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Prediction of molecular energy using deep
tensor neural networks
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In this paper, we propose a combined scheme called Quantum Me-
chanics and Deep Tensor Neural Network (QM-DTNN) to address
the challenges related to the prompt and accurate calculation of the
physicochemical properties of a protein. In QM-DTNN, a protein is
decomposed into individual amino acid units that are treated with
molecular caps. The physicochemical properties (molecular energy)
of amino acid units are predicted using DTNNs, which are trained
by QM (ab Initio) data. The training, validating, and testing data
sets are made of conformations drawn through enhanced sampling
in specific collective variable spaces. The inputs of DTNNs include
pair-wise inter-distance and nuclear charges of an amino acid unit.
The outputs of DTNNs, which are the physicochemical properties
of amino acid units, are calculated using QM. The three typical
amino acid units (i.e., Arginine, Lysine, and Tryptophan) are used
to demonstrate the feasibility of QM-DTNN. The prediction re-
sults demonstrated good correlations to QM data. The proposed
scheme reduces the computational time considerably compared to
that of QM calculation with acceptable precision loss.

1. Introduction

Molecular dynamics (MD) simulations have evolved into mature techniques
that can be used to effectively understand structure-to-function relation-
ships. The MD of biological molecules such as proteins, DNA complexity,
and RNA complexity, is a focus of study in current research on biological
molecules [1§]. In addition, physicochemical properties such as molecular
energy and atom charge play important roles in providing a description of
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the protein folding process [30, 47]. Therefore, it can be extremely chal-
lenging to rapidly and accurately obtain the physicochemical properties of
proteins in biology and computational chemistry.

Because of the large number of atoms in proteins (in addition to bio-
macromolecules), the standard full quantum mechanical (QM) or ab initio
calculation cannot be performed by computers. Most theoretical studies on
biological molecules generally employ classical force fields that are built on
pair-wise atomic interaction potentials. The principle idea governing clas-
sical force fields is the decomposition of total energy into low-dimensional
bonding two-, three-, and four-body terms that represent covalent bonds,
bonding angles, and dihedral angles, respectively. In addition, electrostatic
and van der Waals interactions are expressed using Coulomb’s law and
the Lennard-Jones potential, respectively, which describe non-bond inter-
actions. In terms of low-dimensional bonding, only the immediate environ-
ment is considered. Despite the success of classical force field approaches in
many applications, limitations that reflect the chemical process, especially
the polarized effect and bond breaking reactions, still exist. The polarized
force fields [40, 50, [68|, [70] were proposed. In addition, the flutenting charge
model [17, 25] and other charge-related models [21], [65] were introduced to
accurately illustrate the polarized effect in a certain process. To reduce the
computational time, the CG model was applied [43]. The QM calculations
of interaction energies are often required to illustrate electron transferring.
In the hardware aspection, the Anton machine [60, [61] is a special-purpose
system used for MD simulations of proteins and other biological macro-
molecules. The most widely accepted scheme involves the use of a GPU for
MD simulation [19, 22, 37, [44], 46|, 49] 511 63] and the simultaneous calcula-
tion of biomolecular systems using different GPU acceleration cards.

In recent years, artificial intelligence (AI), particularly deep learning ap-
proaches [28| [31), 38, 48], have made major breakthroughs in various fields
and have been more successful than those approaches of the past one or two
decades. In images processing [12, 42], speech recognition [32], and many
other text [3] and video-related studies [26, [59] 69], deep learning has been
the most preferred choice of tools [27, [35]. In addition, deep learning tech-
niques have demonstrated tremendous potential in various problems across a
range of disciplines, including materials design, chemical synthesis, and drug
discovery [6, 10} 23], B0, [33] 58, 66]. Over the past 20 years, researchers have
used neural networks (NNs) and deep learning to study the protein folding
and reaction processes. Early in 2006, Lorenz and Matthias used NNs to
depict the reaction process [41]. In 2013, Montavon, Rupp used machine
learning models to simultaneously predict multiple electronic ground-state
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and excited-state properties, including atomization energy, polarizability,
frontier orbital eigenvalues, ionization potential, electron affinity, and exci-
tation energies [45]. Behler used symmetry functions as inputs to NNs to
depict high-dimensional ab initio potential-energy surfaces [7H9]. Shen, Wu,
and Yang predicted the energy differences in two-level QM calculations using
NNs and merged the predictions in the MD process [62] 67]. Browning and
Nicholas used genetic algorithms to optimize training set compositions con-
sisting of tens of thousands of small organic molecules for predicting small
organic molecular properties [11]. Based on a local model of interatomic in-
teractions, Gubeav and Konstantin proposed a machine learning algorithm
for predicting molecular properties in 2017 [24]. In 2017, Schutt, Kristof et
al. proposed the use of a continuous-filter convolutional network (SchNet)
to model quantum interactions among molecules [57]. In 2017, Tobias and
Christine combined coarse-grained (CG) simulation models and NNs to ex-
tract high-dimensional free energy surfaces (FESs) from MD simulation tra-
jectories [39]. In 2018, Kamath and Aditya compared NNs and the Gaussian
process regression to depict potential energy surfaces [34]. However, to the
best of the author’s knowledge, there are several meaningful references to
DTNN that are beyond the scope of this paper.

The structure and properties of molecules are determined by the laws
of QMs. With the aim of providing a direct functional relationship between
atomic conformation and molecular energy, employing one or more artificial
NN can be a framework for the calculation of molecular energy using a deep
learning approach with high-precision QM calculation, which is QM-DTNN.

This paper is organized as follows. In the methodology section, the ba-
sic idea and steps of QM-DTNN are described. Numerical validations are
performed and the results are reported in the results section; the detailed
comparisons of QM-DTNN results are obtained concerning the physicochem-
ical properties of the three typical amino acid units. The discussion section
includes a summary and discussion of present studies. Furthermore, improve-
ments in QM-DTNN are included as future work.

2. Methodology:QM-DTNN

The basic principle of the proposed framework involves the partitioning of
energy of a large molecule into relatively smaller amino acid energy units
that can be easily calculated and predicted using QM-deep learning tools.
The dividing scheme in MFCC is used to partition a macromolecule into
amino acid units. The enhanced sampling, multi-walk metadynamics, is
used to sample sufficient conformations to cover two collective variable (CV)
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space as convergent as possible. The physicochemical properties (molecular
energy) of amino acid units are obtained through QM calculation. In the
machine learning module, each DTNN is trained with relative data sets and
is applied for energy prediction. The entire framework for predicting energy
using deep learning tools is called QM-DTNN.

The schematic flowchart of QM-DTNN is shown in Figure
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Figure 1: The schematic flowchart of QM-DTNN.

2.1. MFCC to obtain amino acid units

As macromolecules, proteins include linear polymers built from a series of up
to 20 different standard amino acids. A protein is split into smaller pieces
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that are primarily amino acid units. This idea was originally proposed in
molecular fractionation using conjugate caps (MFCC), which is another ef-
fective ab initio framework for calculating the interactions among protein
energies [71]. In MFCC, the protein is decomposed into individual amino
acid units that are treated with proper molecular caps. In the present model,
ACE— and NM E— are introduced as caps to both ends of an amino acid
unit, which are presented in panel B of Figure [2] Here, we briefly illustrate
the partitioning process, and the splitting of a protein (PDBID:1BYT [55])
into amino acid units [55] is shown in panel C of Figure
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Figure 2: A frame work of the splitting process in MFCC. A: Graphical
representation of an extended tripeptide and the locations of the cuts where
conjugate caps are introduced. B: The ACE— and NM E— are two caps
added to the amino acid units. C: Steps for adding conjugate caps to a SER
drawn from a typical protein (PDBID:1BYT).

Step 1. Choose a protein conformation from PDB Bank [54].

Step 2. Select the target amino acid. Here, Serine (SER) is randomly chosen
as the target amino acid. There are 12 SER in 1BYI. To illustrate



234 Y. Li, et al.

the drawing process, the SER at the end of the peptide chain is not
selected.

Step 3. In this example, two neighboring amino acid units near the target
amino acid unit include Methionine (M ET) as a blue stick model and
Alanine (ALA) as a yellow stick model.

Step 4. Add conjugate caps on both sides of the target amino acid unit. The
MET side is replaced by the ACE— cap. In addition, the ALA side
is replaced by the NM E— cap. In the M ET— end, the CO bond is
obtained from SER. The position of C' in CHs in the ACE— cap is
the position C, of neighboring M ET. The bond angles and dihedral
angles of atom H in C'Hs — CO are the same as the atom H connected
to C, in M ET. The bond length of C' — H is set to 1.09A. In the ALA
end, the C' Hs is set as the same strategy as the M ET end.

Step 5. Output the target amino acid SER with two caps.

2.2. Enhanced sampling to build data sets

In an NN, especially in a deep learning model, the properties of a train-
ing set determine the training process and the prediction precision. Ideally,
the training set covers the entire conformation space and contains as many
conformations as possible. In practice, because of the limitations in compu-
tational resources and time, it is unrealistic to include all possible confor-
mations in data sets. However, we can ensure that the conformation in data
sets represents the entire conformation space as convergent as possible. We
applied conformations in two primary ways. One is the standard MD of the
amino acid unit. The other is the enhanced sampling of the amino acid unit.

The basic training set is the amino acid units drawn from 100+ small
protein MD trajectories. The mean MD time is 20 ns. Because of high-
energy barriers, the traditional MD cannot explore the CV space entirely,
even in a long MD runtime. Here, CVs serve as the basis for describing the
conformational space.

To enrich the conformational diversity, an enhanced sampling technology
is applied. Bias-exchange metadynamics is a powerful technique that can
be used to reconstruct the free energy and to enhance the conformational
search in complex conformational systems. A simplified version of BEMETA,
such as multiple walkers metadynamics (MWM) [5, 52], is applied. It is
the simplest way of parallelizing a metadynamics calculation. In MWM,
multiple simulations of the same system are implemented in parallel using
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metadynamics on the same set of CVs. The deposited bias is shared among
the replicas in such a way that the history-dependent potential depends on
the entire history. For amino acid LYS, about 2 us MD trajectory of LYS in
a water solution is used to draw the conformation for building the data set.

In an amino acid simulation model, two backbone dihedral angles (tor-
sion angles) ¢ and 1 are chosen as CVs. Two replicas of the system are
employed, each biased with a different CV. In addition, AMBER99SB [29]
is applied as the force field for the entire MD process.

A

Figure 3: An illustration of enhanced sampling. A: An amino acid unit LYS
in a water box. Two torsion angles ¢ and vy are chosen as CVs. B: The free
energy profile of 2 CVs from 2u s enhanced sampling.

A LY S is placed at the center of a water box. The LY S amino acid unit
is surrounded by 867 water molecules. Na and Cl ions are placed in a water
box to balance the electron of the entire system. Minimization with 1 ns is
implemented to optimize the conformation reasonably.

The free energy profile of two CVs is in panel B of Figure [3] It clearly
demonstrates that most of the meaningful conformations in G;,¢ =1,2,3,4
are well sampled. The halo part Hj,j = 1,2, 3,4 are the conformations that
rarely appear as high energy. Therefore, the data set is considered sufficiently
convergent for deep learning training.

2.3. DTNN to predict energy

Following the splitting process in MFCC and the enhanced sampling process
via multi-walk metadynamics, the amino acid unit data sets are ready for
further preparation in QM calculation.

In the entire QM-DTNN framework, the deep learning modular, DTNN,
is key to predicting physicochemical properties. Therefore, we illustrate this
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part in detail and list the differences between the original DTNN and QM-
DTNN proposed here. DTNN was first proposed by Kristof and Farhad [56].
The purpose of this deep learning framework is to predict the energy of a
small molecule (20 is the highest atom number in the GDB9 database [53])
and its physicochemical properties, including the potential of aromatic rings.
DTNN has also demonstrated good predicting ability. We extend the DTNN
to larger molecules and apply different DTNNs to the relative amino acid
units.

2.3.1. The input of DTNN. Because deep learning is effective for han-
dling a considerable size of image files with relative properties, the amino
acid unit is converted into an image format. A typical color image is stored
in red, green, blue (RGB) pixels, and one image can be replaced by three
layers of different color pixels. The amino acid unit is stored in the same way
but not limited to three layers. The basis number(layer number) is deter-
mined by the atom numbers of the amino acid unit. The amino acid unit is
converted into the pair-wise inter-atom distance matrix D, which is shown in
panel B in Figure{dl D;; is the distance between atom; and atom;. This ma-
trix construction satisfies the rotational and translational invariance, which
is convenient for MD and net training.

D1 D2 --- Diy
(1) D Dy1 Doy -+ Doy,
Dnl Dn2 T Dnn

nxn

Geometric information is not sufficient to distinguish the conformation.
We also feed the atom types, which is a vector of nuclear charges, as the
input of DTNN. The vector is shown as Z in panel B of Figure

(2) Z:[Zl,ZQ,...,Zn]

in which n is the number of atoms in an amino acid unit.
2.3.2. The output of DTNN. The molecular energies are the output of
DTNN. They are calculated using highly efficient QM soft-package Gaussian

09 [16].

2.3.3. Gaussian feature expansion of D;;. FEach element D;; € D is
spread across many dimensions of a uniform grid of Gaussians basis. This
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Figure 4: The framework of DTNN. A: An amino acid unit with threshold as
cutoff. B: The pair-wise inter-atomic distance matrix D and the Z vector of
nuclear charges. C: A series of uniform grids of Gaussians forms the basis. D:
The interaction module with element-wise product of two tensors. E: The
fully connected layers and the output sum E;. F: The whole architecture
of DTNN with inter-atomic distances and charges of atoms as inputs. The
output F is the energy of each amino acid unit.

process is shown in panel C of Figure [4

3) gy = [ewp <_Dz’j — (min + kAu)QH

202

in which Ay is the gap between two Gaussians with width o. In this pro-
cess, a conformation is converted to an image with multi-layers, and the
pixel value in each layer is decided by the distance between two atoms in a
conformation.
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After the decomposition, the atom is presented by atomic descriptors
with B coefficients.

(4) c® =c, eRP

In addition, B is the number of basis functions. The initial value of C,
is set by random coefficients according to

(5) C. ~ N(0,1/VB)
(t)

2.3.4. T interaction passes. Each coefficient vector ¢;”, corresponding
to atom 7 after ¢ passes, is corrected based on interactions with other atoms
of the molecule.

(6) CEH_I) = cl(-t) + Z Vij
J#i

in which v;; is defined as
(7) vij = tanh [Wf c ((ch ¢+ b o (WU dy; + bf2)>}

where o’ indicates an element-wise multiplication. In addition, W€,
bfr, W bf2 and W€ are the weight matrices and corresponding biases
of atom representations, distances, and resulting factors, respectively [64].
This sub-process is shown in panel D of Figure

2.3.5. Sum of E;. The energy of the entire amino acid unit is the sum
of the energies of each atom F;.

(8) 0; = tanh(Wo (") 4 pouts)

The final stage includes n; fully connected layers. n; = 2. The hidden
layer o; possesses nj;q neurons, which is shown in panel E of Figure [4]

(9) E@ = Jyoutz 0; + pouts

The E; is shifted to the mean E,, and scaled by the s.d. E, of the energy
per atom estimated on the training set.

(10) E; = E,E; + E,

The entire architecture of DTNN is shown in panel F of Figure
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3. Results

To demonstrate the versatility of the proposed QM-DTNN, three typical
amino acid units were used to train the models with up to 15 interactions.
Arginine (ARG), Lysine (LYS), and Tryptophan (TRP) are three big amino
acid units with more than 30 atoms (including two caps). Because the net-
work can handle smaller molecules in the training set with a smaller error,
the networks, efficiently controlling the three amino acid units, can also
provide reasonable prediction of other small amino acid units.

Arginine(ARG) Lysine(LYS) Tryptophan(TRP)

Figure 5: Three typical amino acid units. A: Arginine. B: Lysine. C: Tryp-
tophan.

The parameters of DTNNs are listed in Table

Table 1: Training parameters in DTNNs of 3 Amino Acid Units

DTNN parameter | ARG | LYS| TRP
Training set 15000 | 54000 | 54000
Validating set 1000 | 6000 | 6000
Live Testing set 1000 | 2000 | 10000
Testing set 7271 | 29591 | 23630
T passes 12 10 6
Cutoff 3 3 3
Basis number 50 50 60
Hidden layer 100 100 120

We employ three sampled data sets of ARG, LYS, and TRP, including
20000+, 90000+, and 90000+ molecules with up to 20 heavy (C, N, O)
atoms. All the conformations in the data set are different from each other.
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The training sets are randomly chosen from the data set. The left confor-
mations include the validating set and the testing set. There are no overlaps
between any of the three sets.

All network models were trained and executed on an NVIDIA Tesla K80
GPU with deep learning framework TensorFlow [T, 2.

The regressions of the energies calculated from QM and predicted by
QM-DTNN in the testing data set are shown in Figure [6] All the energies
of QM and QM-DTNN have been transformed to the range of [0-70].

70 ARG i 70 LYS 70 TRP
- Regression N - Regression 4 - Regression
60} —Fit=aQM+b A 60} —Fit=aQM+b / 60 —Fit=aQM+b
. Pred = Real .d 3 — ——Pred = Real ) ; 1 _ ——Pred = Real
g 50 é 50 g 50
g 40 g 40 g 40
=z =z =
E 30 E 30 E 30
5 & 5
=20 r = 20 =20
5] s o3 17
10 10 10
0 0 o¥
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
QM(KCal/Mol) QM(KCal/Mol) QM(KCal/Mol)
Figure 6: The regressions of QM and QM-DTNN prediction.
The regression is judged by 4 static parameters.
(11) Fit=axQM+5b

The parameters a, b are fitted by a least-squares method. All three a are
larger than 0.95. In addition, the fit line is shown in red in each sub-figure
of Figure [6]

The errpeqn 18 the mean value of the absolute prediction error. The
errsiq is the istandard deviation(std) value of the absolute prediction error.
All three errpeqn are approximately 1 KCal/Mol. All three errgy are less
than 0.85 KCal/Mol.

The static results of three DTNNs are listed in Table 2

All four parameters exhibit good correlation between QM-DTNN and
QM energies.

4. Discussion

The differences between DTNN and QM-DTNN include the following:
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Figure 7: The error distribution of prediction.

Table 2: Prediction results of DTNNs of 3 Amino Acid Units

static parameter ARG | LYS | TRP
a 0.959 | 0.962 | 0.957
b 1.188 | 1.301 | 0.582

errmean (KCal/Mol) | 1.09 | 1.01 | 1.02
errsq (KCal/Mol) 0.85| 0.82| 0.84

e The original DTNN predicts the energy of different small organic
molecules in the entire database. Each DTNN of QM-DTNN only han-
dles its own amino acid units with a fixed atom number and the same
topology.

e The original DTNN predicts molecules with up to 20 atoms. DTNNs
of QM-DTNN predict molecules with larger atomic numbers, with 23
being the least. Commonly, the atom number is approximately 30.

e The DTNN obtains a smaller error compared to QM-DTNN, but it
cannot handle large molecules. The QM-DTNN can split large molecules
into small pieces and implement the prediction.

Compared to QM calculation, QM-DTNN saves computational resources
in at least two magnitudes. If more experienced methods and base sets are
applied, QM-DTNN will save more computation time.

Because only three amino acid units, with high-atom numbers, have been
introduced to the QM-DTNN model, there still exists considerable scope for
improvements in the QM-DTNN model for 20 amino acids. In addition to
the energy of amino acid units, long-range interactions will also be included.
The properties of the entire protein are determined.
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Although the QM-DTNN is a new approach to calculating the molecu-
lar energy in QM level precision, considerable scope still exists for its im-
provement. First, the QM-DTNN cannot handle proteins with non-standard
amino acid, which can be addressed by training another DTNN of a non-
standard amino acid unit training set. Second, QM-DTNN in this version
can only handle standard amino acid units with same atom numbers. Be-
cause there exist situations in which the same amino acid units have different
number of atoms, future versions of QM-DTNN will include the relative con-
formations in the training set, and the DTNN module will be retrained. Fur-
thermore, to completely cover the conformational space (in addition to the
CV space), making a good sampling is necessary. The quantitative accuracy
achieved by DTNN and its size extensibility paves the way for calculating
configurational energy differences. With high-QM precision, a considerable
number of QM calculations can be implemented. This may be addressed by
other deep learning tools such as GAN [I4] [15] or autoencode [4} 13| 20].
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