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Dynamics of gene expression based on

epigenetic modifications

Xiaopei Jiao and Jinzhi Lei

Gene expression is a basic process in life activities. Precise de-
scription of gene expression is essential for understanding many
biological systems quantitatively. Here, we propose an analytical
method to accurately calculate the mRNA distribution in equilib-
rium and non-equilibrium state based on a three-stage model. First,
we consider a three-stage model of gene expression and obtain the
mRNA distribution in equilibrium state under the absence of epige-
netic modifications. Next, applying the characteristic line method
of two-element PDE, we obtain accurate distribution function of
non-equilibrium state which describes the evolution dynamics of
the gene expression process. Moreover, based on the three-stage
model, we construct a mathematical framework to illustrate the
ergodic principle by which the time average is equivalent to the
space average or ensemble average in a time-continuous dynamical
system. We further consider the influence of DNA methylation in
the transcription process. By considering methylation allocation
during cell division and the influence for transition rate, we ob-
tain analytic expression and make Gillespie random simulation for
mRNA number in a cell population. The results reveal five types
of diversified and novel mRNA distributions, which are highly con-
sistent with single-cell sequence data. These results provide useful
insights for our understanding of the gene expression process.

1. Introduction

Gene expression is a significant biochemical process in both prokaryotes and
eukaryotes cells. With the development of advanced single-cell sequencing
technology, cell-to-cell variance of gene expression is obvious among a cell

Key words and phrases: gene expression, mRNA distribution, three-stage model,
ergodic principle, epigenetic modification.
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population [1, 14]. People have been gradually aware of that the impor-
tance in gene expression heterogeneity among cells [16, 29]. Nevertheless, it
remains difficult to quantitate the random process of gene expression.

Random fluctuations in gene expression exist universally in all kinds of
organisms[19–21, 23, 24, 33]. Cells response to fluctuating environments by
adjusting gene expression[5, 10]. Recently, such cell-to-cell variance can be
observed by single cell RNA-sequencing techniques[4]. Cell-to-cell dynami-
cal randomness and variability presumably result from burst-like stochastic
transcription[11, 12]. There are several important factors to influence gene
expression such as intrinsic factor[32], environmental factor, and epigenetic
variability[27, 31]. Intrinsic factor results from discrete biochemical reactions
in cells. Occurrence of a biochemical reaction is a random process because
chemical molecules collide with each other randomly in some probability.
Environmental factor means that gene expression can be influenced by tis-
sue and environment around the cells through the surrounding signals from
the niche [30]. The third factor is the epigenetic variability, which refers to
epigenetic control of gene expression[2]. The effects of environmental factors
can be studied experimentally, however, experiments can hardly be applied
to the study of intrinsic fluctuation and epigenetic modifications.

Epigenetic regulation is a type of significant regulation that can induce
variance in gene expression[2, 8, 25]. There are two main types of epigenetic
modification, DNA methylation[9, 18] and histone modification[3], which are
important for the regulation of gene expression. DNA methylation is a pro-
cess by which methyl groups are added to the palindromic CpG (CG/GC)
dinucleotides [13, 26]. DNA methylation level can inherit from mother cells
to daughter cells during cell division. Gene expression in a cell can be de-
scribed by a three-stage model[21], namely the central dogma[17], in which
promoter of a gene can be switched between ON and OFF state. DNA
methylation in the promoter region of a gene can modulate the transition
rate between ON and OFF of the promoter through the remodeling of chro-
matin structure. Hence, DNA methylation can regulate the variance of gene
expression at single cell level. However quantitative description of the het-
erogeneity due to DNA methylation remains unclear.

In this paper, we focus on the effects of intrinsic fluctuation and epi-
genetic modifications in a three-stage model of gene expression [21]. Major
contribution of variance in protein level mainly comes from the transcription
process[17], thus we can omit the translation process, and focus our study
to transcription. This study was intended to provide a comprehensive and
analytic model to show the distribution of mRNA in a cell population. In the
rest of this paper, first we obtained analytic distribution of mRNA number
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following the method proposed by Shahrezaei et al.[28]. Next, we extended
the result of equilibrium state distribution and obtain accurate distribution
in the non-equilibrium state. We further proved the ergodic theorem in the
three-stage model. Finally, we considered the effect of DNA methylation in
gene expression, and obtain five types of mRNA distributions, which are
consistent to clinical data.

2. Results

2.1. Equilibrium state distribution of mRNA

The three-stage model considered here is illustrated at Fig. 1A. In this
model, the promoter can transit between ON and OFF state with rate k0

and k1 respectively. Transcription starts with a rate v0 when the promoter
is at the ON state, the produced mRNA degrade with a rate d0. This sim-
ple model of gene expression has been extensively studied in many works
[6, 10, 15, 22, 28, 31, 34]. Here, we referred the method of characteristic line
proposed in [28] to obtain the equilibrium state distribution. In [28], an ap-
proximation of the three-stage model of gene expression was obtained based
on assumptions in the transcription and translation time scales. Here, we
was intended to obtain the exact analytical distribution of mRNA numbers
under general conditions.

Let P 0
n and P 1

n the probability of occurring n mRNAs when the promoter
state is OFF and ON, respectively, the chemical master equation is given by

(1)

∂P 0
n

∂t
= k1P

1
n − k0P

0
n + d0[(n+ 1)P 0

n+1 − nP 0
n ],

∂P 1
n

∂t
= −k1P

1
n + k0P

0
n + v0(P 1

n−1 − P 1
n) + d0[(n+ 1)P 1

n+1 − nP 1
n ].

We denote

(2) τ = d0t, κ0 = k0/d0, κ1 = k1/d0, a = v0/d0,

and define the generating function

(3) f0(z, τ) =

∞∑
n=0

znP 0
n , f1(z, τ) =

∞∑
n=0

znP 1
n .
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Figure 1. Three-stage model and patterns of mRNA distribution.
(A) Illustration of the three-stage model. (B) Type I distribution, bimode
distribution with two probability peaks. Here k0 = 0.2, k1 = 0.2, v0 = 8, d0 =
1. (C) Type II distribution, mono-mode distribution with a single peak at
positive mRNA number. Here k0 = 4, k1 = 4, v0 = 15, d0 = 1. (D) Type III
distribution, mono-mode distribution with a single peak at zero mRNA num-
ber. Here k0 = 3, k1 = 3, v0 = 2, d0 = 1. In the figures, blue bars represent
simulation results by Gillespie algorithm, red lines are obtained by theoret-
ical calculation.

Here f0(z, τ) and f1(z, τ) correspond to the generating functions of OFF
and ON state of promoter, respectively. Let

F (z, τ) = f0(z, τ) + f1(z, τ) =

∞∑
n=0

znPn, Pn = P 0
n + P 1

n .

the total generating function, then the distribution Pn can be obtained from
the series expansion of the generating function F (z, τ).
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From the master equation Eq. (1), we obtain the coupled partial differ-
ential equations

(4)

∂f0

∂τ
= κ1f

1 − κ0f
0 +

(
∂f0

∂z
− z ∂f

0

∂z

)
,

∂f1

∂τ
= −κ1f

1 + κ0f
0 + a(zf1 − f1) +

(
∂f1

∂z
− z ∂f

1

∂z

)
.

At the stationary state, we set the derivatives with τ as 0, and denote
z − 1 = v, and obtain the equation

(5)
v
∂f0

∂v
= κ1f

1 − κ0f
0,

v
∂f1

∂v
= −κ1f

1 + κ0f
0 + avf1.

These two equations can be solved by the method of series expansion, which
give the total generating function (Appendix A)

(6) F (v) =

∞∑
n=0

(κ0)na
n

(κ0 + κ1)nn!
vn.

Here (q)n denotes the Pochhammer symbol

(7) (q)n =

{
1, n = 0,

q(q + 1) · · · (q + n− 1), n 6= 0.

The distribution Pk of mRNA number is given by the Taylor expansion of
F (z) at z = 0, i.e.,

Pk =
1

k!

∂kF

∂zk

∣∣∣
z=0

.

A careful calculation gives

Pk =
Γ(κ0 + k)Γ(κ0 + κ1)

Γ(κ0)Γ(κ0 + κ1 + k)Γ(k + 1)
ak(8)

×
∞∑
n=0

Γ(κ0 + k + n)Γ(κ0 + κ1 + n)

Γ(κ0 + n)Γ(κ0 + κ1 + k + n)n!
(−a)n.

Here Γ(z) is the Gamma function Γ(z) =
∫∞

0 xz−1e−xdx. The Eq. (8) gives
the probability of occuring k mRNA at the stationary state. Fig. 1 shows the
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distributions obtained from numerical simulation with Gillespie algorithm
[7] and the above analytic expression, which show good agreement.

From Eq. (8), the probability Pk is dependent on the three parameters
κ0, κ1, and a. We varied the parameters to investigate the possible distribu-
tion patterns. There are three type distributions depending on the parame-
ter values (Fig. 1B-D): type I with bimode distribution with two probability
peaks, type II of mono-mode distribution with peak probability at positive
mRNA number, and type III of mono-mode distribution with peak proba-
bility at zero mRNA number. Hence, we re-obtained the results in [28]. We
further investigated the parameters corresponding to the three type distri-
butions, and find that the key parameters are u = κ0/a and v = κ1/a (Fig.
2). We have the type I distribution when both u and v are small. When u
is small and v is adequately large, the distribution is type III, and we have
the type II distribution when u is large.

v

0.05 0.1 0.15 0.2 0.25 0.3

u

0.05

0.1

0.15

0.2

0.25

0.3

I
III

II

Figure 2. Various distributions of mRNA number. The parameters
u = κ0/a and v = κ1/a are relative transition rates between ON and OFF
state of the promoter. Here, we set a = 8 and d0 = 1 fixed.

2.2. Non-equilibrium state distribution of mRNA

Now, to obtain the evolution of distribution, we need to solve the Eq. (4).
To this end, we rewrite Eq. (4) as

(9)
∂ ~f

∂τ
+ v

∂ ~f

∂v
=

[
−κ0 κ1

κ0 av − κ1

]
~f.
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where ~f = (f0, f1)T. Applying the method of characteristic line and intro-
duce a variable r, we obtain four differential equations

(10)

dτ

dr
= 1,

dv

dr
= v,

d~f

dr
=

[
−κ0 κ1

κ0 av − κ1

]
~f.

Assuming that there are m mRNAs initially, so that

F (v, 0) = (1 + v)m,

we solve the above equations to obtain the total generating function (Ap-
pendix B)

(11) F (v, τ) = (1 + ve−τ )m

∞∑
n=0

(κ0)nan

(κ0+κ1)nn!v
n

∞∑
n=0

(κ0)nan

(κ0+κ1)nn!v
ne−nτ

.

It is easy to verify that the asymptotic solution when τ →∞ gives the exact
solution Eq. 6 for the stationary distribution.

In order to obtain the probability Pk(τ), we make some approximations
for generating function. First, we ignore influence of denominator in Eq.
(11), since e−nτ is infinitesimal of higher order than e−τ . Moreover, we make
an approximation (1 + ve−τ )m ≈ 1 +mve−τ . Thus, an asymptotic form of
F (v, τ) is given by

(12) F (v, τ) ≈ (1 +mve−τ )

∞∑
n=0

(κ0)na
n

(κ0 + κ1)nn!
vn.

Next, we calculate the probability distribution for k mRNAs at τ time with
initial value m as Pk(τ |m) = 1

k!F
(k)(v, τ)|v=−1, which gives

(13) Pk(τ |m) = (1−me−τ )P sk +me−τP sk−1,

where

(14) P sk =
1

k!

∞∑
n=0

(κ0)n+ka
n+k

(κ)n+kn!
(−1)n.
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Here P sk is probability in the stationary distribution with k mRNAs.
Eq. (13) gives the evolution of the distribution function. When τ →∞,

we have Pk(τ |m)→ P sk , and the distribution converges to the stationary dis-
tribution exponentially. Moreover, Eq. (13) implies that Pk(τ |m) is mainly
related to the two neighbor items P sk and P sk−1 at the stationary state. Fig. 3
shows the time evolution of the three type distributions.
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Figure 3. Asymptotic behaviors of the three type mRNA distri-
butions. Here, we set the initial number of mRNA as 40 and examine
the evolution of the probability distribution function. (A) Parameters: k0 =
0.2, k1 = 0.2, v0 = 8, d0 = 1. (B) Parameters: k0 = 4, k1 = 4, v0 = 15, d0 = 1.
(C) Parameters: k0 = 3, k1 = 3, v0 = 2, d0 = 1. In these figures, red, green,
and blue lines correspond to τ = 3.7, 4.4, and the stationary state, respec-
tively. The lines are calculated from Eq. (13).

2.3. Equivalence between time and ensemble distribution in gene
expression dynamics

In statistical physics, there is a fundamental principle that time distribution
and ensemble distribution are equivalent in major physical systems. Here,
we show that in the three-stage model of gene expression, the ensemble
distribution asymptotically approaches to the time distribution.

Fig. 4 shows the basic concepts of time and ensemble distributions. Time
distribution is to trace a system and observe its time evolution. Hence, to
obtain the mRNA distribution, we need to choose a long time window and
collect mRNA value in this window. For ensemble distribution, we imagine
that there exists an ensemble of independent systems starting with different
initial mRNA number. At each time point, different system in the ensemble
evolves to different mRNAs number. Hence, while we choose a certain time
point and observe all system simultaneously, we are able to obtain the mRNA
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distribution from this ensemble. This type of mRNA distribution is called
ensemble distribution.
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Figure 4. Illustration of time and space distribution. (A) Illustration
of time distribution, which means that when we consider mRNA evolution
in one cell, after some initial time, we pick a large time interval and obtain
the frequency of mRNA in the time interval. (B) Illustration of ensemble
distribution. Assume that we have many cells (the ensemble), each cell starts
from different (randomly) initial values and evolves to a time shorter than
the relaxation time. At this time point, we count the mRNA frequency
among these cells and obtain the ensemble distribution.

The above exact solutions correspond to the ensemble statistics. Here,
we asked whether these distribution functions can be used to describe the
time distribution based on a single cell evolution. Fig. 5 shows an example
of how time distribution converges to the ensemble distribution. We choose
four time windows from a cell evolution to calculate the mRNA distributions.
Fig. 5 shows that when the time window increasing, the mRNA distribution
from one cell evolution converges to the theoretical stationary distribution.
This example suggests that the above formulation of the ensemble distribu-
tion can be used to describe the time distribution of this system.

In ensemble distribution, the probability of occurring k mRNAs in total
ensembles at time τ is not a deterministic value, but fluctuates around an
average value depending on k. In another words, the distribution of mRNA
itself obeys a probability distribution. Based on the three-stage model, we
find that when the time increasing, average of the ensemble distribution of
mRNA tends to a steady distribution which is the accurate distribution after
infinitely long time. Proof of this result is given by the following theorem.

THEOREM. Let X(t, x0) denotes the number of mRNA at time t of a
cell with initial mRNA number x0 at t = 0, and define a counting function
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Figure 5. Time distribution of a system under different time win-
dows. Four time windows: (A) [0, 28.8], (B) [0, 39.0], (C) [0, 51.4], and (D)
[0, 60.5]. Other parameters are taken from Fig. 1: k0 = k1 = 4, d0 = 15, v0 =
1. Gray bar is obtained from numerical results with the Gillespie method,
and red line is theoretical stationary mRNA distribution Eq. (8).

χ(X,m) as

(15) χ(X,m) =

{
1, X = m

0, other wise.

Consider a single cell X(t, x0), and an ensemble of N cells Ω={Xi(t, xi)}Ni=1.
Then for any positive integer m, we have

(16) lim
n→∞

1

n

n∑
i=1

χ(X(i∆t, x0),m) = lim
N→∞,τ→∞

1

N

N∑
i=1

χ(Xi(τ, xi),m),

where ∆t > 0. In the equation (16), the left hand side represents the time
average distribution, and the right hand side represents the ensemble average
distribution.
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Proof. First, we calculate the ensemble average distribution and prove that
the limit of the right hand side in Eq. (16) exists.

For the ensemble Ω ofN cells with initial mRNA number xi(i=1, · · · , N),
we define the ensemble frequency ρe at time τ > 0 as

(17) ρe =
1

N

N∑
i=1

χ(Xi(τ, xi),m).

Thus, the probability distribution function

(18) P (Xi(τ, xi) = m) = Pm(τ |xi).

Since the cells Xi(τ, xi) in Ω are independent to each other, the mean value
and variance of ρe can be calculated below:

E(ρe) =
1

N

N∑
i=1

Pm(τ |xi).(19)

D(ρe) =
1

N2

N∑
i=1

Pm(τ |xi)(1− Pm(τ |xi)).(20)

We note that Pm(τ |xi) is given by Eq. (13). Now, we can analyze the
limits of Eq. (19) and Eq. (20). When τ tends to infinity, we have

lim
τ→∞

Pm(τ |xi) = P sm.

Substituting Eq. (13) into Eq. (19), we obtain

lim
τ→∞

E(ρe) =
1

N
lim
τ→∞

N∑
i=1

Pm(τ |xi)(21)

=
1

N

N∑
i=1

lim
τ→∞

(1− xie−τ )P sm + xie
−τP sm−1 = P sm.

From Eq. 21, there exists a constant C, such that

(22) |E(ρe)− P sm| ≤ Ce−τ .

Hence, we obtain the exponential convergency when τ goes to infinity. Sim-
ilarly, Eq. (20) yields

(23) lim
τ→∞

D(ρe) =
1

N
P sm(1− P sm).
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Hence, N →∞, the limitation in Eq. (23) tends to

(24) lim
N→∞,τ→∞

D(ρe) = 0.

Thus, we conclude that limN→∞,τ→∞ ρe = P sm, i.e., the limit of the right
hand side in Eq. (16) exists.

Next we calculate the time average distribution and prove that the limit
of the left hand side in Eq. (16) exists.

It is easy to have the probability distribution

(25) P (X(i∆t, x0) = m) = Pm(i∆t|x0).

When the time step ∆t is large enough, we can ignore the correlation between
X(i∆t, x0) and X((i+ 1)∆t, x0), and assume that X(i∆t, x0) and X((i+
1)∆t, x0) are independent. Hence, denote the time frequency

ρt =
1

n

n∑
i=1

χ(X(i∆t, x0),m),

the mean and variance of ρt are given by

(26)

E(ρt) =
1

n

n∑
i=1

Pm(i∆t|x0),

D(ρt) =
1

n2

n∑
i=1

Pm(i∆t|x0)(1− Pm(i∆t|x0)).

Again, applying Eq. (13), we obtain

Pm(i∆t|x0) = (1− x0e−i∆t)P sm + x0e−i∆tP sm−1(27)

= P sm + x0(P sm−1 − P sm)e−i∆t.

Hence, substituting Eq. (27) into Eq. (26), we obtain

E(ρt) = P sm + x0(P sm−1 − P sm)
1

n

n∑
i=1

e−i∆t(28)

= P sm + x0(P sm−1 − P sm)
e−∆t(1− e−n∆t)

1− e−∆t

1

n
.

Thus, there exists a constant C, such that

(29) |E(ρt)− P sm| ≤
C

n
.
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Here, the convergence rate is in the order O(n−1).
For the variance in Eq. (26), we apply the triangle inequality

(30) |D(ρt)| ≤
1

n

(∣∣∣∣∑n
i=1 Pm(i∆t|x0)

n

∣∣∣∣+

∣∣∣∣∑n
i=1 P

2
m(i∆t|x0)

n

∣∣∣∣) ≤ C

n
.

Here, we use convergence of Pm(i∆t|x0) when i→∞, and obtain the bound-
edness within the bracket in Eq. (30). From Eq. (29) and (30), we obtain

lim
n→∞

E(ρt) = P sm,(31)

lim
n→∞

D(ρt) = 0.(32)

Hence, have lim
n→∞

ρt = P sm.

Finally, we summarize all results and obtain

(33) lim
n→∞

ρt = P sm = lim
N→∞,τ→∞

ρe,

which gives

(34) lim
n→∞

1

n

n∑
i=1

χ(X(i∆t, x0),m) = lim
N→∞,τ→∞

1

N

N∑
i=1

χ(Xi(τ, xi),m).

This equation holds for any given positive integer m, and the Theorem is
proved. �

We have proved that the equivalence between time distribution and en-
semble distribution. Hence, the above formulation for the ensemble distri-
bution can be applied to describe the time distribution of gene expression in
a single cell. Fig. 6 shows the comparison between numerical simulation of
an ensemble of finite cells and the theoretical results, which are consistent
well to each other. Results for different time points and cell numbers in the
ensemble are shown. Latter dynamics and more ensemble cells yield better
consistence.

2.4. Distribution of mRNA with modifications in DNA
methylation

Now, we consider how DNA methylation affects the stochasticity in gene
expression. Here we consider the DNA methylation at the promoter region,
and introduce a β-value β (0 ≤ β ≤ 1) for the fraction of modified CpG
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Figure 6. mRNA distribution under different time and ensemble
sizes. In the figures, red lines represent theoretical mean value and error
bars are scope of standard deviation. Gray bars are distribution obtained
from numerical simulation. Here we set k0 = 0.2, k1 = 0.2, v0 = 8, d0 = 1,
which corresponds to the type I distribution. From left to right, times are
T = 10, 30, 50, from up to down, ensemble sizes are N = 100, 300, 500 re-
spectively.

sites in the promoter region. DNA methylation affects the gene expression
by alternating the switch rate between ON and OFF state, larger β-value
tends to a more compact chromatin structure, hence decreases the rate k0

and increases the rate k1. We assume that

(35)
k0 = h0e−µ0β,

k1 = h1e−µ1(1−β).

The random changes of DNA methylation in cell division is an impor-
tant source for perturbation of the gene expression. To model the random
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transition of the DNA methylation state, let βk the β-value of the k’th gen-
eration, we assume that the β-value at the next generation, βk+1, obeys a
Beta distribution Beta(ck, dk) with parameters ck and dk depending on βk,
i.e.,

(36) Prob(βk+1 = x) =
Γ(ck + dk)

Γ(ck)Γ(dk)
xck−1(1− x)dk−1.

With the distribution parameters ck and dk, the mean and variance of βk+1

are

(37) E(βk+1) =
ck

ck + dk
, var(βk+1) =

ckdk
(ck + dk)2(ck + dk + 1)

.

To obtain the relationship between ck, dk and βk, we assume that there
is a positive feedback of DNA methylation, so that the mean of the daughter
cell βk+1 depends on the β-value of the mother cell βk through

(38) 〈βk+1〉 = φ(βk) = u+
βnk

βnk + v
.

Here, n, u, v are parameters, and we only consider one daughter cell after
cell division. Hence, let E(βk+1) = 〈βk+1〉, and assume

var(βk+1) =
1

m+ 1
〈βk+1〉(1− 〈βk+1〉),

where m represents the number of CpG sites in the promoter region, we
have

(39) ck = m〈βk+1〉, dk = m(1− 〈βk+1〉).

Eq. (38) and (39) provide a way of determining ck and dk from βk.
The above discussion provides a numerical scheme of simulating gene

expression cross cell cycles with modifications in DNA methylation. We first
initialize the β-value at the first cycle βk (k = 1), which gives the rate k0 and
k1 for first cycle gene expression. At the time of cell division, we calculate
the coefficients ck and dk according to Eq. (39), and then find a β-value
(βk+1)according to the Beta distribution density function Eq. (36). This
newly obtained β-value enables us to perform the simulation for the next
cycle, and so on.

Fig. 7 shows the distributions of mRNA numbers obtained by numerical
simulations. Here, the distributions calculated from an ensemble of 2000
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cells, each starts with randomly setting β-values. Results show five type
distributions, with corresponding parameters given by Table 1. The five
type distributions are consistent with the transcript variability in single
mammalian cells [1].

Type v0 h0 h1 µ0 µ1 n

Type I 8 0.2 0.2 1 1 2.7
Type II 15 4 4 1 0.1 5
Type III 2 3 3 1 0.1 5
Type IV 17 11.9 40 0 10 3.1
Type V 17 11.9 40 0 10 2.7

Table 1. Parameters used for Fig. 7. In all types, we take d0 = 1, u =
0.05, v = 0.15,m = 60.

To obtain better understanding of the simulation results, we derive the
analytic formulations for the DNA distributions. The transition in the DNA
methylation is regulated by the function φ so that

〈βk+1〉 = φ(βk).

First, we assume that there is no random fluctuations in the β-value, so that
the β-value during cell cycling is determined by the iteration βk+1 = φ(βk).
Hence, at the equilibrium state, β-values of all cells in the ensemble are
determined by the stable fix points of β∗ = φ(β∗).

From the Hill type function φ(β), we have two possible cases.

(1) There are two fix point β∗1 and β∗2 . In this case, the equation φ(x) =
x gives three roots, x1 = β∗1 , x2 = β∗2 , and x1 < xc < x2 (Fig. 8). More-
over, when we select initial β-values randomly from the interval [0, 1].
For any x ∈ [0, 1], it is easy to have

(40)
limn→∞ φ

n(x) = β∗1 , for x ∈ (0, xc)
limn→∞ φ

n(x) = β∗2 , for x ∈ (xc, 1).

Thus, at the stationary state, we have two subpopulation of cells, each
with different β-value. Let the probability of having k mRNAs in the
cells with given β-value as Pk(β), then Pk(β) is given by Eq. (8) with
transition rate k0(β) and k1(β) by Eq. (35). Thus, the total probability
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Figure 7. The distribution of mRNA with random changes in DNA
methylation. Parameters for Type I - V distribution are shown at Table 1.
Gray bars are obtained from numerical simulation, red lines are given by
analytic formulations.

of having k mRNAs in all cells in the ensemble is

P totk = xcPk(β
∗
1) + (1− xc)Pk(β∗2)(41)

= xc
Γ(κ0(β∗1) + k)Γ(κ0(β∗1) + κ1(β∗1))

Γ(κ0(β∗1))Γ(κ0(β∗1) + κ1(β∗1) + k)Γ(k + 1)
ak

×
∞∑
n=0

Γ(κ0(β∗1) + k + n)Γ(κ0(β∗1) + κ1(β∗1) + k)

Γ(κ0(β1j) + k)Γ(κ0(β∗1) + κ1(β∗1) + k + n)n!
(−a)n

+ (1− xc)
Γ(κ0(β∗2) + k)Γ(κ0(β∗2) + κ1(β∗2))

Γ(κ0(β∗2))Γ(κ0(β∗2) + κ1(β∗2) + k)Γ(k + 1)
ak

×
∞∑
n=0

Γ(κ0(β∗2) + k + n)Γ(κ0(β∗2) + κ1(β∗2) + k)

Γ(κ0(β∗2) + k)Γ(κ0(β∗2) + κ1(β∗2) + k + n)n!
(−a)n.
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This gives the analytic distribution functions for Types I, IV, V, which
are shown by red lines in Fig. 7, and are in good agreement with
numerical simulation.

x
0 0.2 0.4 0.6 0.8 1

φ
(x

)

0

0.2

0.4

0.6

0.8

1

Figure 8. The cross generation transition function φ(x). Red line
shows the reference y = x, blue line shows y = φ(x).

(2) There is one fix point β∗. In this case, similar to the above dis-
cussion, the mRNA distribution is given by the probability Pk(β

∗),
i.e.,

P totk =
Γ(κ0(β∗) + k)Γ(κ0(β∗) + κ1(β∗))

Γ(κ0(β∗))Γ(κ0(β∗) + κ1(β∗) + k)Γ(k + 1)
ak(42)

×
∞∑
n=0

Γ(κ0(β∗) + k + n)Γ(κ0(β∗) + κ1(β∗) + k)

Γ(κ0(β∗) + k)Γ(κ0(β∗) + κ1(β∗) + k + n)n!
(−a)n.

This gives the distribution function in Type II and III in Fig. 7.

Our results show that DNA methylation influences the dynamics of gene
expression through the alternations in the β-value. Consequently, the tran-
scriptome of mammalian cells shows extra mRNA distribution types due to
the transition of DNA methylations. Moreover, the distributions are mainly
determined by the transcription dynamics and the transition of β-value over
cell division.

3. Discussion

In this study, we have studied the distribution of mRNA in gene expression
through a three-stage model. Based on model analysis, we obtained the ex-
act formulations for mRNA distribution at the stationary state and its time
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evolution. Moreover, we proved the equivalence between the time distribu-
tion based on a single cell dynamics and the ensemble distribution of many
cells at the stationary state. Finally, we considered the situation of gene
expression with random transitions of DNA methylation in cell cycling. We
show that under the influence of DNA methylation, the mRNA distributions
of an ensemble of cells show 5 different type distributions, in agreement with
the transcript variability in single mammalian cells experiments. A method
of predicting the mRNA distribution through the transition dynamics of
DNA methylation during cell cycle is proposed in our study.

The current study is basic and important for our understanding of the
gene expression dynamics. Nowadays, single cell RNA-sequencing has been
widely applied in studies of developmental biology and cancer research.
These single cell RNA-sequencing data enable us to track the transcription
level of each single cell, hence we can experimentally obtain the ensemble dis-
tributions of each gene. Thus, it is valuable to apply the theoretical results in
this study to understand the single-cell RNA-sequencing data. The current
study provides a scheme of combining theoretical study with experimental
data to achieve a better understanding of each gene expression, especially
the regulation of DNA methylation in shaping the mRNA distributions.

Appendix

A. Equilibrium state distribution of mRNA

To solve Eq. (5), we eliminate f1 to obtain

(43) v
∂2f0

∂v2
+ [−av + (1 + κ0 + κ1)]

∂f0

∂v
+−aκ0f

0 = 0.

Assuming f0 =
∑

nCnv
n, we substitute f0 into the above equation, and

compare the coefficients of v, we obtain

(44)

C1 = C0
κ0a

1 + κ0 + κ1
,

Cn+1 = Cn
(κ0 + n)a

(n+ 1)(n+ 1 + κ0 + κ1)
.

Thus, from the iteration about Cn, we have the expression of f0.

(45) f0 = C0

∑
n

(κ0)na
n

(1 + κ0 + κ1)nn!
vn.
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Substituting Eq. (45) to Eq. (5), we have

(46) f1 =
1

κ
C0

∑
n

(κ0)na
n

(1 + κ0 + κ1)nn!
(n+ κ0)vn.

Hence, the total generating function F (z) is given by

(47) F (v) = f0 + f1 =
C0(κ0 + κ1)

κ1

∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn.

Finally, from the normalization condition for v = 0, we have

(48) F (v) =
∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn

B. Non-equilibrium state distribution of mRNA

To obtain the solution of Eq. (10), we solve the first two equations directly,
and obtain

(49)
τ = r,

v = v0eτ = v0er.

Substituting Eq. (49) into Eq. (10), we obtain

(50) v
d~f

dr
=

[
−κ0 κ1

κ0 av − κ1

]
~f.

This is equivalent to Eq. (5), hence we have the exact solution Eq. (47), i.e.,

(51) F (z) =
C0κ

κ1

∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn,

where v = z − 1.
Now, we assume that there are m mRNAs in this cell initially, then

(52) F (v0) = zm0 = (1 + v0)m.

Hence

(53)
C0κ

κ1

∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn0 = (1 + v0)m,
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which gives

(54) F (v, τ) =

[∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn0

]−1

(1 + v0)m

[∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn

]

Finally, substituting v0 = ve−r = ve−τ into Eq. (54), we have the generating
function

(55) F (v, τ) = (1 + ve−τ )m

∑
n

(κ0)nan

(κ0+κ1)nn!v
n∑

n
(κ0)nan

(κ0+κ1)nn!v
ne−nτ

.

To calculate the distribution k mRNAs at τ time with initial value m,
Pk(τ |m), based on the approximation Eq. (12)

(56) F (v, τ) ≈ (1 +mve−τ )
∑
n

(κ0)na
n

(κ0 + κ1)nn!
vn,

we apply the derivative relation

(57)

(∑
n

(κ0)na
n

(κ)nn!
vn

)(i)

=
∑
n

(κ0)n+ia
n+i

(κ)n+in!
vn.

The k-order derivation of F (v, τ) is calculated as

F (k)(v, τ) =

k∑
i=0

Cik(1 +mve−τ )(i)

(∑
n

(κ0)na
n

(κ)nn!
vn

)(k−i)

(58)

= (1 +mve−τ )
∑
n

(κ0)n+ka
n+k

(κ)n+kn!
vn

+ kme−τ
∑
n

(κ0)n+k−1a
n+k−1

(κ)n+k−1n!
vn.

Next, we have

(59) Pk(τ |m) =
1

k!
F (k)(v, τ)|v=−1 = (1−me−τ )P sk +me−τP sk−1,

where

(60) P sk =
1

k!

∑
n

(κ0)n+ka
n+k

(κ)n+kn!
(−1)n

is the stationary distribution for k mRNAs.
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