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A review on probabilistic models used in

microbiome studies

Ahmed A. Metwally∗, Hani Aldirawi∗, and Jie Yang

In this paper, we first briefly review the background and signifi-
cance of the microbiome, the technologies used for collecting mi-
crobiome data, and some public resources for downloading micro-
biome data. We then review the probabilistic models used in the
literature in two categories: (1) for read counts from a specific fea-
ture, including Poisson, negative binomial, zero-inflated and hur-
dle models; (2) for read counts from multiple features, including
Dirichlet-multinomial, generalized Dirichlet-multinomial, and zero-
inflated models, as well as a nonparametric Bayesian model for a
flexible number of features. We also review comprehensive compar-
isons among different probabilistic models.

1. Introduction

The microbiome, a dynamic ecosystem of microorganisms (bacteria, archaea,
fungi, and viruses) that live in and on us, plays a vital role in host-immune
responses resulting in significant effects on host health. Dysbiosis of the mi-
crobiome has been linked to diseases including asthma, obesity, diabetes,
transplant rejection, and inflammatory bowel disease [7, 35, 37, 45, 53].
These observations suggest that modulation of the microbiome could be-
come an important therapeutic modality for some diseases. For example,
fecal transplants have been shown to alleviate diarrhea caused by Clostrid-
ium difficile infection and temporarily improve insulin sensitivity [16, 54].
Specifically, the gut microbiome, which has been the most extensively stud-
ied human microbiome ecosystem, is highly diverse and has been shown to
include thousands of different bacterial species [10, 59]. This diverse commu-
nity of bacteria is composed of a few species that are highly abundant and
a large number of species that are found in trace amount [27]. The human
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microbiome can be divided into the core microbiome and the variable micro-
biome [52]. The core microbiome is the set of taxa or genes that present in a
given body location (gut, kidney, skin, oral, etc.) in almost all humans. The
variable microbiome arises from various factors such as host physiological
status, host environment, host genotype, host lifestyle, and host pathobiol-
ogy. Moreover, given the strong association between microbiome and various
diseases, computational models have been built to predict phenotypes from
microbial profiles [9, 17, 40, 41].

The goal of this paper is to briefly introduce the microbiome data and
the related probabilistic models to people who are interested in microbiome
research and the corresponding analysis. In Section 2, we introduce the two
technologies, 16S rRNA and metagenome shotgun sequencing, for obtaining
microbial profiles of a biological sample. In Section 3, we introduce the typ-
ical format of microbiome data and some public resources for downloading
microbiome data. In Section 4, we review the probabilistic models for mod-
eling count data from each microbial feature independently. In Section 5,
we review the probabilistic models for microbiome data from multiple fea-
tures. In Section 6, we review a nonparametric Bayesian model for a flexible
number of microbiome features. We conclude in Section 7.

2. Technologies used to study the microbiome

The number of studies investigating the microbiome has risen exponentially
since the technological advances in high-throughput sequencing [19]. Se-
quencing technologies are able to identify the genetic content of microbial
communities in the form of millions to billions of short DNA sequences.
These technical advances have been paradigm shifting since the major-
ity (>90%) of microbial species cannot be readily cultured using current
laboratory culture techniques [32, 39, 48]. The most common sequencing
technologies to analyze the microbiome are 16S rRNA gene sequencing and
metagenome shotgun (MGS) sequencing [38].

In 16S rRNA sequencing, a 16S rRNA gene is amplified by polymerase
chain reaction (PCR) with primers that recognize the highly conserved re-
gions of the gene [44]. A limitation of this method is that the annotation
is based on a putative association of the 16S rRNA gene with taxa defined
as an operational taxonomic unit (OTU). In general, OTUs are annotated
at higher levels, such as phylum to genus, and can be less precise at the
species level. In 16S rRNA sequencing, other bacterial genes are not directly
sequenced, but rather predicted based on the OTUs [22]. Due to horizon-
tal gene transfer and the existence of numerous bacterial strains [18, 36],
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the lack of direct gene identification potentially limits understanding of the
microbiome.

An alternative sequencing approach is the metagenome shotgun (MGS)
sequencing in which random fragments of a genome are sequenced. Com-
pared to 16S rRNA, MGS is more expensive and requires more sophisticated
data analysis methods [19, 24, 25, 47]. A major advantage of the MGS se-
quencing is that the sequence reads can be more accurately annotated at
the species level and the microbial functional profile can be constructed from
the sequence reads.

3. Microbiome data resources and data representation

There are several initiatives to store and manage data from microbiome
studies in order to make them available and free for everyone to use. The
major public servers are MG-RAST (https://www.mg-rast.org/) and QI-
ITA (https://qiita.ucsd.edu/). Also, National Center of Biotechnology
Information (NCBI, https://www.ncbi.nlm.nih.gov/) is one of the most
comprehensive resources that have a database of curated and updated mi-
crobial genomes and taxonomic tree.

To analyze these massive amount of sequence data, metagenomic reads
are processed for each microbiome sample to construct taxonomic and/or
functional profiles [1, 2, 20, 29, 51, 56]. The taxonomic profiles, functional
profiles, or both for all samples, are then combined into one count table (see
Table 1 and Table 2 as an example of a toy taxonomic profile) with a dimen-
sion of m× n, where m denotes the number of microbial features F1, . . . , Fm
and n denotes the number of metagenomic samples S1, . . . , Sn. The entry
zij represents the number of reads from sample j that mapped to micro-
bial feature i, while its capitalized version Zij represents the corresponding
random variable. In the table, Nj =

∑m
i=1 zij denotes the total number of

reads for the m features in sample Sj , and zi. =
∑n

j=1 zij denotes the total
number of reads mapped to features Fi in all samples. Since metagenomic
samples may have different sequencing depths, the aggregated metagenomic
counts need to be normalized among samples [3]. There are several meth-
ods developed to tackle the normalization problem of a count table, such as
centered log-ratio (CLR) transformation [11], cumulative sum scaling [33],
median-of-ratios scaling factor [23], and trimmed mean of M values [43].

https://www.mg-rast.org/
https://qiita.ucsd.edu/
https://www.ncbi.nlm.nih.gov/
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Feature/Sample S1 S2 S3 ... Sn Total

F1 z11 z12 z13 ... z1n z1.
F2 z21 z22 z23 ... z2n z2.
... ... ... ... ... ... ...

Fm zm1 zm2 zm3 ... zmn zm.

Total N1 N2 N3 ... Nn N.

Table 1: A Typical Microbial Count Table

Species/Sample S1 S2 S3 Total

Escherichia coli 587 102 3 692

Staphylococcus aureus 980 324 75 1379

Streptococcus pneumoniae 14 0 0 14

Total 1581 426 78 2085

Table 2: An Example of Taxonomic Profile Count Table

4. Probabilistic models for single feature

One of the objectives of the microbiome studies is to determine whether
there is a particular microbial signature (e.g., taxa or genes) associated with
a particular disease state and/or phenotype. These biomarkers can play an
important role in the development of preventive and therapeutic strategies.
Differential abundance tests have been developed to identify those microbial
features that are significantly different between two phenotypic groups. In
this section, we focus on probabilistic models built for sequence read counts
from a single microbiome feature, that is, Zij for feature Fi and subject Sj .
Assuming Zij follows a probabilistic model with a few unknown parameters,
statistical inference can be made based on estimated parameters from the
data. In practice, there are two types of experimental designs for microbiome
studies: (1) snapshot studies, where each subject provides only one sample,
(2) longitudinal studies, which include multiple samples per subject over
time.
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4.1. Models used in snapshot microbiome studies

4.1.1. Poisson model. Poisson distribution has been widely used for
modeling non-negative outcomes as a count. If a random feature count Zij
follows a Poisson distribution with mean θ > 0, it assigns the probability

P (Zij = k) =
θk

k!
e−θ

for k = 0, 1, 2, . . .. As the mean count increases, the skewness diminishes, and
the Poisson distribution becomes approximately a normal distribution. One
property of Poisson distribution is that its variance equals the mean. For
non-negative count outcomes, a model with Poisson distribution is usually
more appropriate than an ordinary least squares linear model [4].

4.1.2. Negative binomial model. The negative binomial (NB) distri-
bution is an alternative probabilistic model for count data [4]. It is especially
useful when the sample variance exceeds the sample mean, known as over-
dispersion. Given a sequence of independent Bernoulli trials with probability
p of success, Zij is the number of failures observed before the rth success
with the probability

P (Zij = k) =

(
k + r − 1

k

)
pr(1− p)k

where r > 0 and 0 6 p 6 1 are two parameters that can be estimated from
the data. The negative binomial distribution looks similar to Poisson distri-
bution but with a longer, fatter tail. If the observed outcome is suspected
to have variance larger than mean, the negative binomial distribution would
be more appropriate than either Poisson or normal distribution.

4.1.3. Zero-inflated models. For microbiome OTU counts, typically
there are much more zeros than expected under the assumption of Pois-
son or negative binomial distributions. This phenomenon is known as zero-
inflation. In order to solve this issue, zero-inflated models are used to model
read counts that have an excess of zeros. A zero-inflated model assumes
that the observed zeros are of two kinds: “sampling” or “structural”. The
sampling zeros come from a Poisson, negative binomial, or some other distri-
bution due to chance. Other observed zeros are due to some specific structure
in the data [14]. As a result, the combined probability under a zero-inflated
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model is

(1) PZI(Zij = k) = φ1{k=0} + (1− φ)P (Zij = k)

where φ > 0 is a parameter estimated from the data, P (Zij = k) stands for
the probability determined by a Poisson, negative binomial, or other para-
metric distribution. Note that the zero-inflated model assigns the probability
φ+ (1− φ)P (Zij = 0) to zero, which is larger than P (Zij = 0) itself. The
corresponding distributions are known as zero-inflated Poisson (ZIP), zero-
inflated negative binomial (ZINB), zero-inflated beta binomial (ZIBB, see
Section 4.1.4), zero-inflated Gaussian (ZIG) distributions, etc. For example,
Taylor, et al. [50] used a ZIP model for microbiome OTU counts.

4.1.4. Zero-inflated beta binomial model. As a special kind of zero-
inflated models introduced in Section 4.1.3, the zero-inflated beta binomial
(ZIBB) model provides a flexible option for modeling Zij [15]. In a ZIBB
model, the probability P (Zij = k) in Equation (1) is formulated by a beta-
binomial distribution. It has two folds: (1) Given a probability pij , Zij follows
a binomial distribution with parameters Nj and pij ; (2) In order to make the
model flexible, the probability pij itself is also random, which follows a beta
distribution with parameters α1 > 0, α2 > 0. As a result, the probability
based on the beta-binomial distribution is

(2) P (Zij = k) =

(
Nj

k

)
Beta(k + α1, Nj − k + α2)

Beta(α1, α2)

The probability PZI(Zij = k) based on the ZIBB model takes the same form
as in Equation (1).

A relevant R package ZIBBSeqDiscovery is available at the Comprehen-
sive R Archive Network (CRAN, https://CRAN.R-project.org/package=
ZIBBSeqDiscovery). Hu, et al. [15] compared ZIBB with ZINB and a few
other models using the Gevers microbiome data and concluded that ZIBB
shows the highest number of significantly enriched genera.

4.1.5. Hurdle models. Hurdle models, also known as zero-altered mod-
els, provide another way of dealing with the excess zeros in OTU counts [4].
A hurdle model consists of two components, one generating the zeros and
one generating the positive values. In contrast to zero-inflated models, a
hurdle model assumes that all zeros are from the “structural” source. In
order to make the comparison clearly, we define the hurdle models using a

https://CRAN.R-project.org/package=ZIBBSeqDiscovery
https://CRAN.R-project.org/package=ZIBBSeqDiscovery
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similar formula as in Equation (1):

(3) PZA(Zij = k) = φ1{k=0} + (1− φ)Ptr(Zij = k)

where Ptr(Zij = k) is a truncated version of P (Zij = k) determined by Ptr(Zij
= 0) = 0 and Ptr(Zij = k) = P (Zij = k)/[1− P (Zij = 0)] for k > 0. For ex-
ample, if P (Zij = k) comes from a Poisson distribution, then Ptr(Zij = k)
is known as a zero-truncated Poisson distribution [58].

The hurdle model PZA(Zij = k) collapses to the standard model P (Zij =
k) if φ = P (Zij = 0). It clearly allows for excess zeros when φ > P (Zij = 0).
Different from zero-inflated models, in principle, hurdle models can also
model too few zeros when φ < P (Zij = 0). In other words, hurdle models
are more flexible than zero-inflated models.

Similar to zero-inflated models, hurdle models include zero-altered Pois-
son (ZAP) or Poisson hurdle (PH), zero-altered negative binomial (ZANB)
or negative binomial hurdle (NBH) models, etc.

4.1.6. Comparisons between probabilistic models used in snap-
shot studies. Xu, et al. [57] classified the competing methods for model-
ing microbiome data into three categories based on how the excess zeros are
treated: standard, zero-inflated (ZI), and hurdle models. Standard models do
not consider the excess zeros and model the data using a standard distribu-
tion, for examples, Poisson or negative binomial distributions. ZI and hurdle
models are reviewed in Sections 4.1.3 and 4.1.5, respectively. Xu, et al. [57]
compared the performance of different models, including Poisson, ZIP, PH,
NB, ZINB, and NBH, through simulation studies and real microbiome data.
Their comparison was from different perspectives, including type I error,
power, model selection, and goodness of fit. They concluded that: (1) Pois-
son regression has inflated type I error and may not be appropriate for data
with excess zeros; (2) ZI or hurdle models perform consistently well in all
scenarios examined in terms of test power; (3) ZINB is more robust than
ZIP; (4) In many situations, hurdle models (PH or NBH) produce identical
fitting results as their corresponding ZI models (ZIP or ZINB); (5) In terms
of Akaike Information Criterion (AIC), NBH and ZINB models perform the
best among all fitted models.

4.2. Models used in longitudinal microbiome studies

The recent advances in DNA sequencing technologies and rapid reduction in
costs have fostered longitudinal analyses, which include multiple samples per
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subject over time. These longitudinal studies provide increased insights into
the underlying biological mechanisms of the microbiome role in health and
disease. In addition to identifying differentially abundant features, detecting
the time intervals where these features exhibit changes in their abundance
between two phenotypes in longitudinal studies adds insights into disease
pathogenesis.

Longitudinal differential abundance is to identify time intervals of differ-
entially abundant microbial features. To date, three methods have been pro-
posed, MetaSplines [34], MetaDprof [26], and MetaLonDA [30, 31]. MetaS-
plines and MetaDprof are both based on the Gaussian Smoothing Spline
ANOVA (SS-ANOVA) approach [12, 13, 55]. MetaSplines has a higher sen-
sitivity of detecting time intervals of differentially abundant features than
MetaDprof, while MetaDprof has higher specificity [26, 31]. MetaDprof has
a major drawback in its implementation since it assumes consistency in lon-
gitudinal microbial samples. It is only able to perform the analysis on an
equivalent number of subjects per phenotypic group, the same number of
samples from each subject, and the same elapsed time between adjacent time
points, which are rarely fulfilled in human microbiome longitudinal studies.

MetaLonDA (Metagenomic Longitudinal Differential Abundant) is a rec-
ently developed method that can identify significant time intervals of differ-
entially abundant microbial features such as taxonomies, genes, or pathways.
MetaLonDA is flexible such that it can perform differential abundance tests
on longitudinal samples with different numbers of subjects per phenotypic
group, different numbers of samples per subject, and samples that are not
collected at consistent time points. These inconsistencies are often the case
for samples collected from human subjects in translational studies. Incon-
sistencies increase with the complexity of the procedure utilized to obtain
the samples.

MetaLonDA relies on two modeling components: the NB distribution for
modeling the mapped read counts for each feature and the semi-parametric
SS-ANOVA technique for modeling longitudinal profiles associated with dif-
ferent phenotypes. Specific significant time intervals of microbial features
can then be utilized to establish targeted timely screening or prevention
of individual features and facilitate timely interventions, such as the use
of antibiotics or probiotics. Unlike with cross-sectional methods that are
incapable of identifying significant time intervals associated with differen-
tially abundant features, significant time intervals of differentially abundant
features identified through MetaLonDA may lead to the reconstitution of
the microbiome and reestablishment of homeostasis prior to the onset of
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overt disease. MetaLonDA is publicly available on the CRAN repository
(https://CRAN.R-project.org/package=MetaLonDA).

5. Probabilistic models for a group of features in the count
table

Modeling multivariate feature counts is becoming important in the micro-
biome research community because these models are able to retain more
information contained in the data. For example, researchers are interested
in testing multivariate hypotheses concerning the effects of treatments or ex-
perimental factors on the whole assemblages of bacterial taxa, so that they
may know the impact of the microbiome on human health and on character-
izing the microbial diversity in general [21]. In addition, they may be able
to identify relevant microbes that play essential roles in a microbial network
by connecting a variety of key features.

5.1. Multinomial and Dirichlet multinomial (DM) models

Suppose we have m bacterial taxa, and their counts Zj = (Z1j , . . . , Zmj)
T

from the jth subject. With a given column sum Nj and a probability measure
p = (p1, . . . , pm)T , a multinomial distribution assigns the following proba-
bility to an observed column zj = (z1j , . . . , zmj)

T of the OTU table

(4) P (Zj = zj) =
Nj !

z1j ! · · · zmj !
p
z1j
1 · · · p

zmj
m

where pi ≥ 0,
∑m

i=1 pi = 1, and
∑m

i=1 zij = Nj .
In order to make the model more flexible and thus can fit the data better,

the probability vector p = (p1, . . . , pm)T is assumed to follow a Dirichlet
distribution with a probability density function

(5) f(p) =
Γ(
∑m

i=1 γi)

Γ(γ1) · · ·Γ(γm)
pγ1−11 · · · pγm−1m

where γi > 0, i = 1, . . . ,m are parameters of the Dirichlet distribution.
The aggregated distribution is known as a Dirichlet multinomial (DM)

distribution, which assigns the following probability

(6) PDM (Zj = zj) =
Nj ! Γ(

∑m
i=1 γi)

Γ(Nj +
∑m

i=1 γi)

m∏
i=1

Γ(zij + γi)

zij ! Γ(γi)

https://CRAN.R-project.org/package=MetaLonDA
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The DM distribution is commonly used to model taxon counts. For ex-
ample, Rosa, et al. [21] used DM to calculate the powers and sample sizes
for experimental designs, perform tests of hypotheses (for example, com-
parison of microbiomes across groups), and estimate parameters describing
microbiome properties. Chen and Li [6] used a DM model for developing a
penalized likelihood approach to estimate the regression parameters. Nev-
ertheless, several recent studies showed that a multinomial or DM model
might not be appropriate for microbiome data [28, 46] since those models
assume a negative correlation among all paired OTUs. Actually, Mandal, et
al. [28] showed that the correlation between a pair of OTUs could be positive
as well.

5.2. Generalized Dirichlet multinomial (GDM) and zero-inflated
generalized Dirichlet multinomial (ZIGDM) models

Dirichlet distribution has been widely used as a conjugate prior for the pa-
rameters of a multinomial distribution since the calculation on its posterior
distribution is easier. Nevertheless, if a random vector follows a Dirichlet dis-
tribution, all its components must have the same variance and sum to one.
Motivated by this limitation, a generalized Dirichlet (GD) distribution was
introduced by Connor and Mosimann [8] to allow more general covariance
structure. The multinomial model with a GD prior is called a generalized
Dirichlet multinomial (GDM) model [49].

Under the GDM model, the jth column Zj of OTUs with m observed
features (Z1j , . . . , Zmj) is modeled as m+ 1 features with one additional
unobserved feature Zm+1,j . Let the extended column vector Z+

j = (Z1j , · · · ,
Zmj , Zm+1,j)

T with
∑m

i=1 Zij = Nj being the total number of reads in the
original jth column. The corresponding proportions for the m+ 1 features
are p1, . . . , pm, pm+1 with

∑m+1
i=1 pi = 1. The random parameter vector p =

(p1, . . . , pm)T follows a GD distribution with the density function

(7) f(p) =

m∏
j=1

1

Beta(αj , βj)
p
αj−1
j (1− p1 − · · · − pj)cj

where αj > 0, βj > 0, cj = βj − αj+1 − βj+1 for j = 1, . . . ,m− 1 and cm =
βm − 1 (see [49] for more details).

The zero-inflated generalized Dirichlet (ZIGD) distribution can be pro-
duced by adding a zero-inflated component to the GD distribution [49], and
the zero-inflated generalized Dirichlet (ZIGDM) model is constructed by us-
ing the ZIGD as a prior for the multinomial parameters. Tang and Chen [49]
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used real gut microbiome data to compare three models, DM, GDM, and
ZIGDM. Their conclusions include: (1) ZIGDM is more flexible for handling
the excess zeros and a complex correlation structure; (2) ZIGDM is more
robust when the counts are zero-inflated; (3) GDM fits the data better than
DM, while ZIGDM can further improve the goodness of fit for zero-inflated
counts; (4) ZIGDM seems more appropriate for handling high-dimensional
microbiome taxa.

6. A nonparametric Bayesian model for microbiome data

In a typical OTU count table, the number of rows m is fixed. However,
from the collection procedure of microbiome data, the number of potential
features is typically unknown, and the number of observed features by the
experiments is not predetermined.

Following a nonparametric Bayesian model [42], we may denote F =
{F1, F2, . . .} as the collection of all potential features in the n biological
samples. Different from the models in Section 5, the number of features
in F could be infinity. For biological sample j, a discrete probability mea-
sure P j = (p1j , p2j , . . .) on F determines the distribution of the frequencies
(Z1j , Z2j , . . .). In other words, P j({Fi}) = pij ,

∑
i pij = 1, and E(Zij) ∝ pij .

The goal of the nonparametric Bayesian model [42] is to model the dis-
tribution of P j ’s and the variation among them. It assigns the probability
mass to any subset A of the potential features in F :

(8) P j(A) =
M j(A)

M j(F)

where M j(A) =
∑∞

i=1 1(Fi∈A)σi〈Z(i),Zj〉+2, σi ∈ (0, 1) is the average abun-
dance of feature Fi across all biological samples, Z(i) is the row of OTU

table associated with feature Fi, Zj = (Z1j , Z2j , . . .)
T is the jth column, 〈·〉

stands for the usual inner product (see [42] for more details).
Ren, et al. [42] constructed a Bayesian framework with dependent Dirich-

let process for microbiome analysis. They applied their model to two mi-
crobiome datasets. Based on their Bayesian nonparametric method, they
obtained the posterior probabilities of any two biological samples being
clustered together. Their result are consistent with Caporaso, et al. [5]’s
conclusion.
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7. Conclusion

In this paper, we review three types of probabilistic models based on the
number of features under discussion, single, a fixed number, and a flexible
number of features. Since the microbiome data is often sparse, it may contain
much more than expected zeros, which makes the construction of a suitable
probabilistic model challenging. Zero-inflated or hurdle model seems more
appropriate than a standard model. Among different models for analyzing
the differential abundance of a single OTU, ZINB was recommended by Xu,
et al. [57], while ZIBB was preferred by Hu, et al. [15].

Moreover, we may model multiple OTUs or features simultaneously.
This kind of models may foster our understanding of interactions between
species, or even build a network among species. Quite a few models have
been proposed for this purpose, including multinomial, Dirichlet multino-
mial (DM), generalized Dirichlet multinomial (GDM), and zero-inflated gen-
eralized Dirichlet multinomial (ZIGDM) models. Although multinomial and
Dirichlet multinomial (DM) were commonly used to model multiple OTUs,
several recent studies suggested that those two models may not be appropri-
ate for microbiome data [28, 46] due to their negative correlations between
all paired OTUs. The comparison study was done by Tang and Chen [49]
concluded that ZIGDM is more appropriate than the others.

On the other hand, nonparametric Bayesian approach for modeling mi-
crobiome data has not been commonly used yet. Recently, Ren, et al. [42]’s
work provided a nonparametric Bayesian framework for modeling a flexible
number of OTUs. It requires more complicated probabilistic models, such
as dependent Dirichlet process.
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A. Peet, V. Tillmann, R. Uibo, S. Mokurov, N. Dorshakova, J. Ilonen,
S. M. Virtanen, S. J. Szabo, J. A. Porter, H. Lähdesmäki, C. Hutten-
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