 3711 127x120x141 2x2x3 9907.48 33608.9 22.8678
4x6p 3715 140x116x126 3x2x2 10131.4 33827.4 20.8315
4cra 3724 145x128x115 3x3x2 9972.72 33624 22.1204
4ty7 3727 133x138x144 3x3x3 10136.1 33908.5 24.43
3kgp 3737 144x112x123 3x2x2 9519.34 33612.6 23.194
1o5b 3810 146x127x120 3x2x2 9445.63 34582.3 22.1093
1c5z 3811 146x129x120 3x3x2 9531.12 34644.1 33.7694
1sqa 3818 128x157x125 3x3x2 10141.1 35162.1 23.7716
1owh 3820 127x156x125 2x3x2 10149.2 35375.6 23.6066
4qd6 3849 134x147x211 3x3x4 12029.2 35089.4 33.5549
3qgy 3896 133x135x159 3x3x3 10853.7 35113.4 28.1767
4de2 3900 138x109x147 3x2x3 9295.39 34595.6 35.9985
4de3 3900 138x111x144 3x2x3 9241.18 34660.7 23.651
1z95 3917 141x120x156 3x2x3 10169.7 35038.8 27.3216
4de1 3923 139x108x152 3x2x3 9427.62 34862.4 23.8837
3g2z 3925 140x109x152 3x2x3 9285.38 34891.5 22.2739
3g31 3925 140x110x147 3x2x3 9326.88 34989 26.6228
4rfm 3942 138x128x154 3x3x3 10899.5 35830 25.4256
3kwa 4032 127x125x150 2x2x3 10003.9 36326.8 35.8207
4jsz 4048 127x124x149 2x2x3 10121.1 36590 22.4405
3ryj 4054 129x123x148 3x2x3 10333.2 36435.3 23.7567
3b68 4068 149x120x158 3x2x3 10827.6 36233.7 29.5425
3b5r 4068 149x120x159 3x2x3 10866.6 36325.1 28.6952
3b65 4068 149x120x158 3x2x3 10801 36251.7 28.1824
2weg 4071 128x121x147 3x2x3 10146 36513.5 24.3336
3dd0 4071 130x123x149 3x2x3 10322.6 36951.8 23.7389
3gbb 4086 123x149x157 2x3x3 11431.4 36652.7 27.8599
3g0w 4099 153x124x150 3x2x3 10647.3 36712.6 27.9932
3fv2 4101 145x134x121 3x3x2 11330.7 36688 24.859
3fv1 4101 145x140x122 3x3x2 11270.2 36526.1 24.8372
3fur 4161 133x110x172 3x2x3 11796.3 37539 25.4867
3myg 4169 156x145x126 3x3x2 11063 37469.2 27.555
4m0y 4177 131x152x148 3x3x3 11990.4 38728.9 29.0143
3u9q 4179 124x131x154 2x3x3 11740 37330.8 33.5672
3jvs 4186 139x118x183 3x2x3 11445 37468.2 27.3559
4m0z 4199 128x148x149 3x3x3 11655.2 38361.3 30.2577
3ao4 4210 137x133x144 3x3x3 10992 38287.1 26.372
3jvr 4218 138x116x181 3x2x3 11495.1 37840.2 24.8808
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3b1m 4229 116x129x169 2x3x3 11722.6 37809.4 27.7153
3mss 4263 131x118x172 3x2x3 12047.8 38810.3 38.2454
2c3i 4274 154x144x123 3x3x2 11301.2 38876.8 26.4624
2yfe 4281 139x156x153 3x3x3 11923.7 38510.9 31.6776
3pyy 4289 111x128x166 2x3x3 11972.6 38784.4 25.2828
1nvq 4291 139x124x181 3x2x3 11909.9 38394.9 28.3015
2xbv 4291 149x135x131 3x3x3 11794.8 39406.4 27.6058
4twp 4292 165x147x113 3x3x2 11511.7 38978.3 27.6603
3bgz 4318 158x141x121 3x3x2 11265.8 39021.6 28.2811
2wtv 4337 118x161x160 2x3x3 11713 38572.4 27.7694
2v7a 4340 129x136x166 3x3x3 12063.1 39932 28.3806
1mq6 4372 167x139x112 3x3x2 11625.3 39651.5 26.7912
3uo4 4392 157x142x139 3x3x3 11569.5 39341.1 32.1715
3up2 4392 158x145x139 3x3x3 11612.7 39524.3 31.3933
5dwr 4397 135x151x134 3x3x3 11467.8 40084.1 27.2752
3jya 4408 134x155x133 3x3x3 11571 40232.4 27.4488
1z6e 4413 164x142x109 3x3x2 11656.5 39643.9 25.5687
2brb 4425 141x133x182 3x3x3 12414 40414.9 31.3865
2br1 4425 138x135x183 3x3x3 12257.1 39755.9 32.0098
3utu 4434 128x130x139 3x3x3 11221.5 39829.2 24.9517
2y5h 4440 140x168x116 3x3x2 12126 40601.4 26.7111
1bcu 4446 128x129x140 3x3x3 11130.7 40337.1 37.4077
4k18 4453 161x141x132 3x3x3 11652.3 40461.1 28.9929
1oyt 4479 129x132x140 3x3x3 11485.2 40270.1 26.678
2zda 4513 131x131x143 3x3x3 11344.7 40606 27.9352
4k77 4549 146x142x150 3x3x3 12696.8 41470.2 30.1223
4cig 4564 144x125x152 3x2x3 12304.1 41078.4 40.9304
3k5v 4588 143x184x124 3x3x2 13284.3 41730.7 29.958
3bv9 4621 138x138x136 3x3x3 11636.2 41530.9 27.8745
3zt2 4642 142x131x155 3x3x3 12440.7 41627.9 32.2067
3zsx 4642 144x130x153 3x3x3 12556.8 41830 45.4165
2zy1 4646 149x144x159 3x3x3 12283.4 41678.4 31.8607
3uri 4650 147x152x134 3x3x3 11386.5 42463.2 29.2076
2fvd 4653 140x114x170 3x2x3 12820 41544.9 30.1102
2v00 4669 139x127x166 3x2x3 11462.2 42410.6 42.6454
3wz8 4669 140x127x167 3x2x3 11460.9 42536.5 27.7162
3pww 4669 138x126x166 3x2x3 11500.2 42377.7 30.2387
3prs 4669 139x125x166 3x2x3 11499.9 42426.3 28.767
3zso 4670 143x132x153 3x3x3 12690 41991.9 31.6446
4ea2 4670 148x144x161 3x3x3 12343.4 42173 32.4862
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2zcr 4670 149x147x160 3x3x3 12337 41938.9 33.0923
4hge 4674 161x156x143 3x3x3 13043.1 42660 33.0706
4ivd 4698 214x143x158 4x3x3 13788.6 42619.9 40.4818
3fcq 4700 173x131x132 3x3x3 10956.1 42376.4 34.77
1z9g 4700 175x132x133 3x3x3 11019.2 42836.4 29.4944
1qf1 4700 173x132x132 3x3x3 10908.5 42623.9 28.7241
4ivb 4713 215x143x158 4x3x3 13772.8 42947.1 41.5465
4ivc 4713 213x142x158 4x3x3 13712.4 42361 40.4934
3acw 4714 150x146x161 3x3x3 12637.4 42325.7 48.4493
2zcq 4714 145x143x157 3x3x3 12308.2 42281.4 31.2949
4f09 4739 143x159x169 3x3x3 13163 42812.4 35.2086
4gfm 4762 145x148x129 3x3x3 12925.4 43402.4 28.8006
1pxn 4788 142x114x170 3x2x3 13001.5 42799.9 30.9308
2hb1 4811 170x145x117 3x3x2 11635.3 43180.8 45.4613
1bzc 4811 173x142x115 3x3x2 11505.4 43489.1 30.1936
2qbq 4811 170x145x118 3x3x2 11678.6 43351.1 31.5649
2qbp 4811 169x145x117 3x3x2 11655.4 43424.7 31.878
2xnb 4819 141x111x171 3x2x3 12885.2 43258.1 29.5643
2qbr 4830 177x145x120 3x3x2 11737.8 43724.4 30.8117
3e5a 4850 152x161x145 3x3x3 13072.8 43625.6 32.6783
4e6q 4869 168x138x181 3x3x3 13820.9 43831.2 37.587
4jia 4878 142x183x165 3x3x3 14222.9 44267.3 37.1466
3pxf 4908 157x110x180 3x2x3 13841.6 43820.6 43.9436
3uuo 4922 145x150x157 3x3x3 12998.8 45572.7 31.3175
3ueu 4966 123x130x203 2x3x4 13255.2 44763.8 32.4677
3uew 5000 123x128x213 2x3x4 13666.4 45435.3 33.8787
3twp 5009 164x127x133 3x2x3 12462.3 45286.2 45.8088
3qqs 5009 134x166x147 3x3x3 12412.7 45349.6 31.8109
3uev 5068 125x128x201 2x3x4 13640.4 45616.3 31.0619
3ui7 5091 142x151x157 3x3x3 13135.4 46772.9 32.3145
3uex 5096 124x129x209 2x3x4 13975.3 46266 32.1042
5c2h 5191 151x147x149 3x3x3 13072.6 47126.9 35.0963
5c1w 5235 147x156x157 3x3x3 13216.2 47644.6 36.0221
5c28 5235 148x154x154 3x3x3 13159.3 47569.4 32.2369
3ag9 5267 137x174x143 3x3x3 13473.3 47423.8 36.549
4w9h 5271 174x143x199 3x3x4 14645.7 47401.8 41.345
4msc 5280 147x158x158 3x3x3 13787.5 48439.7 34.8642
4w9c 5282 175x145x200 3x3x4 14685.8 47924.2 58.7774
4w9l 5282 174x145x197 3x3x4 14812.9 47975.6 41.5329
4w9i 5282 177x143x199 3x3x4 14614.3 47854.5 40.2372
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4bkt 5296 141x179x201 3x3x4 14714.9 48335 57.7965
4llx 5299 150x159x157 3x3x3 13540.6 48052.3 38.9411
4mrw 5299 150x159x157 3x3x3 13525.4 48193.6 50.8482
4mrz 5299 149x160x156 3x3x3 13504.9 47956.9 52.8705
4msn 5299 150x159x155 3x3x3 13688.1 48625.8 51.905
4dli 5411 185x140x133 3x3x3 15130.5 49108.4 36.0334
4f9w 5433 185x140x129 3x3x3 14761.8 48989.7 33.0079
2zb1 5575 155x149x155 3x3x3 15142.3 50414.7 37.3719
3gv9 5581 153x144x145 3x3x3 12928.2 50191.6 33.2439
3gr2 5581 153x140x144 3x3x3 12961.9 50214 35.9617
4kz6 5581 151x156x133 3x3x3 12812.9 49828.8 48.0046
4jxs 5581 151x157x134 3x3x3 13053.9 50220.6 47.9802
2r9w 5581 154x141x143 3x3x3 13174 49905.5 34.4525
3e93 5584 156x156x159 3x3x3 15401.5 50252.8 39.2194
1r5y 5595 146x134x181 3x3x3 13256.5 50372 36.9078
3e92 5609 156x152x158 3x3x3 15307 50559.2 38.9401
1s38 5650 146x132x179 3x3x3 13268 50828.2 36.4457
1ydr 5813 136x178x129 3x3x3 14353.4 52608.3 34.2593
1ydt 5813 136x177x129 3x3x3 14423 52672.4 33.32
3rsx 5833 154x178x132 3x3x3 14770.9 54165.6 54.6174
1q8t 5875 141x186x138 3x3x3 15349.5 54420.4 53.2045
1q8u 5928 141x187x134 3x3x3 15888.7 55111.5 36.2449
4gid 5997 160x173x150 3x3x3 14746.3 54907.2 41.5304
2vkm 6019 160x175x149 3x3x3 14775.8 54738.4 41.6591
4djv 6034 166x149x174 3x3x3 14975.7 55246.1 42.4239
3udh 6111 166x182x131 3x3x3 15607.2 55890.3 42.4351
3wtj 6504 197x116x177 4x2x3 18210.3 58882.8 39.4775
2xdl 6560 131x191x125 3x4x2 17346.2 59278 48.6823
2qe4 6651 172x149x145 3x3x3 16615.2 59904.7 39.4594
2wer 6846 129x223x147 3x4x3 17262.1 61418.2 42.2958
4f3c 6854 200x136x128 4x3x3 14854 62181.4 40.3111
1nc3 6896 167x108x189 3x2x3 15249.6 61913 39.4786
1nc1 6905 168x106x190 3x2x3 15224.4 62500 37.7971
1y6r 6905 169x107x191 3x2x4 15335.1 62804.4 37.6239
4f2w 6979 109x145x201 2x3x4 15692.2 63726.8 37.0809
2cet 7025 156x147x148 3x3x3 14613.8 63522.8 41.3852
4jfs 7054 157x181x185 3x3x3 16911.8 63804.5 48.7066
4j28 7054 157x184x184 3x3x3 17110.9 64082 46.2038
2xii 7054 160x148x195 3x3x4 16914 64003.5 44.4223
2j7h 7066 155x149x149 3x3x3 14854.5 64039.6 42.2341
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4pcs 7076 188x174x177 3x3x3 17301.3 64169.7 49.6077
2cbv 7141 162x161x150 3x3x3 14978.2 64682.5 46.0519
2j78 7142 163x153x156 3x3x3 15058.2 64684 47.1593
2pog 7210 161x174x166 3x3x3 18032.6 64766.2 46.4577
4cr9 7448 213x142x171 4x3x3 19486.5 67552.5 67.7259
2p4y 7688 192x177x185 4x3x3 20497.6 69126.1 55.2999
4mgd 7695 167x173x185 3x3x3 19584.2 69673.7 75.4981
1vso 7794 173x213x149 3x4x3 20774.4 69624.7 71.1788
2p15 7849 172x166x189 3x3x3 19652.8 71004.1 50.9455
1qkt 8026 184x199x165 3x4x3 21676 72259.2 56.2978
4mme 8118 157x182x161 3x3x3 17939 73566.5 52.593
1p1q 8134 188x174x146 3x3x3 20746 72655.6 52.0299
1p1n 8134 191x188x149 4x3x3 21060.8 72683.9 55.3808
4dld 8158 172x162x182 3x3x3 21683.9 73727 50.1094
4u4s 8162 194x214x155 4x4x3 21407.1 73234.4 68.8114
1syi 8170 159x151x182 3x3x3 21317.4 73091.7 47.9248
2al5 8186 148x199x191 3x4x4 21975.7 73709.8 54.9643
1h23 8286 174x168x164 3x3x3 18128.9 75779.4 49.7802
1h22 8296 174x168x159 3x3x3 17949.9 76064.8 50.8137
1gpk 8301 170x171x166 3x3x3 18075.1 75389.9 52.4765
1gpn 8303 171x171x161 3x3x3 18205.4 75497 51.2762
3coy 8382 171x162x236 3x3x4 21615.4 75471.6 56.5176
3ivg 8393 171x164x225 3x3x4 21473.8 75420.7 77.236
3coz 8472 171x163x236 3x3x4 21908.6 76264.1 55.5484
3aru 8474 258x145x182 5x3x3 19817.1 77814.7 90.0987
4ddh 8495 168x163x226 3x3x4 21761.8 76872.6 83.0679
4ddk 8519 169x164x236 3x3x4 21986.4 76989.4 54.1794
3arp 8549 249x158x177 4x3x3 20026.1 78534 58.3026
3arv 8563 249x158x178 4x3x3 20188.7 78669.3 56.6699
3ary 8563 249x159x176 4x3x3 20110.6 78665.2 58.0375
3arq 8563 249x158x177 4x3x3 20159.2 78685.2 59.7228
4eo8 8692 161x174x194 3x3x4 21052 78285.7 55.5408
4ih7 8701 164x173x198 3x3x4 20699.9 79327.2 53.9337
4ih5 8703 168x173x196 3x3x4 20942.1 79392 77.9905
3cj4 8720 174x168x193 3x3x4 21129.3 78945.2 56.0903
3gnw 8738 162x166x201 3x3x4 20977.2 78570.2 53.2703
4eor 8949 165x203x190 3x4x3 21622.7 82242.2 57.4209
4e5w 9243 234x238x156 4x4x3 25469.5 84609.8 69.0594
2wca 9295 232x207x176 4x4x3 21978.8 84461.4 67.2198
2w4x 9306 230x207x177 4x4x3 21814.6 83862 64.4236
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5tmn 9400 213x184x178 4x3x3 21020.7 86484.7 58.6322
4tmn 9400 213x184x178 4x3x3 21224.8 85989 58.9291
3r88 9948 203x241x214 4x4x4 23584.2 90457.6 81.9614
4gkm 10018 234x134x241 4x3x4 23776.8 90996.8 65.9909
4owm 10046 217x157x239 4x3x4 23757.2 90913.7 92.6124
2w66 10441 198x259x184 4x5x3 24986.9 93973 111.381
2vvn 10458 199x259x185 4x5x3 24967.8 94680.3 72.0086
3ge7 11112 212x130x232 4x3x4 24214.1 100795 68.4804
3gc5 11402 210x131x233 4x3x4 24774 102959 65.0512
3rr4 11416 210x132x231 4x3x4 24687.2 102504 94.0242
3g2n 13194 212x195x213 4x4x4 29288.2 122132 114.925
2wvt 14130 181x167x298 3x3x5 32575.7 128126 86.4621
2wbg 14288 253x208x176 4x4x3 28560.6 129288 118.505
3zdg 15709 206x200x214 4x4x4 38866 144437 85.0419
3u8n 15960 189x211x224 3x4x4 40327.3 147464 88.1512
3u8k 16004 178x208x212 3x4x4 41707.7 149056 87.3808
2xys 16045 233x229x215 4x4x4 40437 146928 100.344
1ps3 16157 205x213x246 4x4x4 33802.4 148038 94.0591
3dx1 16185 204x212x251 4x4x4 33359.3 147934 152.277
3d4z 16185 205x211x248 4x4x4 33016.8 147051 100.968
3dx2 16185 206x215x246 4x4x4 33246.5 147399 106.006
3ejr 16185 205x213x248 4x4x4 33829.1 148567 106.539
3f3a 16252 232x181x258 4x3x5 34144.4 144819 151.338
3f3c 16364 233x194x252 4x4x4 34288.8 147783 104.871
3f3d 16364 235x194x254 4x4x5 34513.1 149136 104.439
3f3e 16364 233x193x253 4x4x4 34231.4 147296 102.979
2wn9 16453 209x212x199 4x4x4 42401.8 150607 92.4032
4qac 16464 197x215x214 4x4x4 41359.3 151072 90.1083
2wnc 16628 231x210x223 4x4x4 42586.5 153057 99.1218
2x00 16661 212x214x201 4x4x4 43256.1 154206 90.0651
1e66 16692 288x256x222 5x5x4 36312.4 153168 124.091
2xj7 20502 207x307x309 4x5x5 48182.4 186415 146.431
3n7a 25763 233x248x260 4x4x5 54932.7 236584 211.186
4ciw 25848 266x266x266 5x5x5 55675.4 236737 164.345
2xb8 25848 263x263x263 5x5x5 56332.5 236229 160.274
3n86 25889 233x239x237 4x4x4 54431 236562 126.98
3syr 26110 217x217x311 4x4x5 56471.3 243244 146.197
3l7b 26188 218x218x312 4x4x5 56457.9 244430 149.303
4eky 26216 217x217x311 4x4x5 56276.4 244775 217.654
3ebp 26216 216x216x311 4x4x5 55922.4 243389 143.218
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3n76 26220 264x264x264 5x5x5 54813.3 237610 161.143
2ymd 32988 357x324x204 6x6x4 79086.5 303394 314.233
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