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Role of combinatorial complexity in

genetic networks

Weihua Geng† and Xin Yang

A common motif found in genetic networks is the formation of large
complexes. One difficulty in modeling this motif is the large number
of possible intermediate complexes that can form. For instance, if
a complex could contain up to 10 different proteins, 210 possible
intermediate complexes can form. Keeping track of all complexes
is difficult and often ignored in mathematical models.

Here we present an algorithm to code ordinary differential equa-
tions (ODEs) to model genetic networks with combinatorial com-
plexity. In these routines, the general binding rules, which counts
for the majority of the reactions, are implemented automatically,
thus the users only need to code a few specific reaction rules. Using
this algorithm, we find that the behavior of these models depends
greatly on the specific rules of complex formation. Through sim-
ulating three generic models for complex formation, we find that
these models show widely different timescales, distribution of inter-
mediate states, and ability to promote oscillations within feedback
loops. These results provide tools for the incorporation of combi-
natorial complexity of genetic networks, and show how this incor-
poration may be vital to accurately predict the network dynamics.

1. Introduction

Proteins within cells barely act alone. Instead, they form complexes to
become active, regulable, modifiable and destroyable. Unfortunately, this
presents a great difficulty for the computational biologists. As the number
of proteins increases, the possible complexes grow exponentially. For this
reason, combinatorial complexity is almost always ignored in mathematical
models for biochemical reaction networks by making simplified assumptions,
which may or may not be appropriate.

Recent modelings are attempted to explore this complexity. One of the
examples is a mathematical model for the circadian (24-hour) clock within

†Weihua Geng is the corresponding author of this paper.
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mammalian cells [1], where the possible combinations of the various pro-
teins (e.g. PER1, PER2, CRY1, CRY2 and kinases) were directly simulated.
The simulation software packages also appeared in assisting the study of
combinatorial complexity. The implementations fall into two approaches.

The first approach is to automatically create the full reaction network,
and then specify interaction patterns and binding constraints for macro-
molecular complexes, which are then used to automatically generate reaction
equations. The typical example is BioNetGen program [2], whose algorithm
has been included in Virtual Cell [3]. BioNetGen includes the consideration
of combinatorial complexity and specializes in modeling dynamics of a sig-
nal transduction system, including enzymatic activities, post-translational
modifications and interactions of the domains of signaling molecules.

The second approach simulates the reaction networks without ever ex-
plicitly creating it, and a typical example is Moleculizer program [4]. Mole-
culizer starts from a description of monometric proteins and specification for
reactions such as binding, unbinding and others. It incorporates new com-
plexes and reactions only when needed, and therefore is reduced to much
smaller reaction networks. It also contains both deterministic formulas for
species presented in terms of real number concentrations, and stochastic
equations for integer species amount changed by probabilistic rules.

In the present model, the reactions in generic networks are composed
of the general binding reactions between molecules, and specific reactions
such as transcription, translation, transportation, phosphorylation and so
on. The specific reactions, due to their specialty and relatively small amount
in number, are usually handled individually. The general binding procedure,
which often involves a large number of participating molecules and entails
combinatorial complexity, needs to be treated automatically to generate
coupled differential equations, using reactions constants as parameters.

To explore combinatorial complexity in genetic networks, we developed
a methodology to automatically generate the equations for a model given
the biological assumptions about association and dissociation of participated
species. This method is fast and flexible. Including another protein in the
complex can be accounted for just a few keystrokes, even though it may
double the number of differential equations. Considering several generic ex-
amples, we find that the dynamics of these networks are exquisitely sensitive
to the rules of complex formation and display behaviors that would not have
been seen without direct simulation of all possible complexes.

We will provide details about the study of role of combinatorial complex-
ity in genetic networks with particular emphasis on the differences of these
models in simulating different combinatorics mechanism and the method
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to generate system of ODEs efficiently. A fixed dimension example of these
mechanisms has been reported in our previous work [5], which calls attention
in many related work [6–17]. Current work is a generalization of methodology
in any dimension with more technical details in numerical implementation.
We will introduce the involved three models in the next section, followed by
algorithms and implementation details, and then the numerical simulation
results and their discussion. The article ends with concluding remarks.

2. Models

2.1. Feedback control mechanism

We are interested in finding the periodic solution (e.g. y(t) = y(t+ T )) for
a given genetic network. For the resulting system of ODEs, the existence of
limit cycle indicates the existence of periodic solution. However, the theory
of finding limit cycle is only available for a two-dimensional system with
the Poincarè-Bendixson theorem such that on a phase portrait an unstable
spiral or node is found inside a confine set Ω (i.e. n · ẏ(t) < 0 for y on ∂Ω,
where n is the normal vector) [18]. For this reason, we seek period solution
for our high-dimensional system by intuition from the negative feedback
control, assisted with numerical simulation.

Figure 1: Goodwin’s negative feedback mechanism: the product, which is
produced from the enzyme-substrate binding, represses the transcription of
DNA to mRNA to repress the synthesis of the enzyme.

We take the Goodwin’s model [19], which is shown in Fig. 1, as an
example. The product, which is produced by binding the substrate to an
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enzyme synthesized under the direction of the messenger RNA (mRNA)
using genetic information transcribed from the DNA, represses the enzymes
of their own synthesis by repressing the transcription of the molecule DNA
to messenger RNA (mRNA). The system of ODEs, which simulates this
model, is given as [18]

dM

dt
=

V

D + Pn
− aM(1)

dE

dt
= bM − cE(2)

dP

dt
= dE − eP(3)

where M,E,P are concentration of the mRNA, enzyme, and product re-
spectively, a, c, e are the corresponding degradation constants, b and d are
rate constants. E and P are created and degraded by first order kinetics.
The creation of M is inhibited by the product P and is degraded according
to first-order kinetics. To see this, note the function f(P ) = V

D+Pn is a de-
creasing function of P , where n is the Hill coefficient, indicating a negative
feedback. In other words, the increment of P causes the decrement of f(P ),
which eventually makes the whole term f(P )− aM negative, thus the decre-
ment of M . The decrement of M makes the aM term smaller and smaller,
which could lead to the positive values of the whole f(P )− aM term for
again the increment of M .

Next section will focus on the study of combinatorial complexity, i.e. the
formation for the final product involving many arbitrary intermediate steps,
which is much more complicated than the Goodwin’s model in Eqs. (1–3).
However, the way that the final product represses the initial reactants is
similar to the way that the product represses the translation in Goodwin’s
model.

2.2. Combinatorial complexity

Assuming that a system initially has only free unit proteins (the smallest
unit in the network), which could bind to each other to form complexes, we
present three models with different binding mechanisms. It worths noting
that these three models are inspired by previous work of Forger and Peskin
[1] in the study of feedback system involving DNA and a series of clock
proteins such as CLK, BMAL, PER1, PER2, CRY1, CRY2, CKI-ε, CKI-δ,
CKI-inhibitor, etc. The interaction of these proteins suggested the following
three mechanisms. In practice, there are many other possible mechanisms
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Figure 2: Illustration of three generic models of complex formation.

for general genetic networks. These three models describe the association
of proteins step by step to eventually form a final complex, which will in
turn, repress the production of initial unit proteins. Figure 2 illustrates the
mechanism of the three models, showing only the new complexes at each
step.

Model 1: a unit protein binds to a protein/complex

In Model 1, only a unit protein can bind to another unit protein to form
a complex or bind to an existing complex that does not contain the present
protein to form a new complex. The following are the assumptions related
to the reactions:

1) A new protein binds to the complex at each step;

2) Initially there are only N types of unit proteins;

3) Eventually a final complex containing one piece of each unit protein is
formed as the inhibitor/repressor to the unit proteins.

Model 2: protein/complex containing different unit proteins bind

In Model 2, any individual protein and complex can bind to each other as
far as the complex does not contain the present unit protein. The following
are the assumptions related to the reactions:
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1) Any two proteins/complexes can bind to form a new complex as far as
these two proteins/complexes do not contain the same unit protein.

2) Initially there exist only N types of unit proteins;

3) Eventually a final complex containing one piece of each unit protein is
formed as the inhibitor/repressor to the unit proteins.

Model 3: protein/complex containing consecutive unit proteins
bind

In model 3, all individual proteins are numbered and only those with
consecutive indices can form a link in between to form new complexes. The
following are the assumptions related to the reactions:

1) No complex can contain any common unit proteins.

2) Any two proteins/ complexes can bind to form a new complex if the re-
actants are composted of different proteins and in a consecutive order,
e.g. 12 and 34 to form 1234 or 1 and 23 to form 123.

3) Initially there are only N types of unit proteins;

4) Eventually a final complex containing one piece of each unit protein is
formed as the inhibitor/repressor to the unit proteins.

Figure 3: The indices of all species for N=5 in three models: the first row is
the collection of all indices, and a vertical bar of five cells shows the included
unit proteins for each species.

Figure 3 shows a table of all the intermediate complexes of these three mod-
els for an example having 5 initial unit proteins. From the table, we can see
that Model 1 and Model 2 share the same types of formation though the
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binding mechanisms are different. In these two models, the order of the indi-
vidual proteins does not matter, i.e. all individual proteins play exactly the
same role. Model 3 forms less intermediate complexes due to the restrictions.

3. Algorithm and implementation

We will use the Law of Mass Action to generate system of Ordinary Differ-
ential Equations (ODEs) according to the specific chemical reactions. Below
are the general rules.

1) The LHS of the differential equation is the rate of change for the
concentration of all the involved substances including both reactants
and products.

2) For a particular substance, the RHS of the differential equation for this
substance will have a term for each involved reaction of this substance
as k[A]a[B]b, where k is the rate constant, [A] and [B] are the concen-
tration of the reactants, and a and b are coefficients in the chemical
equation for the reaction, which is usually 1 for the binding models
involved in this article.

3) The sign of k is decided by the production (+) or consumption of the
substance (-) in the reaction.

The number of ODEs is determined by the number of species of the
biological systems. For each ODE, the right hand side is the summation of
all the terms related to the rate of the current species, which is from two
types: the general binding reaction terms and the specific reaction terms
such as transcription, translation, transportation, phosphorylation and so
on. The first part will be automatically generated with our algorithms and
the second part will be manually handled.

In order to automatically generate the term for the general binding re-
actions, we need to first order and number all existing species, thus we could
locate any individual species conveniently for involved reactions.

1. Number and order the species

We need to number and order all the species in the system as
y(1), . . . , y(Nv), where y(i) denotes the concentration of the ith species,
Nv =

∑N
i=1C

i
N = 2N − 1 is the total number of variables, N is the num-

ber of the initial unit proteins, and the notation Ci
N refers to the number of

possible combinations of i objects from a set of N objects. Models 1-3 will
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initially use the same total number of variables and the restriction for Model
3 that the complex must have unit proteins with consecutive indexes will be
included by setting reaction rate constants of non-existing complexes zero.
We divide the total number of species into N segments and each segment
includes the Ci

N species, which all contain exactly i individual proteins for
i = 1, . . . , N .

To store species in each segment, we use a recursive subroutine to order
all the possible combinations. As an example, for the case with five unit
proteins, all the species that are ordered and indexed can be seen in the
table in Fig. 3. The code in generating this kind of table is provided in the
Appendix 7.1.

2. Find and code the reaction between species

To mathematically describe reactions between any two species, we need
to automatically code the general rules for binding of any two species and
manually code reactions such as transcription, translation, transportation,
inhabitation, phosphorylation, degradation, and so on. To decide if any
two species will react with each other, we will use the following strategies.
According to the index table generated previously, we allocate two multi-
dimensional variables A(Nv, Nv) and B(2, Nv, Nv). Here variable A will store
the rate constants and variable B will store the indices of the two reactants.
To put value in these two variables, we use two loops looping around all the
species from 1 to Nv. For example, when we are at the ith position of the
outer loop and the jth position of the inner loop, we need to decide if these
two species y(i) and y(j) will react by checking the following rules.

a) If y(i) and y(j) will form a species according to the restriction of
the three models, we put the reaction rate into the matrix A at position
(i, j) and the indices of y(i), and y(j) into matrix B at positions (1, i, j) and
(2, i, j). Note this is for species i.

b) If y(i) contains y(j), i.e. y(j) can form y(i) by binding to the third
species y(k), we then put the reaction rate into matrix A at position (i, j)
and the indices of y(j) and y(k) into matrix B at positions (1, i, j) and
(2, i, j). The pseudo code is listed in the Appendix 7.2. Note the code for
generating variables A and B will be only called once, since the resulting
variables will be stored in memory. The ODE solver can directly access them
at each time step. For instance, for species i, at each time step, we can use
the following equation to include all the general reactions involving species i.

(4)
dy(i)

dt
= · · ·+

Nv∑
j=1

A(i, j)y(B(1, i, j))y(B(2, i, j))
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In a negative feedback loop where the final complex will inhibit the genera-
tion of the unit proteins, we use the Hill coefficient n as in Eq. (5) to control
the strength of negative feedback. For i = 1, 2, . . . , N , we have

(5)
dy(i)

dt
=

(km(i))n

(km(i))n + (y(Nv))n
+ · · ·

where km is the repressing constant for the ith individual protein.

3. Solve the resulting non-linear system of ODEs problems

The system of ODEs of the proposed problems is composed of Nv non-
linear equations. For Nv = O(103) or less, we can use the ODE solvers
in Matlab, e.g. non-stiff ODE solvers such as ode45 (Dormand-Prince),
ode23 (Bogacki-Shampine) and ode113 (Adams), or stiff ODE solvers such
as ode15s (numerical differentiation formulas), ode23s (Rosenbrock), ode23
(Trapezoidal), and ode23tb (Trapezoidal+backward differentiation formula
of order 2). The numerical tests show that these solvers, although vary
slightly in speed and time steps, can all provide similar results. We recom-
mend ode23 here, as it stands out as the most efficient one for the problems
we solved.

We used two tricks to improve the efficiency of the solver. One is to use
global variables instead of function arguments to supply the pre-determined
parameters, and the other is to convert the heavily-loaded products in
Eq. (4) into a simplified form with only non-zero terms.

However, when the problem size increases, Matlab is not able to solve
the proposed problem efficiently, and we need to resort to solvers with bet-
ter computing efficiency. There are many ODE packages written in C/C++
or Fortran available and the most popular one is CVODE [20], which is in-
cluded in SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers) package maintained by Laurence Livermore National Lab [21].
The preliminary results tested on a classic Goodwin oscillation problem (no
binding but transition) with 500 variables showed improvement in speed in
the scale of O(10) compared with solving the same problem with Matlab on
the same machine (8-core Intel(R) Xeon(R) CPU E5440 @ 2.83GHz with
2G mem per core).

Another option, which is still under consideration, is to use the matrix
Riccati differential equation [22, 23] and its available explicit solution to
address the proposed problems. Leipnik [22] provided a convenient explicit
solution to a canonical form of the self-adjoint Matrix Riccati differential
equation with constant coefficients. Kerner [23] showed the fundamental laws
of chemical kinetics for either open or closed systems with an arbitrarily
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large number of reactants can be represented as a system of Riccati-like
differential equations and this system can be reduced to a linear form exactly.
We are trying to circumvent two difficulties associated with this application.
The first difficulty is how to include specific reactions such as transcription,
translations, transportation, phosphorylation into the Riccati-like system.
And the second is how to numerically evaluate the explicit solution, which
involves heavy expenses in evaluating the matrix exponential.

Most mathematical models of cellular biochemical networks consider
nonlinear terms such as Michaelis-Menten or Hill-type reactions. Our ap-
proach is to explicitly consider all the basic bimolecular reactions that com-
prise the system. It should be noted that the nonlinear terms used in other
models are simplifications of larger systems of the form we consider here.
Thus we expect that, for correct choices of parameters, our models should
be able to reproduce all the behaviors seen in the simpler models, and addi-
tionally, show other types of behavior not seen in these models. Of course,
the downside is that our models are more complex, and therefore take more
time to simulate and are less likely to be amenable to mathematical anal-
ysis. However, we note that, with improvements in computing power, and
proper numerical techniques, the simulation of these larger models is still not
prohibitively time consuming. Thus, while the large number of variables in
our systems seem to be prohibitively large for standard mathematical analy-
sis, the fact that our models restrict nonlinearities of molecular interactions
to quadratic terms, may help with mathematical analysis.

4. Results and discussion

In this section, we consider a system with initially 5 unit proteins with con-
centration 1M. We investigate the behavior of the system in the scenarios
without feedback and degradation and with feedback and degradation. Re-
sults using 4 unit proteins with 15 species have been reported in [5], and
current results using 5 unit proteins with 31 species will give a different per-
spective. It will reconfirm the claim we made before and give insights about
how an increment of system size will affect the behavior of the system.

1. Distributions and concentration study for models without feedback

We first studied how binding procedure alone determines the concen-
tration of the final complex. For these three models, we obtained different
concentration dynamics for 100s running time as seen in Fig. 4(d). It can be
seen only in model 3 the concentration of the final complex approaches 1M,
indicating that all the unit proteins eventually participated in forming the
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final complex. To explain this, we plot the species distribution for all three
models at t=100s as illustrated in the bar graph of Fig. 4(a)-(c). The plots
explain the observation well, as the distributions of the intermediate com-
plexes of Model 1 and 2 showed that the binding stopped when the remained
species in the system cannot bind to each other anymore. This observation
is also consistent with the results we reported in [5] using 4 unit proteins.

(a) (b)

(c) (d)

Figure 4: Distributions of all species at steady status and dynamic of con-
centrations of the final complex. (a)-(c): distribution (in ratio) for all species
in model 1-3 after t = 100s running time; the horizontal axis is the indices
of all involved species; (d) the concentration of the final complex in all three
models through the whole process (t = 0− 100s).
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(a) (b)

(c) (d)

Figure 5: The oscillated concentration and bifurcation plots of models 1-
3 (solid line for maximum values and dashed line for minimum values; a
different maximum and minimum indicates the occurrence of oscillation).
(a) the concentration of the initial unit proteins, (b) the concentration of
the final complex, (c) the bifurcation plot of models subject to Hill constant
n, and (d) the bifurcation plot of models subject to parameter km; used
parameters: the degradation constant kd = 0.4 except kd(Nv) = 0.05, km =
0.8 except it has a range for (d), n = 94 except it has a range for (c).

2. Concentration study for models with feedback

Now we include the feedback in our system, the feedback loop is similar
to what was illustrated in Fig. 1. This simplified process is proposed first
by Goodwin [19] and was analyzed in detail by Hastings et al. [24]. We
here include the binding procedure into Goodwin’s model. The initial unit
proteins will form intermediate complexes and finally the final complex,
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which will repress the generation of the individual protein (e.g. transcription
and translation). The corresponding differential equations are given as:

dy(i)

dt
=

(km(i))n

(km(i))n + (y(Nv))n
− kiy(i) for i = 1, . . . , N(6)

dy(i)

dt
= gi(y)− kiy(i), for i = N + 1, . . . , Nv(7)

where y = (y(1), y(2), . . . , y(Nv)), and gi is a function involving reactants in
all reactions related to y(i).

After varying different parameters like Hill coefficient n, the repressing
constant km, and degradation rate ki, we obtained oscillations for all three
models. We plot the concentration of the first individual protein for all three
models in Fig. 5(a) and the concentration of the final complex in Fig. 5(b) for
t = 0− 300s. For all models, Hill coefficient n, combined with some other
parameters e.g. the repressing constant km and degradation rate k , will
determine the oscillation and its frequency and amplitude. To study this, we
show the bifurcation plot (maximum value and minimum value of y[1] differ
thus indicate an oscillation) in Figs. 5(c), from which we could see Model
1 starts the oscillation when n ≥ 10, Model 2 starts the oscillation when
n ≥ 25, and Model 3 starts the oscillation when the n ≥ 94. Figure 5(d)
shows that the occurrence of oscillation is also related to the repressing
parameter km. With the increment of n, these oscillations are more likely to
occur but still on and off. The phenomenon observed here can be explained
with bar graphs in Fig. 4(a)-(c). In model 3, all individual proteins eventually
are used to form final complex; in model 2, the final complex is about 27% of
the total existing species at steady status; and in model 1, the final complex
is less than 3% of the total. These observations show that the concentration
of y(Nv) is best-controlled by the concentration of unit proteins y(i), i =
1, . . . , N in model 3, followed by model 2 and then model 1. The conclusion
is that the smoother the pathway of forming final complex from unit proteins
is, the more likely the oscillation will happen. The models using N = 4 has
been reported in our previous work [5]. A back to back comparison shows
that the larger the N , the more difficult it will be for the oscillation to occur.

5. Conclusion

Combinatorial complexity is vital but often ignored in mathematical models
of biochemical reaction networks by making simplifying assumptions that
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may or may not be appropriate. This paper presents an algorithm to con-
veniently include the combinatorial complexity in the coupled reaction net-
works and study its influence under various restrictions. By considering the
general binding mechanism, this algorithm can automatically generated sys-
tem of differential equations for the concentration of all the intermediate
species determined by combinatorics while leave the flexibility to manu-
ally incorporate specific reactions such as translation, transcription, trans-
portation, etc. Numerical simulation is conducted to study the reaction of
a system composed initially five unit proteins with three different binding
schemes. The results indicate that different binding schemes will signifi-
cantly change the reaction speed and distribution of species in the system,
and these changes will fundamentally affect the negative feedback loop in
period, magnitude, and occurrence of the biological oscillations.
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7. Appendix

The difficulty of the coding is at how to number all the variables and how
to locate the corresponding variable when necessary. For example, if we
know the index of a corresponding variable, what are the involved unit
proteins? Or if we know the complex y(i) composed of ni unit proteins
y(i1), y(i2),...,y(ni), how do we find its index i? The first difficulty is solved
by generating a table with dimension (2N − 1)×N , which matches index
of the 2N − 1 variables and included unit proteins. With this table in hand,
the second difficulty can be solved easily as seen in the subroutine index.
The following subroutines in Section 7.1 realize these functions.

Another challenge is how to write the right hand side of the system
of ODE. Since the RHS will be called repeatedly for any ODE solver, it
is worthwhile to save them into two tables. The first table will have the
dimension N × (2N ), saving the related information as the rate of the N unit
variables. The second table will have the dimension (2N−1)× 2N , storing the
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related information as the rate of the 2N−1 complexes. The pseudo code and
related explanation in Section 7.2 answers this question.

7.1. The pseudo code for generating the index table

This section gives the pseudo code for generating the index table I2A(Nv,N)
such as in the top portion Fig. 3 for a given parameter N .

% Initialize Global Variables

N=total number of individual proteins;

Nv=total number of species (2^N-1);

I2A(Nv,N)=0;

% The table storing all species and their components

% Local variables used in the loops

% i: number of individual protein;

% j: column index, number of units filled for a species

% indx: the number of completed rows in I2A after ith loop

% indx0: the index of current species

% Array(N): The array storing component of current species

%Assign the first N rows of I2A as individual proteins

I2A(1,:)=[1,0,0,...]

I2A(2,:)=[2,0,0,...]

...

I2A(N,:)=[N,0,0,...]

indx=N

for i=2,...,N

j=1;

Array=[1,0,...,0] %starting from 1

indx0=indx;

call find_species(i,j,Array,indx0,N,I2A);

indx=indx+

end

iterative subroutine find_species(i,j,Array,indx0,N,I2A);

% Currently, the table has been filled with indx0 species,

% current species has i individual proteins,

% with j elements filled,
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% and the subroutine decides what to do next.

while (# of ele. to fill, (i-j)

<= # of unit proteins remained (N-Array(j)))

if (# of ele. to fill < # of unit proteins in this species)

j=j+1;

Array(j)=Array(j-1)+1;

Call find_species(i,j,Array,indx0,N,I2A);

elseif (# of ele. to fill = # of unit proteins in this species)

indx0=indx0+1;

I2A(indx0,:)=Array; %(one row finished!)

end

Array(j)=Array(j)+1;

end

j=j-1;

Explanation of the iterative subroutine
Case 1: Moving forward
Condition:

1) There are still enough proteins (N−Array(j)) left to fill the remained
units (i− j)

2) The array is not fully filled (j < i);
Operation:

1) Move to the next unit; (j = j + 1)
2) Fill the unit with 1 plus the value of last filled number;

(Array(j)=Array(j − 1) + 1);

Case 2: Reaching the last unit (j=i)
Condition:

1) i = j and Array(j) <= N
Operation:

1) Increase the index of current species by 1; (indx0=indx0+1)
2) Store the current species to the table;

(I2A(indx0,1:i)=Array(1:i))
3) Increase the value the last element of Array by one;

(Array(j)=Array(j) + 1)

Case 3: Exhausting the proteins
Condition:

1) Not enough individual proteins to fill the current species
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(N−Array(j)< i− j);
Operation:

1) Go back to the previous column (j = j − 1) and exit current sub-
routine;

2) Fill in the unit with 1 plus the value of last filled number
Array(j)=Array(j) + 1;

7.2. The pseudo code for generating system of ODEs

The involved number of variables (unit protein and complex), Nv = 2N − 1,
and the number of reactions,Nr = 2N −N − 1 since each reaction will create
a new variable. We use yu(i) to represent the concentration of unit protein,
and use yc(i) to represent the concentration of complex. Then we could figure
out that the number of reactions, Nu, involving a specific unit protein yu(i),
i = 1, ..., N , equals to the number of variables which do not have yu(i) as its

component, calculated as Nu =
N−1∑
i=1

Ci
N = 2N−1 − 1. Similarly, the number

of reactions, Nc, involving a specific complex yc(i), i = 1, ..., 2N −N − 1, is
N as the summation of the numbers of unit variables included in yc(i) and
not included in yc(i).

Keeping the above calculation in mind, let y(i) = yu(i), i = 1, 2, ..., N ,
and y(i) = yc(i−N), i = N + 1, ..., 2N − 1, taking Model 1 as an example,
we could design the following subroutines with the notation and variables.

do i=1, N
dy(i)

dt
=

(km(i))n

(km(i))n − (P ∗)n
−

∑
j∈Ci

Kijy(i)y(j)−Kd(i)y(i)

// y(i) is the concentration of ith unit protein

// Ci = {complexes w/o containing y(i)}
// P ∗ is the final complex as inhibitor

// Kd(i) is the degrade constant associated with y(i)
// km(i) is the repressing constant associated with y(i)
// Kij is the rate constant associated with unit protein y(i)

and complex y(j)
enddo

do i=N + 1,Nv
dV (i)

dt
=

∑
j∈Di

Kjj∗y(j)y(j∗)−
∑
k∈Ei

Kiky(k)y(i)−Kd(i)y(i)
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// y(i) is the complex
// Di = {the set of unit proteins contained in y(i)}
// y(j) is an unit protein in Di

// y(j∗) is the complex which forms y(i) with y(j)
// Kjj∗ is the rate constant associated w/ unit protein y(j)

and Complex y(j∗)
// Ei = {the set of unit proteins w/o contained in y(i)}
// y(k) is an unit protein in Ei

//Kik is the rate constant associated w/ unit protein y(k) and
Complex y(i)

// Kd(i) is the degrade constant associated with y(i)
enddo
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