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Diabetic retinopathy, a major cause of adult blindness, is a medical
condition in which damage occurs to the retina due to diabetes mel-
litus. Based on the Diaretinopathy database, we perform wavelet
analysis on several candidate genes responsible for causing diabetic
retinopathy. We obtain approximation and detail information of
the numerical representations of candidate genes. We compute dis-
crete and continuous wavelet transforms of each gene. We compare
the computational and graphical results of seven candidate genes.
We also perform wavelet analysis and wavelet transform on the
Fibroblast Growth Factor 21 gene which can be included in the
gene therapy. Through this study, it is anticipated to provide bet-
ter disease management and ensure better prognosis in diabetic
retinopathy.

1. Introduction

Diabetic retinopathy is a damaged retina in the eye caused by weak blood
vessels as a result of diabetes. It is a progressive microvascular complication
associated with both type 1 and type 2 diabetes, with the latter being more
prone to disease susceptibility. Diabetic retinopathy is composed of a char-
acteristic group of lesions found in the retina of individuals having had dia-
betes mellitus for several years. It is a major cause of non-inherited blindness
among adults around the world. It affects the retina of almost all patients
with type I diabetes and about 60% of those with type II diabetes [11]. It is
estimated that in 2002 diabetic retinopathy accounted for about 5% of world
blindness, representing almost 5 million blind people [49]. Although many
diabetic retinopathy articles have been published, the understanding of the
underlying molecular mechanisms of diabetic retinopathy is limited. Many
genes play a crucial role in causing the disease. Diaretinopathy database [4§],
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a gene database for diabetic retinopathy, provides information of 102 poten-
tial candidate genes causing diabetic retinopathy at molecular, biomedical
and at structural level. For each candidate gene the database is designed by
taking 24 parameters into consideration that comprises official symbol, alter-
native names, description, chromosome map showing the location, number
of exons and GT-AG introns, motif, polymorphic variation, Enzyme Com-
mission number, catalytic activity, active site, cofactor, biophysicochemical
properties, enzyme regulation, induction, molecular pathway, interactors,
post-translational modification, and 3D structure. In addition to the molec-
ular class and function of these genes, this database also provides links to
download the corresponding nucleotide and amino acid sequences in FASTA
format from NCBI and UNIPROT database respectively [36], which may
further be used for their computational approaches. Worldwide, the preva-
lence of diabetic retinopathy is increasing at an alarming rate, the World
Health Organization predicted that the number of adults with diabetes in
the world, would be from 171 million in 2000 to 366 million in 2030. Translat-
ing basic biomedical research into clinical practice is vital to our health care
services. It will not only influence global health but also impact the world
economy. This paper is mainly to analyze several candidate genes in the
diaretinopathy database. In what follows, we will provide some motivations
of our methodologies and approaches of our intended studies.

One of the primary goals of bioinformatics is to extract valuable in-
formation from a large amount of biological data. Several clustering and
other techniques are applied to DNA (Deoxyribo Nucleic Acid) and pro-
tein sequences [0, 9 16, B7, [44], by which one can correlate the inherent
relationships between DNA or protein sequences. In fact, digital signal pro-
cessing techniques can be used to characterize genomic data more efficiently
in comparison to other methods [245] [7, 8, 13 4T], 47]. In particular, one
of the useful tools in signal processing, wavelet techniques have been used
in various applications in bioinformatics and medical areas [Il, [14H22] 24
33, 135, [38], 43], 45]. This is mainly due to robustness, efficiency, and flexibil-
ity of wavelets’ characteristics [34]. We address the DNA code of the human
being in the perspective of signal processing. It is motivated by the adoption
of the wavelets for the study of the DNA information. DNA is a double helix
constituted by two polymers connected by hydrogen atoms. The polymers
contain three types of nucleotides, namely deoxyribose, a phosphate group,
and a nitrogenous base. There are four distinct nitrogenous bases: thymine,
cytosine, adenine, and guanine, denoted by the symbols {T, C, A, G}. To
apply wavelet techniques, we need to map DNA sequences into mathematical
representations, which include binary coding [40], [50], complex number [7],
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integer number [12], EIIP (electron-ion interaction potential) [33], Z-curves
[52, 53]. Other models, such as DNA walks [39], are also available. The in-
teger representation appears to be useful and effective [42]. In this paper,
we will use the integer representation, namely, we map integer numbers to
the four nucleotides as T=0, C=1, A=2, and G=3. Based on the work done
by Saini and Dewan [42], we will perform wavelet analysis on several can-
didate genes by using Daubechies (dbl) wavelet at level 1 which has least
reconstruction errors in comparison with many other situations.

Our paper is organized as follows. In Section 2, we provide some back-
grounds in wavelet analysis. We then perform wavelet analysis on several
candidate genes in Section 3. Some comparison results are presented in Sec-
tion 4. We conclude with several comments in Section 5.

2. Preliminary backgrounds

In this section, we give a brief account of wavelet analysis by recalling mul-
tiresolution analysis, scaling functions, wavelet functions, as well as contin-
uous and discrete wavelet transforms.

A multiresolution analysis (MRA) [34] consists of a sequence of succes-
sive approximation spaces {V;};ez of L?(R) with the following properties:

(i): Vj € Vi,
COW . S s . 2
(ii): jlgIOlOVJ = U Vj is dense in L*(R),
JjE€Z
(iii): (1) V; = {0},
Jj€Z
(iv): f(z) € V; <= f(22) € V41,
(v): f(z) eV, = f(x+277k) €V, Vke Z,

(vi): There exists a function ¢ € Vj so that {¢(x — j)};jez is an orthonor-
mal basis of Vj.

¢ is called a scaling function that generates a MRA with the above
properties. Through translation and dilation of ¢, a Riesz basis {¢; () }rez
is obtained for the subspace V; C L?(R) by the properties (iv)(v), where

(1) din(r) =256(2Px — k), j.keZ

This family can be generally expressed as ¢, n(z) = GL%QS(:”_@).
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Since V C Vi, there is a set of coefficients {aj }rez, so that ¢ satisfies
the two—scale equation or refinement equation

(2) o(z) = 3 a2z — k).
k

For every j € Z, we define W; to be the orthonormal complement of V;
in Vj41, we then have

(3) Vi =V, EPpw;
and
(4) W; LWy if j#7.

It follows that, for j > J

J—j+1
5 b @( @ v,
k=0
By virtue of (ii) and (iii) above, this implies

(6) L*(R) = PwW;

JjEZ

which is a decomposition of L?(R) into mutually orthogonal subspaces.
It turns out that a basis for Wy can be obtained by dilating and translating
a single function ¥ (z) called basic (mother) wavelet which is defined by
(wavelet equation)

(7) Y(x) = bpp(22 — k)
k

where by = (—1)Fa_j11. In fact, {¢jx(2) = 224(27x — k) }rez forms an or-
thonormal basis for W;.

Let P;, (); denote the orthogonal projection L? — Vi, L? - W;, respec-
tively. Then

(8) Pif(x) = ajpdin(x),
k

9) Qif (@) = Bjsthjk(x),
k
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where the coefficients o, Bjx are given by the inner product:

(10) Qi =< fo by >= / F(2)¢54(x)d,
(11) Bik =< [, ¥jk >=/_ f(@)Y;r(v)dx.

P; f converges to f in the L? norm which is the best approximation of f in
Vj.

More precisely, the above coefficients can be obtained by applying wavelet
transforms which are defined as follows.

The continuous wavelet trsnsform is defined as:

t—>b

(12)  [wpr(®)](a,b) = \}a /Zx(t)z/}* (a> it a>0beR,

where the symbol * represents the complex conjugate, z(t) is the given signal
(DNA sequence) and 1 is a wavelet.
The discrete wavelet transform is defined as:

(13)  [Dwya(n)l(a,b) =Y z(n)gr(n), a=2,b="k2 jeNke 2,
nez

where g’s are the coefficients of the wavelet equation associated with .

3. Candidate genes

Diabetic retinopathy is a common complication of diabetics. It is important
to know more about the underlying molecular mechanisms. Recognizing the
relevant genetic susceptibility would help in counseling presymptomatic in-
dividuals to adopt preventive and control measures to delay the onset of dis-
ease. Therefore it is essential to analyze candidate genes which are respon-
sible for causing diabetic retinopathy. Consequently, it will help progress
faster the diagnostic treatment. In what follows, we will perform wavelet
analysis of several candidate genes. More precisely, we provide approxima-
tion and detail information as well as continuous and discrete transforms of
individual genes.
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3.1. Angiotensin I converting enzyme (ACE)

This gene encodes an enzyme exopeptidase involved in catalyzing the con-
version of angiotensin I into a physiologically active peptide angiotensin II,
which is a potent vasopressor and aldosterone-stimulating peptide that con-
trols blood pressure and fluid-electrolyte balance. ACE inhibitors are widely
used as pharmaceutical drugs in the treatment of conditions such as high
blood pressure, heart failure, diabetic nephropathy, and type 2 diabetes mel-
litus. Wavelet analysis and wavelet transform of ACE are shown in Figures
1 and 2 respectively.
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Figure 1: Approximation and Detail of ACE with dbl.

3.2. Coiled-coil domain containing 68 (CCDC68)

This gene encodes a member of the hook-related protein family. Members of
this family are characterized by an N-terminal potential microtubule bind-
ing domain, a central coiled-coiled and a C-terminal Hook-related domain.
The encoded protein may be involved in linking organelles to microtubules.
Wavelet analysis and wavelet transform of CCDC68 are shown in Figures 3
and 4 respectively.
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Figure 2: Discrete and Continous Transform of ACE with dbl.
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Figure 3: Approximation and Detail of CCDC68 with db1.

155



156 En-Bing Lin

Analyzed signal

1] 500 1000 1500 2000 2500 3000 3500 4000
Discrete Trtansform absolute coefficients
II |I I I
|| I‘!

il | I||||f| MM ¥
||||||| rp’lhyllulll H d.W l\i'l‘l””lll'lﬂ" ‘|||\"|”' f!h,ﬁ ’3 ||'|'|'|||'||

500 1000 500 2000 2500 3000 3500 4000
Continous Transfnrm absolua coﬂﬂlcmnts

SSanaang

Scale

OG-
Dooooooo
=ttt

500 1000 1500 2000 2500 3000 3500 4000
location

Figure 4: Discrete and Continous Transform of CCDC68 with dbl.

3.3. advanced glycosylation end product receptor (AGER)

The advanced glycosylation end product (AGE) receptor encoded by this
gene is a member of the immunoglobulin superfamily of cell surface recep-
tors. It is a multiligand receptor interacting with other molecules impli-
cated in homeostasis, development, as well as inflammation, and certain
diseases, such as diabetes and Alzheimer’s disease. Wavelet analysis and
wavelet transform of AGER are shown in Figures 5 and 6 respectively.

3.4. Adiponectin (ADIPOQ)

Adiponectin, an adipose tissue-specific plasma protein, has anti-inflamma-
tory effects on the cellular components of the vascular wall. It is a protein
hormone which is involved in regulating glucose levels as well as fatty acid
breakdown. Wavelet analysis and wavelet transform of ADIPOQ are shown
in Figures 7 and 8 respectively.
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Figure 6: Discrete and Continous Transform of AGER with dbl.
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Figure 7: Approximation and Detail of ADIPOQ with dbl.
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Figure 8: Discrete and Continous Transform of ADIPOQ with dbl.
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3.5. Angiotensinogen (serpin peptidase inhibitor, clade A,
member 8) (AGT)

The angiotensin family of peptides is important in the regulation of blood
volume, vascular resistance, and electrolyte balance. The protein encoded
by this gene, pre-angiotensinogen or angiotensinogen precursor, is expressed
in the liver and is cleaved by the enzyme renin in response to lowered blood
pressure. It is produced in a cascade whereby the precursor peptide an-
giotensinogen is cleaved to produce renin and angiotensin I. Angiotensin-
converting enzyme then acts on angiotensin I to yield the octapeptide an-
giotensin II, and further processing generates angiotensins IIT and IV. Wave-
let analysis and wavelet transform of AGT are shown in Figures 9 and 10
respectively.

Figure 9: Approximation and Detail of AGER with dbl.

3.6. Angiotensin II receptor, type 1 (AGTR1)

Angiotensin II is a potent vasopressor hormone and a primary regulator of
aldosterone secretion. It is an important effector controlling blood pressure
and volume in the cardiovascular system. It acts through at least two types of
receptors. This gene encodes the type 1 receptor which is thought to mediate
the major cardiovascular effects of angiotensin II. This gene may play a role
in the generation of reperfusion arrhythmias following restoration of blood
flow to ischemic or infarcted myocardium. It was previously thought that a
related gene, denoted as AGTR1B, existed; however, it is now believed that
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Figure 10: Discrete and Continous Transform of AGT with dbl.

there is only one type 1 receptor gene in humans. At least five transcript
variants have been described for this gene. Wavelet analysis and wavelet
transform of AGTR1 are shown in Figures 11 and 12 respectively.

In this section, we have presented each gene’s wavelet analysis, wavelet
transforms and coefficient distributions. In what follows, we present some
comparisons within each gene and compute some variance and entropy values
for each gene. We will show some characteristics of candidate genes and how
we express the differences among the genes.

4. Comparisons

To understand each gene’s overall wavelet coefficients, we calculate its nor-
malized values by using the following global comparison formula [28]. We
plot their figures (Figure 13-18) as follows.

B w(a,b)
(14) N(a) = max(abs(w(a,b)))’
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Figure 12: Discrete and Continous Transform of AGTR1 with dbl
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where w(a, b) is wavelet transform defined in equation (12).

06|
0.6 ||
0.4

0.2

nomalized value

0 500 1000 1500 2000 2500 3000 3500 4000 4500

location

Figure 13: Global Comparisons of ACE.
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Figure 14: Global Comparisons of CCDC68.
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Figure 16: Global Comparisons of ADIPOQ.

Alternatively, we can calculate wavelet variance to understand the com-
parisons among different genes. The variance is defined as

1"
= Ezw2(a71“j)a
j=1
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Figure 18: Global Comparisons of AGTRI.
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Table 1. Wavelet Coefficients of Candidate Genes
Genes ACE | CCDC68 | AGGER | ADIPOQ | AGT | AGTR1
Variance | 3.8155 | 3.2372 3.8743 3.1102 | 2.9081 | 3.1788
Table 2. Wavelet Entropy of Candidate Genes
Genes ACE | CCDC68 | AGGER | ADIPOQ AGT AGTR1
Entropy | -3536.4 | -8695.4 | -3390.9 2148.3 | -991.3637 | -3949.9

where w(a, x;) are wavelet coefficients [29]. Their values are listed in Table 1.

To measure the disorderliness or randomness in a closed system, we
use entropy which is considered as a measure of uncertainty. It is defined
as — > w;logaw;, where w; are wavelet coefficients [29]. We present the
corresponding entropy for each candidate gene in Table 2.

5. Discussions
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Figure 19: Wavelet Analysis on FGF21.

Wavelet analysis is a useful tool to analyze, decompose and characterize
signals. We have presented computational, graphical and conceptional illus-
trations on several candidate genes. As we compare the results in Table 1
and Table 2 as well as Figures 1-12, every gene is basically unique. They are
different from each other. For instance, the values of ACE and AGGER are
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Figure 20: Wavelet Transform on FGF21.

close but their figures are quite different. Observing from the above figures, it
is not easy to compare different genes to some extent. It would be more visi-
ble or precise if we divide each gene into several segments. Further questions
such as prediction and detection problems [10, 46, [51] can be considered by
using our methods to investigate new findings. A recent study shows that
a single administration of an adeno-associated viral vector (AAV) carrying
the FGF21 (Fibroblast Growth Factor 21) gene, resulted in genetic manipu-
lation of the liver, adipose tissue or skeletal muscle to continuously produce
the FGF21 protein. Here, we perform wavelet analysis and wavelet trans-
form on FGF21 which are shown in Figure 19 and Figure 20, respectively.
This protein is a hormone secreted naturally by several organs that acts
on many tissues for the maintenance of correct energy metabolism. By in-
ducing FGF21 production through gene therapy the animal lost weight and
decreased insulin resistance, which causes the development of type 2 diabetes
[23]. FGF21 is considered a promising therapeutic agent for type 2 diabetics
and obesity. In fact, gene therapy includes the approach that involves the
introduction of a foreign gene into any cell type in the body, allowing it to
produce insulin. The gene introduced could be the insulin gene itself allow-
ing for expression in a gene coding a factor such that in turn activates the
insulin gene, thereby allowing for ectopic insulin production. Also, several
aspects of developments can be further studied, namely, other methods of
numerical representations, other wavelets, coding and non-coding regions of
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different genes, sequence alignment, structure analysis, regulation analysis
and improvements of diagnosis, treatment, and prevention of the disease.
Ultimately, our study would help establish more reliable clinical care for
patients.

Acknowledgment. The author would like to thank the anonymous ref-
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