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Persistent similarity for biomolecular

structure comparison

Kelin Xia

Biomolecular structure comparison not only reveals evolutionary
relationships, but also sheds light on biological functional proper-
ties. However, traditional ways to calculate structure or sequence
similarity, which always involve superposition or alignment, are
computationally inefficient. In this paper, we propose a new method
called persistent similarity, which is based on a newly-invented
method in algebraic topology, known as persistent homology. Dif-
ferent from all previous topological methods, persistent homology
is able to embed a geometric measurement into topological in-
variants, thus provides a bridge between geometry and topology.
After that, the topological information derived from the persis-
tent homology analysis can be uniquely represented by a series
of one-dimensional (1D) persistent Betti functions (PBFs). In this
way, any complicated biomolecular structure can be represented as
several 1D PBFs, and persistent similarity is defined as the quo-
tient of intersect areas and union areas of any two PBFs. If struc-
tures have no significant topological properties, a pseudo-barcode
is introduced to insure a better comparison. Further, a multiscale
biomolecular representation is introduced through the multiscale
rigidity function. It naturally induces a multiscale persistent sim-
ilarity. The multiscale persistent similarity enables an objective-
oriented comparison. Stated differently, it facilitates the compar-
ison of structures at any particular scale of interest. Finally, the
proposed method is validated by four different cases. It is found
that the persistent similarity can be used to describe the intrinsic
similarities and differences between the structures very well. Partic-
ularly, it delivers one of the best results for isomer total curvature
energy prediction.

1. Introduction

The most prominent feature of biological science in the 21st century is its
transition from an empirical, qualitative and phenomenological discipline to
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a comprehensive, quantitative and predictive one. With the accumulation of
gigantic structure and sequence data in Protein Data Bank[1], Gene Bank
(GenBank)[2], and protein structure classification databanks CATH[3] and
SCOP[4], revolutionary opportunities have arisen for data-driven advances
in biological research. An essential component of quantitative biology is ge-
ometric analysis. Geometric measurements, algorithms and modeling offer
a basis for molecular visualization, bridge the gap between experimental
data from X-ray, NMR, and Cryo-electron microscopy, and theoretical mod-
els, and play a fundamental role in the analysis of biolmolecular structure,
function, dynamics, and transport. Especially with the aid from increasingly
powerful high performance computers, geometric analysis becomes more and
more deeply involved in biological sciences. However, geometric invariants
usually describe local features, such as distances, angles, curvatures, con-
vexity, etc. As a consequence, geometric analysis tends to involve excessive
irrelevant structure details and become computationally intractable, espe-
cially for macroproteins and protein complexes. A great promise comes from
a newly founded area in big data analysis, known as topological data analysis
(TDA). The essence of TDA is to employ concepts and algorithms from al-
gebraic topology and computational topology to extract or identify intrinsic
properties of the data. These intrinsic properties are topological invariants,
which describe global features of the structure and are consistent under
continuous deformation.

One of the most important tool in TAD is persistent homology (PH)[5–
7]. Different from the traditional topological method, PH is able to em-
bed a geometric measurement into topological invariants, thus provides a
bridge between geometry and topology. Filtration is the key idea in PH. In
a filtration process, a series of topological spaces are generated by a sys-
tematical variation of the filtration parameter. The Betti numbers for these
simplicial complexes can be calculated. Their lifespans or persistent times
are used as a geometric measurement[5, 6]. Various softwares, including
JavaPlex [8], Perseus [9], Dipha [10], Dionysus [11], jHoles [12], GUDHI[13],
etc[14], have been proposed, together with visualization methods, including
persistent diagram[15], persistent barcode[16], and persistent landscape[17].
As a method deeply rooted in algebraic topology, persistent homology has
demonstrated its great potential in data simplification and complexity re-
duction [5, 6]. It provides new opportunities for researchers from math-
ematics, computer sciences, computational biology, biomathematics, engi-
neering, etc. Persistent homology has been used in a variety of fields, in-
cluding shape recognition [18],network structure [19–21],image analysis [22–
26], data analysis [27–31],chaotic dynamics verification [32, 33], computer
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vision [24] and computational biology [34–36]. Recently, persistent homol-
ogy has been used in analyzing fullerene molecules, proteins, DNAs and
various other biomolecules [37–39]. A topological fingerprint is proposed
to quantitatively analyze the biomolecular structures and functions. It is
defined as consistent patterns of barcodes that have particular structure
implications[37]. After that, a multiresolution and multidimensional per-
sistent homology is introduced[40, 41] by incorporating a resolution/scale
parameter into a rigidity density function. This model is able to focus the
resolution on any scale of interest and is successfully used to study ex-
tremely large data from macroproteins or protein complexes. Further, based
on the model, multiscale persistent functions are developed for biomolecular
structure characterization[42]. Particularly, multiscale persistent entropy is
successfully used in protein classification test[42]. Most recently, persistent
homology is combined with machine learning tools to solve challenging classi-
fication and regression tasks in drug design[43–45], protein stability changes
upon mutation[46, 47] and toxicity prediction[48]. For all these problems,
topology based machine learning models have proved to be the state of
the art. The great success of these models shows that specially-designed
persistent homology models can retain critical chemical and biological in-
formation and provides a unique topological description of inter- and/or
intra-molecular interactions of interest[47].

In this paper, we propose a new model of persistent similarity for a quan-
titative comparison between biomolecular structures. Biomolecular structure
comparison is of great importance. It not only reveals evolutionary relation-
ships, but also provides insights about biological functional properties. Even
though various models of structure and sequence similarity have been pro-
posed and widely used in biology[49], all these methods involve superposition
or alignment at either global scale or common subregions. Computation-
ally, algorithms for superposition or alignment require iterative searching
and comparing, which can be very time-consuming, especially when many
structures are considered simultaneously. Dramatically different from these
models, our persistent similarity is based on topological characterization,
thus free from structure or sequence alignment. More specifically, for each
biomolecular structure, we can generate its topological representation, i.e.,
a series of barcodes. From these barcodes, we can define unique persistent
Betti functions. These are simply one-dimensional continuous functions de-
fined in exactly the same computational domain. In this way, evaluation
of similarity between different structures is transferred into the comparison
between one-dimensional functions. More importantly, since each biomolec-
ular structure is associated with a unique barcode representation thus a
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unique set of one-dimensional persistent Betti functions (PBFs), the com-
parison among various structures becomes much more efficient, as we only
need to deal with similarity of one-dimensional PBFs. More importantly, we
have introduced the multiscale persistent similarity, so that the structure
comparison can be done at any scale of interest.

It has been noticed that “topological similarity” has been proposed for
structure comparison[50–52] recently. In this model, structure similarity is
directly measured from the persistent barcodes. The bottleneck distance and
Wasserstein distance[53–56], which are widely used to measure distance be-
tween two sets of barcodes, are considered in this model. Our persistence
similarity differs greatly from the model in several aspects. Firstly, we use
the previously proposed PBFs [42]. These PBFs provide a unique represen-
tation of persistent barcode. Stated differently, there is a one to one relation
between our PBFs and barcode representations. With these functions, the
comparison between different barcodes becomes much more straightforward
and efficient. Secondly, a multiscale persistent similarity is defined so that
we can systematically compare the structure properties from various scales.
Biomolecules, particularly macroproteins or protein complexes, are usually
of multiple scales ranging from atom, residue, secondary structure, domain,
protein monomer, etc. Different topological properties can be found at dif-
ferent scales. To be able to pinpoint to the right scale is of great importance
for similarity comparison. In our model, multiscale rigidity functions are em-
ployed to represent the structures from various scales. And persistent simi-
larities derived from them capture similarity information at different scales.
Thirdly, we introduce a pseudo-barcode to deliver a more precise comparison
in the special situation when one or several structure has no significant topo-
logical properties. For instance, if a structure has no β1 barcodes while the
others have, topological similarity between this structure and all the others
will always be zero, no matter how many β1 barcodes the others have. This
ambiguity is avoided by the introduction of a pseudo-barcode into our per-
sistent similarity. Fourthly, we introduce weight functions and kernel scales
in our PBFs. These parameters give us more flexibility in defining the “sig-
nificance” of the bars. It is found that for some biomolecular functions and
properties, only some special barcodes matter while the others are irrelevant.
And in this situation, our model can play an important role. It should be
noticed that we deliberately avoid using the term of “topological similarity”,
because “topological similarity” is widely used in network modeling[57, 58].
The term “persistent similarity” captures the essence of the method and is
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consistent with all previous notations including, persistent homology, per-
sistent Betti number, persistent entropy[42], etc. Therefore, we believe it is
a much better term to use.

The paper is organized as following. In Section 2, we introduce the ba-
sic theory of persistent homology firstly. After that, we discuss a special
persistent Betti function and use it to define our persistent similarity. Fur-
ther, we generalize our persistent similarity to multiscale persistent similar-
ity through a multiscale persistent homology model. Section 3 is dedicated
to basic results and discussions. Four different cases are studied, including
two similar nucleotide kinases, a series of protein structures, configurations
from molecular dynamics simulation and fullerene C44 isomers. The paper
ends with a conclusion.

2. Method

A suitable definition of similarities between biomolecules is of great impor-
tance for structure and functional analysis. A similarity matrix can be di-
rectly used for the hierarchical classification of biomolecular structures and
helps to reveal their evolutional and functional relations. In this section,
we introduce a new similarity measurement based on persistent homology
analysis.

2.1. Persistent homology

To avoid the heavy mathematical notations and present essential ideas more
straightforwardly, we will only focus on the simplical complex with direct
geometric implications. Further, the homology is calculated in Z2 field and
only Vietoris-Rips complex is considered in simplicial complex generation.
Interested readers are referred to more detailed description in papers[5–7].

Generally speaking, homology is a mathematical representation of topo-
logical invariants, including connected components, circles, rings, channels,
cavities, voids, etc. Persistent homology gives a geometric measurement, i.e.,
a size, to these invariants. Figures 1 and 2 illustrate the essential concepts
used in persistent homology.

2.1.1. Simplicial complex. Simplices are the building block for a sim-
plicial complex. A set of k + 1 affinely independent points v0, v1, v2, . . . , vk
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Figure 1: The illustration of basic concepts in persistent homology, includ-
ing simplexes, simplicial complex, Vietoris-Rips complex, topological invari-
ants. A filtration process is demonstrated in Figure 2.

can form a k-simplex σk = {v0, v1, v2, . . . , vk} as following,

(1) σk=

{
λ0v0+λ1v1+· · ·+λkvk

∣∣∣ k∑
i=0

λi=1; 0≤λi≤1, i=0, 1, . . . , k

}
.

Geometrically, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex
is a triangle, and a 3-simplex represents a tetrahedron, just as depicted in
Figure 1. An i-dimensional face of σk is the convex hull formed by i+ 1 ver-
tices from σk (k > i). A simplicial complex K is a finite set of simplices that
satisfy two essential conditions, i.e., 1) any face of a simplex from K is also
in K; 2) the intersection of any two simplices in K is either empty or shares
one face. An oriented simplex is a simplex together with an orientation, i.e.,
ordering of its vertex set. We denote an oriented k-simplex as [σk].

2.1.2. Homology. A k-chain c is a linear combination of k-simplexes
c =

∑
i αiσ

k
i with {αi ∈ Z2}. An Abelian group Ck(K,Z2) is formed by the

set of all k-chains from the simplicial complex K together with addition op-
eration (modulo-2). A boundary operator ∂k is defined as ∂k : Ck → Ck−1.



i
i

“4-Xia” — 2018/11/26 — 22:13 — page 275 — #7 i
i

i
i

i
i

Persistent similarity for biomolecular structure comparison 275

The boundary of an oriented k-simplex [σk] = [v0, v1, v2, . . . , vk] can be de-
noted as,

(2) ∂k[σ
k] =

k∑
i=0

[v0, v1, v2, . . . , v̂i, . . . , vk].

Here [v0, v1, v2, . . . , v̂i, . . . , vk] means a (k − 1) oriented simplex, which is
generated by the elimination of vertex vi. Further, one has ∂0 = 0 and
∂k−1∂k = 0. The k-th cycle group Zk and the k-th boundary group Bk are
the subgroups of Ck and can be defined as,

Zk = Ker ∂k = {c ∈ Ck | ∂kc = 0},(3)

Bk = Im ∂k+1 = {c ∈ Ck | ∃d ∈ Ck+1 : c = ∂k+1d}.(4)

Their elements are called the k-th cycle and the k-th boundary, respectively.
It can be noticed that Bk ⊆ Zk, as the boundary of a boundary is always zero
∂k−1∂k = 0. The k-th homology group Hk is the quotient group generated
by the k-th cycle group Zk and k-th boundary group Bk: Hk = Zk/Bk. The
rank of k-th homology group is called k-th Betti number and it can be
calculated by

(5) βk = rank Hk = rank Zk − rank Bk.

As indicated in Figure 1, the geometric meanings of Betti numbers in R3

are as following: β0 represents the number of isolated components; β1 is the
number of one-dimensional loops, circles, or tunnels; β2 describes the num-
ber of two-dimensional voids or holes. Together, the Betti number sequence
{β0, β1, β2} describes the intrinsic topological properties of a system.

2.1.3. Rips complex. For a point set X ∈ RN , one defines a cover of
closed balls centered at x with radius ε. A Rips simplex (or Vietoris-Rips
simplex) σ is generated if the largest distance between any of its vertices
reaches 2ε. Figure 1 illustrates the generation of the Rips simplex.

2.1.4. Filtration. In the generation of Rips complex, a radius parameter
ε is used. However, how to find the best suitable ε so that it can represent
the underling space very well, has been a long standing problem. To solve
this problem, the idea of filtration has been proposed[5]. As illustrated in
Figure 2, instead of finding the best radius value, an ever-increasing ε value is
used to generate a series of topological spaces. These topological spaces form
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Figure 2: An illustration of a filtration process in persistent homology. Dur-
ing the filtration process, each point from the point cloud data is associated
with a sphere, whose radius increases systematically. A series of topological
spaces from different scales are generated. Based on them, a nested sequence
of simplicial complexes can be obtained.

a nested sequence of complexes, and topological invariants can be calculated
from them. Some topological invariants may last for a wide range of ε values,
some may disappear very quickly when the ε value changes. In this way, these
topological invariants have certain “lifespans”, which can be viewed as an
extra geometric measurement.

2.1.5. Persistent homology. The filtration can be described as a nested
sequence of complexes,

(6) K0 ⊆ K1 ⊆ · · · ⊆ Km = K.

And the p-persistent k-th homology group at filtration time i can be repre-
sented as

(7) H i,p
k = Zik/

(
Bi+p
k

⋂
Zik

)
.

Essentially, persistence gives a geometric measurement of the topological
invariant.
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Figure 3: The illustration of fullerence C30 molecule structure, barcodes and
PBFs. (a) The cage structure of fullerence C30. (b) The barcode representa-
tion. Each bar represents a homology generator and has its unique chemical
or physical properties. For β0 bars, they are related to chemical bonds. For
β1 bars, they represent pentagon and hexagon rings in the molecule. For β2
bars, they describe cavity or cage structures. (c) Fullerence C30 PBFs for
β0, β1 and β2.

2.2. Persistent similarity

The results from persistent homology analysis can be represented as follow-
ing,

(8) {Lk,j = [ak,j , bk,j ]|k = 0, 1, 2; j = 1, 2, 3, . . . , Nk},

where parameter k is the dimension of Betti number βk, parameter j indi-
cates the j-th homology generator and Nk is the number of βk generator.
Further, we define the set of k-th dimension homology generators as,

Lk = {Lk,j , j = 1, 2, 3, . . . , Nk}, k = 0, 1, 2.

To visualize the persistent homology results, we use the barcode plot as
illustrated in Figure 3 (b). For fullerence C30 barcodes, the length of β0 bars
corresponds to the bond length. The number of β0 bars is exactly the total
number of atoms in the molecule. Further, the pentagon and hexagon ring
structures are captured by β1 bars. The cage structure of fullerene C30 is
described by the longest β2 bar. More generally, for a chemical structure,
each bar from its barcode has an unique structural and physical meaning[38,
40, 59]. These physical and chemical implications of the barcodes are very
important for the understanding of biomolecular functions.
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Figure 4: Illustration of protein 1AKY (all-atom-without-hydrogen model)
PBFs generated with different resolution values. Here the resolution param-
eter ω are chosen as 0.1 Å(a), 1.0 Å(b) and 10.0 Å(c). It can be seen that
the PBFs differ greatly in different resolutions.

2.2.1. Persistent Betti function (PBF). Based on the barcode, we
can build up various models to further explore the biomolecular structure,
flexibility, function and dynamics[40, 42]. To uniquely represent the barcode,
we define a persistent Betti function as,

(9) f(x;Lk) =
∑
j

υk,je
−
(
x−

bk,j+ak,j
2

ω(bk,j−ak,j)

)κ
, κ > 0; k = 0, 1, 2;x ∈ [0, rf ]

where υk,j are weight function for j-th barcode of βk. Parameter ω is a
resolution parameter and rf is filtration ending time.

It should be noticed that the sequence of the bars in the barcodes is not
unique. For visualization, we usually arrange the barcodes by their birth
times. For biomolecules, each bar or each type of bars has its unique struc-
tural, physical and chemical implications. So we can assign or define a weight
value υk,j for each or each type of bar if needed. In this paper, unless stated
otherwise, the weight function and resolution parameter are all chosen as 1,
i.e., ω = 1 and υk,j = 1 for all k and j.

There are different ways to represent barcodes as function, such as per-
sistent Betti number, persistent landscapes [60], etc. The PBF provides a
unique transformation of persistent barcodes into 1D continuous functions.
There is a strict one-to-one correlation between barcodes and PBFs. In this
way, any complicated biomolecular structures can be uniquely represented
by three 1D PBFs, thus dramatically reduce the dimensionality and com-
plexity in structure comparison. The resolution parameter gives extra degree
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of freedom in similarity evaluation. Figure 5 illustrates the influence of res-
olution value to PBFs. Three different resolution values are considered in
protein 1AKY. It can be seen that with the enlargement of ω values, the
local “fluctuations” in PBFs are gradually smoothed out. In general, when
resolution is low, i.e., a large ω value, long bars will dominate the behavior of
the PBF. In contrast, when resolution is high, i.e., a small ω value, the effect
of short bars, which are generally considered as noise, will be reflected in
the PBF. To emphasize again, we only consider ω = 1 in the current paper.

2.2.2. Persistent similarity. For two different biomolecular structures
denoted as F1 and F2, if their PBFs are {f(x;L1

k), k = 0, 1, 2} and {f(x;L2
k),

k = 0, 1, 2}. Regions below these functions are denoted as S1
k = {(x, y)|0 ≤

y(x) ≤ f(x;L1
k); 0 ≤ x ≤ rf} and S2

k = {(x, y)|0 ≤ y(x) ≤ f(x;L2
k); 0 ≤ x ≤

rf}, their persistent similarity can be defined as,

(10) Pk(F1, F2) =
Area(S1

k

⋂
S2
k)

Area(S1
k

⋃
S2
k)
, k = 0, 1, 2.

A suitable filtration ending time is not unique. Usually, it is chosen as the
smallest value, after which no significant topological properties will appear.
The above definition of persistent similarity is equivalent to,

(11) Pk(F1, F2) =

∫ rf
0 min{f(x;L1

k), f(x;L2
k)}dx∫ rf

0 max{f(x;L1
k), f(x;L2

k)}dx
, k = 0, 1, 2.

The higher dimensional topological invariants such as β1 and β2 can
be zero in small molecules. In this situation, if it is compared with other
molecules with β1 barcodes, the similarity is always zero, no matter how
many β1 barcodes in the other structures or how long are these β1 barcodes.
This ambiguity can bring troubles in structure comparison. To overcome
this problem, we introduce a pseudo-bar into the PBFs and definite a new
PBF as,

(12) fpseudo(x;Lk) = υk,0 +
∑
j

υk,je
−
(
x−

bk,j+ak,j
2

ω(bk,j−ak,j)

)κ
, κ > 0; k = 0, 1, 2.

Essentially, a small weight value υk,0 is introduced to avoid the situation
when PBF is a zero function. In this way, we can significantly reduce the
ambiguity.
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Figure 5: Illustration of the definition of persistent similarity. Here S1 and
S2 represent the region under two different persistent Betti functions, re-
spectively. The persistent similarity P is defined to be the quotient between
the intersect area and the union area, i.e., P = Area(S1

⋂
S2)

Area(S1
⋃
S2) .

2.3. Multiscale persistent similarity

The structure of biomolecules is hierarchical and built up with components
from various scales. To capture multiscale structure properties, we have pro-
posed a multiresolution/multiscale persistent homology[40, 61]. The key of
our model is a multiscale density function, which is derived from the previous
flexibility and rigidity index (FRI) method[62–67]. A resolution parameter
is incorporated into the density function. And by turning its value, we can
generate a series of density functions from different scales. More details will
be discussed below.

2.3.1. Multiscale rigidity function. For a data set with N entries,
which can be physical elements like atoms, residues, domains, monomer
proteins or data components like points, pixels and voxels, if one assumes
their generalized coordinates are r1, r2, . . . , rN , a multiscale rigidity function
of the data can be expressed as,

(13) µ(r, η) =

N∑
j

wjΦ(‖ r− rj ‖; η)

where wj is the weight parameter, which is usually chosen as the atomic
number. For example, its value is 6 for carbon atom and 8 for oxygen atom.
The parameter η is the resolution or scale parameter. The function Φ(‖ r−
rj ‖; η) is a kernel function. Commonly used kernel functions are generalized
exponential functions,

(14) Φ(‖ r− rj ‖; η, κ0) = e−(‖r−rj‖/η)
κ0

, κ0 > 0.
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It can be noticed that the larger the η value, the lower the resolution is.
A multiscale geometric model can be naturally derived from our multiscale
rigidity functions. An example can be found in Figure 11.

2.3.2. Multiscale persistent homology. Based on the multiscale rigid-
ity function, we have proposed a multiscale persistent homology[40, 61]. In
this model, we linearly rescale all the rigidity function values to the region
[0, 1] using formula

(15) µs(r, η) = 1.0− µ(r, η)

µmax(η)
.

Here µ(r, η) and µs(r, η) are the original and normalized rigidity function,
µmax(η) is the maximum value of the original rigidity function.

We can perform the persistent homology analysis on these normalized
rigidity functions. The filtration parameter is chosen as the isovalue (level-
set value or contour value). More specifically, a molecular surface can be
generated from an isovalue. With the continuous variation of its values, a
series of molecular surfaces will be generated. Based on these surfaces, a
nested sequence of Morse complexes are generated. In this way, persistent
homology analysis can be employed[15, 68, 69].

2.3.3. Multiscale persistent similarity. A series of barcodes from var-
ious scales are generated in the multiscale persistent homology and can be
represented as follows,

(16) {Lk,j(η) = [ak,j(η), bk,j(η)]|k = 0, 1, 2; j = 1, 2, 3, . . . , Nk(η)}.

Similar to the previous definition, parameter k is the dimension of Betti
number βk, parameter j indicates j-th barcode and Nk is the number of βk
barcodes. And the sets of barcodes in the k-th dimension is represented as,

Lk(η) = {Lk,j(η), j = 1, 2, 3, . . . , Nk(η)}, k = 0, 1, 2

Further the multiscale persistent Betti function is represented as,

(17) f(x;Lk(η)) =
∑
j

υk,j(η)e
−
(

x−
bk,j(η)+ak,j(η)

2
ω(η)(bk,j(η)−ak,j(η))

)κ
, κ > 0, k = 0, 1, 2.

Again υk,j(η) is the weight function for j-th barcode of βk, and parameter
ω(η) is the resolution or scale parameter. The multiscale persistent similarity
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between structures F1 and F2 can be defined as

(18) Pk(F1, F2, η) =

∫
min{f(x;L1

k(η)), f(x;L2
k(η))}∫

max{f(x;L1
k(η)), f(x;L2

k(η))}
, k = 0, 1, 2.

The multiscale persistent similarity enable us to compare the structure prop-
erties from various scales.

3. Results and discussions

In this section, we validate our persistent similarity method using four dif-
ferent cases. In the first case, we consider two nucleotide kinases 1AKY and
1GKY with similar structures. We calculate their persistent similarities for
both all-atom model and Cα coarse-grained model. We find that the calcu-
lated persistent similarities are around 0.8, indicating structure similarities
between two structures. In the second case, a series of configurations of pro-
tein 2KIX are considered. These structures are very similar to each other
with very small variations. The persistent similarities for both β0 and β1
are very large, indicating a strong structural consistence between all these
frames. The third case is devoted to the validation of multiscale persistent
similarity. We consider four configurations obtained from the steered molecu-
lar dynamic simulation of protein Titin. Persistent similarities are evaluated
from two different scales. For local scale models, high persistent values are
obtained, meaning that local structures are very consistent during the simu-
lation. For global scale models, a dramatic reduction of persistent similarity
values are observed, suggesting that the global properties of these structures
vary greatly during the simulation. Our results are highly consistent with
structure properties in the unfolding process. The last case is employed for
the study of fullerene C44 isomers. Previously, we have found that fullerene
total curvature energies are largely determined by the longest β2 bar[38].
To further explore properties of the total curvature energy, we use special
weight parameters and define our persistent similarity on this particular
bar. We find that our persistent similarity delivers one of the best results
for isomer total curvature energy prediction. To void confusion, in the first
three cases, the weight function and resolution parameter in the PBFs are
all chosen as 1, i.e., ω = 1 and υk,j = 1 for all k and j.
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Figure 6: The all-atom-without-hydrogen model and coarse-grained model
of Kinase proteins 1AKY and 1GKY. Each red point represents an atom.
(a) and (b) All-atom-without-hydrogen models for 1AKY (left) and 1GKY
(right). (c) and (d) Coarse-grained models of 1AKY (left) and 1GKY (right).

Figure 7: Persistent barcodes for Kinase 1AKY and 1GKY models (as in
Figure 6). (a) and (b) Barcodes for all-atom-without-hydrogen model of
1AKY and 1GKY, respectively. (c) and (d) Barcodes for coarse-grained
model of 1AKY and 1GKY, respectively.
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Figure 8: PBFs for Kinase 1AKY and 1GKY models in Figure 6. (a) and
(b) PBFs for all-atom-without-hydrogen models of 1AKY and 1GKY, re-
spectively. (c) and (d) PBFs for coarse-grained models of 1AKY and 1GKY,
respectively. For the two all-atom models, their persistence similarities of β0,
β1 and β2 are 0.860, 0.819 and 0.795, respectively. For the two coarse-grained
models, their persistence similarities of β0, β1 and β2 are 0.857, 0.770 and
0.485, respectively.

3.1. Case 1: Two similar nucleotide kinases

In the first case, we consider two nucleotide kinases (1AKY and 1GKY) used
in structural alignment [70]. The all-atom-without-hydrogen model and Cα
coarse-grained model, as illustrated in Figure 6, are used for persistent sim-
ilarity evaluation. These two proteins share some similar regions, like the
α-helixes on the left boundary and the β-sheets in the middle. To quanti-
tatively measure their structural similarity, we employ persistent homology
analysis and generate barcodes for both structures in two representations.
Figure 7 (a) and (b) are barcodes of all-atom-without-hydrogen models for
1AKY and 1GKY, respectively. As stated above, the length of short β0 bars
represents chemical bond length. And the number of β0 bars is the number
of atoms in the system. In this way, from β0 bars, chemical components of
the structure can be understood. More chemical implications can be learned
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from β1 bars. Previously, we have found that, short β1 bars located in lo-
cal region around 2.0 Å represent pentagon and hexagon rings in aromatic
residues [40, 59]. Particularly, the hexagon rings can further manifest them-
selves in local β2 bars. The global structure properties captured by β1 bars
appear much later in the filtration. For all-atom-without-hydrogen model,
there is clear separation of local and global type of β1 bars in both β1 and β2
barcodes. Figure 7 (c) and (d) are barcodes for Cα coarse-grained modeling
of 1AKY and 1GKY, respectively. One can see that the length of all short
β0 bars are around 3.8 Å, i.e., the distance between the two adjacent Cα
atoms. Moreover, all the three types of barcodes are dramatically reduced.
Particularly the β2 barcodes.

With these barcodes, we can generate the persistent Betti functions. Fig-
ure 8 illustrates PBFs for the two proteins in the same sequence as Figures 6
and 7. For all-atom-without-hydrogen models, the persistent similarities for
β0, β1 and β2 are 0.860, 0.819 and 0.795, respectively. For Cα coarse-grained
model, the persistence similarities for β0, β1 and β2 are 0.857, 0.770 and
0.485, respectively. It can be seen that for β0 and β1, the persistent simi-
larities for the two models are very close. This indicates the robustness of
our persistent similarity. Further, persistent similarities for β2 differ a lot.
This is due to the fact that there are very few β2 bars in the coarse-grained
representation for both models. Very limited structural information is cap-
tured in β2 bars, so that they do not deliver a good representation of the
whole structure. In later examples, we only consider the β0 and β1 persistent
similarity for coarse-grained models.

3.2. Case 2: NMR configurations

In the second case, we consider M-crystallin structures in calcium free form
(PDB ID: 2KIX). There are totally twenty configurations in the PDB data
and all of them are very similar to each other with only small variations.
The coarse-grained representation is considered and we illustrate ten con-
figurations (out of twenty) in Figure 9. Further, we calculate the persistent
similarities for β0 and β1, and demonstrate the results for all twenty config-
urations in Figure 10. It can be seen that all these structures share a high
persistent similarity. For β0, the persistent similarities are all around 1.000.
For β1, the persistent similarities vary from 0.8 to 1.0. And the smallest
persistent similarity is about 0.802.

From comparison of persistent similarity values of Case 1 and Case 2,
one can see that the persistent similarity gives a very reasonable evaluation
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Figure 9: The coarse-grained models of protein 2KIX structures. There are
totally twenty configurations (denoted as F1 to F20). We take ten different
configurations among them. It can be seen that they all have very similar
structures.

Figure 10: The persistent similarities between twenty different configura-
tions of protein 2KIX. (a) Betti-0 persistent similarities. (b) Betti-1 persis-
tent similarities. It can be seen that the values for Betti-0 persistent simi-
larities are all close to 1.0.

of the structure similarity. For structures with same atoms and same chem-
ical bonds, the β0 persistent homology values are all around 0.999. This is
consistent with chemical implications of β0 bars. Further, the β1 persistent
similarities between 2K1X structures are all larger the ones between 1AKY
and 1GKY. This is reasonable, as 2K1X NMR configurations are highly
consistent with only small variations.
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Figure 11: The Titin protein configurations derived from steered dynamic
simulations. There are totally 89 frames from simulation trajectory. We
choose only frames 1, 10, 20 and 40, denoted as F1, F10, F20 and F40,
respectively. Two different scale parameters, i.e., η = 0.6 Å and 2.0Å, are
considered in the upper and lower subfigures, respectively.

3.3. Case 3: Steered dynamic simulation

The third case is devoted for multiscale persistent similarity. We consider
Titin I91 configurations extracted from a steered molecular dynamic simula-
tion (http://www.ks.uiuc.edu/Training/Tutorials/science/timeline/
timeline-tutorial-files/). Four out of eighty-seven frames are used for
multiscale similarity analysis, including frame 1, 10, 20 and 40 (denoted
as F1 to F40). The unfolding process goes from F1 to F40. We choose the
generalized exponential kernel in Eq.(14) with parameter κ0 = 2 and two dif-
ferent resolution values η = 0.6 Å and 2.0 Å. The density data is generated
with grid spacing value 0.3 Å. Figure 11 illustrates the multiscale rigidity
functions for the four configurations. For each subfigure, the structure on
the upper part is generated with resolution value η = 0.6 Å and low part is
generated with η = 2.0 Å. Further, we depict the barcodes for different con-
figurations in Figure 12. Again, the upper subfigures are for resolution value
η = 0.6 Å and low subfigures are for η = 2.0 Å. It can be seen that, barcodes
obtained from η = 0.6Å density data are much more consistent. Their bar-
code lengths, total numbers, and general patterns show a great similarity. In

http://www.ks.uiuc.edu/Training/Tutorials/science/timeline/timeline-tutorial-files/
http://www.ks.uiuc.edu/Training/Tutorials/science/timeline/timeline-tutorial-files/
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Figure 12: Persistent barcodes of the four Titin configurations at two differ-
ent scales. The upper and lower four subfigures are results for models with
η = 0.6 Å and 2.0Å, respectively. It can be seen that for local scale models
(upper subfigures), the barcodes are very consistent. While in global scale
models (lower subfigures), barcodes vary dramatically.

contrast, when the resolution value is η = 2.0 Å, we begin to observe large
variations, particularly in β1. Actually, the total numbers of β1 bars keep
decreasing during the unfolding process. To have a more quantitative com-
parison, we calculate the multiscale persistent similarities between these con-
figurations. For any two Frames Fa and Fb, we denote their persistent sim-
ilarities as P (Fa, Fb, η) = (P0(Fa, Fb, η), P1(Fa, Fb, η)). When η = 0.6 Å, we
have P (F1, F10, 0.6) = (0.940, 0.915), P (F1, F20, 0.6) = (0.915, 0.924) and
P (F1, F40, 0.6) = (0.967, 0.975). When η = 2.0 Å, we have P (F1, F10, 2.0)
= (0.832, 0.822), P (F1, F20, 2.0) = (0.828, 0.695) and P (F1, F40, 2.0) =
(0.573, 0.413). It can be seen that at high resolutions, persistent similari-
ties between configurations are relatively large. This is due to the reason
that only local structure properties, including atomic numbers, pentagon
and hexagon rings, are captured in barcodes[40, 61]. At lower resolutions,
persistent similarities are relatively small. This means the global properties
between these configurations differ greatly. Further, the similarity value de-
creases systematically when comparison goes from F10 to F20, then to F40,
indicating a gradual derivation from the original structure. We only demon-
strate the results for two different scales. In general, we can systematically
change the resolution value and use the multiscale persistent similarity to
compare the structure properties at different scales.
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Figure 13: The illustration of eight different fullerene C44 isomer struc-
tures. Fullerene C44 has totally 89 isomers. These isomers have different
total curvature energies. we have demonstrated four isomer structures with
the largest total curvature energies in the upper figures. From the large en-
ergies to small ones, their indexes are 2, 3, 35 and 1, respectively. we have
illustrated four isomer structures with the smallest total curvature energies
in the lower figures. Again from the large energies to small ones, their indexes
are 69, 72, 75 and 89, respectively.

It is worth mentioning that even though we have relatively large persis-
tent similarities for higher resolution cases, their persistent similarity is not
equal to 1.0. Theoretically, we should have same β0 and β1 persistent simi-
larity values. However, due to computational constraints, we only use a grid
spacing of 0.3 Å. In this way, the highest rigidity values for frame F1, F10
,F20 and F40 are 15.01, 15.53, 15.03 and 15.30, respectively. The variations
induce inconsistence in the normalized rigidity function and further into the
barcode results.

3.4. Case 4: Fullerene C44 isomers

In the last case, we consider fullerene C44 isomers and their total curvature
energies. The fullerene C44 isomers and energy data can be downloaded from
webpage (http://www.nanotube.msu.edu/fullerene/fullerene.php?C=
44). There are totally 89 isomers. Eight special isomer structures are chosen
and illustrated in Figure 13. Among them, four isomers on the upper figures
are of the largest total curvature energies. Their indexes are 2, 3, 35 and 1,
respectively. Four isomer structures with the smallest total curvature ener-
gies are depicted in the lower figures. Their indexes are 69, 72, 75 and 89,

http://www.nanotube.msu.edu/fullerene/fullerene.php?C=44
http://www.nanotube.msu.edu/fullerene/fullerene.php?C=44
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Figure 14: The comparison between total curvature energies and persistent
similarities of 89 fullerene C44 isomers. (a) is the total curvature energies
of 89 fullerene C44 isomers. (b) is the persistent similarities between all
isomers with the isomer 89. (c) The Pearson correlation coefficient (PCC)
of persistent similarities and curvature energy differences. For each isomer,
we calculate its persistent similarities with all isomers including itself, then
we compare these similarity values with the corresponding curvature energy
differences (absolute value) to get PCC values.

respectively. It is found that the isomer total curvature energy is highly re-
lated to the regularity of isomer cage structure[38]. The longest β2 barcode,
representing the cage size, has been found to be linearly related to these
energies[38]. In this case, we further explore the relation of structure simi-
larities and total curvature energy differences. In our PBFs, only the weight
for the longest β2 barcode is chosen as 1.0, and all the other weights are
defined as 0.0. The scale parameter is still chosen as 1, i.e., w = 1. And we
only consider the β2 PBFs. We calculate the similarity between isomer C44-
89 and all other C44 isomers. Then we compare the persistent similarity with
the total curvature energy. The results are demonstrated in Figures 14 (a)
and (b). It can be seen that there is an inverse relation between them. Ac-
tually, the absolute value of Pearson correlation coefficient (PCC) between
them is 0.952. This result is better that distance filtration [38] and density
filtration results [39], and is as good as correlation matrix results[38].
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Further, we change the reference isomer from C44-89 to other isomers
and recalculate PCCs between new persistent similarity values and new cur-
vature energy differences. To avoid confusion, energy differences are taken
as absolute difference values. The new PCCs are illustrated in Figure 14 (c).
It can be seen that most PCCs have absolute values larger than 0.80. More
interesting, higher absolute PCCs are from reference isomers with more ex-
treme curvature energies (either very large or very small). If the reference
isomer is of intermediate curvature energy, there will be a small absolute
PCC value. This is due to the reason that our persistent similarity measures
only the “absolute” different. To measure the intrinsic differences more ac-
curately, one should always use extreme cases as references.

4. Conclusion

In this paper, we introduce a persistent similarity model for structure com-
parison. Based on persistent homology, our persistent similarity can deliver
a quantitative comparison of the intrinsic topological properties between two
structures. In our model, a persistent Betti function (PBF) is used to repre-
sent the barcodes into a series of one-dimensional functions. The similarity
is defined as the ratio of intersection areas and union areas between any two
1D PBFs. In order to avoid the ambiguity of comparing structures with no
significant topological properties, a pseudo-barcode is introduced. Further,
to facilitate the comparison of structure properties at different scales, mul-
tiscale persistent similarity is considered. Finally, our persistent similarity
model is validated with several test examples. It is found that our persistent
similarity can be used to describe the intrinsic similarities and differences
between biomolecular structures very well.

The proposed persistent similarity has several unique properties. Firstly,
with the representation of structures in 1D PBFs, the comparison between
various structures can be done very efficiently. In our persistent similar-
ity, any complicated biomolecular structure is reduced to several simple 1D
PBFs for comparison. Secondly, the multiscale persistent similarity enables
an objective-oriented comparison. In our model, a multiscale biomolecular
representation is considered and the associated persistent similarity can be
used to compare structures at any particular scale of interest. Thirdly, a
pseudo-barcode is introduced to deliver a more precise comparison when
structures have no significant topological properties. In future, we will ex-
plore the application of persistent similarity in protein structure classifica-
tion [71] and combine it with machine learning methods.
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[50] G. Máté, A. Hofmann, N. Wenzel, and D. W. Heermann, A topological
similarity measure for proteins, Biochimica et Biophysica Acta (BBA)-
Biomembranes 1838 (2014), no. 4, 1180–1190.

[51] C. J. Feinauer, A. Hofmann, S. Goldt, L. Liu, G. Mate, and D. W. Heer-
mann, Zinc finger proteins and the 3D organization of chromosomes,
Advances in Protein Chemistry and Structual Biology 90 (2013), 67–
117.
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