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Robust shape estimation for 3D
deformable object manipulation

Tao HAaN, XUAN ZHAO, PEIGEN SUN, AND JIA PAN

Existing shape estimation methods for deformable object manipu-
lation suffer from the drawbacks of being off-line, model dependent,
noise-sensitive or occlusion-sensitive, and thus are not appropri-
ate for manipulation tasks requiring high precision. In this paper,
we present a real-time shape estimation approach for autonomous
robotic manipulation of 3D deformable objects. Our method ful-
fills all the requirements necessary for the high-quality deformable
object manipulation in terms of being real-time, model-free and
robust to noise and occlusion. These advantages are accomplished
using a joint tracking and reconstruction framework, in which we
track the object deformation by aligning a reference shape model
with the stream input from the RGB-D camera, and simultaneously
upgrade the reference shape model according to the newly captured
RGB-D data. We have evaluated the quality and robustness of our
real-time shape estimation pipeline on a set of deformable manip-
ulation tasks implemented on physical robots.

1. Introduction

Autonomous manipulation of deformable objects is an important and chal-
lenging topic in robotics, and recently it attracts much interest due to its
potential applications in robot-assisted surgery [11], 16l 21l 27] and service
robots, including garments folding [6] 13} 26], ironing [12], and robot-assisted
dressing [7]. Despite the difference in their technical details employed for spe-
cific tasks, most existing systems for deformable object manipulation can be
described using the same shape control framework as shown in the top row
of Figure [} Given a desired shape of the target object, the robot system
iteratively estimates the object’s shape state according to either the sensor
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Figure 1. Overview of our shape estimation pipeline for deformable object
manipulation. Top row is the entire control loop for deformable object ma-
nipulation. In this work, we focus on solving the shape estimation problem,
as highlighted in the red-dashed box. An ideal shape estimation approach
should fulfill the requirements of being real-time, model-free and robust to
noise and occlusion. Bottom row illustrates the pipeline of our shape esti-
mation system. Qur system takes the frame sequence captured by a RGB-D
camera as input. It is composed of two parallel threads, namely, tracking
and reconstruction. These two threads estimate and update the deformation
model and the shape model iteratively when new RGB-D frames are stream-
ing into the system. Please refer to Section for more details about our
pipeline.

measurements or the simulation results, and applies the difference between
the object’s current shape state and the desired shape as an error signal
to generate a control output to reduce or eliminate the error by deforming
the object appropriately. The entire process repeats until the shape state
converges to the desired value.

In this work, we focus on the shape estimation problem arising from
the aforementioned control loop (as shown in the bottom row of Figure [1)).
In particular, to represent the shape state of a deforming object, two mod-
els are needed: a shape model encoding the geometry and texture of the
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deformable object’s surface, and a deformation model describing the defor-
mation kinematics or dynamics of the object surface. When provided with
sufficient prior knowledge about these two models, modern physically-based
simulators such as [IH3] can provide a long-horizon prediction about the
shape state of the underlying deformable object. As a result, recent work
such as [7, 2IH23] embedded a physically-based engine into their pipeline
and designed or learned a manipulation control according to the shape feed-
backs provided by the simulator. The resulting model-based control could be
robust to noise and occlusion, if the simulator has been carefully calibrated
to be consistent with the real-world physics, which unfortunately is difficult
in practice. In particular, the quality of the simulation is extremely sensitive
to the model parameters, and this is considered as one main bottleneck of
the model-based control for tasks involving deformable objects. In addition,
running a physically-based simulation is time-consuming and thus infeasible
for estimating fast or large deformation in real time.

For designing real-time and model-free manipulation system, recent work
[8, 10, [15) 17] used the shape servoing technique deriving from the traditional
visual servoing framework [9]. Instead of representing the object’s shape via
dense mesh structure as in the model-based method, the shape servoing
method approximates the shape state using sparse key features extracted
from image data. Because the feature descriptor is usually low-dimensional,
the shape servoing method can learn the control policy between the shape
feature and the manipulator motion directly in a data-driven manner. Such
online policy learning framework makes the shape servoing method indepen-
dent from an explicit deformation model to achieve shape control. However,
existing methods in this direction still suffer from several drawbacks:

e Low-resolution shape modeling: Using sparse features as the shape
feedback will omit some geometric details of the object. In other words,
even when the feature representation of the object’s current configura-
tion perfectly matches the target feature vector, there is no guarantee
that the object’s shape can completely fit into its target shape. This
limitation can be problematic for manipulation tasks which require
high-precision goal reaching. As a result, a rich representation for the
object deformation state is desirable.

e Noise-sensitive feature extraction: Most existing shape servoing
approaches extract shape features from a single frame of image. The
extracted vector can be unreliable for closed-loop control due to the
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noises in the feedback image that are ubiquitous in real robotic sys-
tems. As a result, we need a sophisticated method to obtain robust
features from a sequence of feedback inputs.

e Occlusion-sensitive feature correspondences: Existing shape ser-
voing methods rely on a feature descriptor to determine inter-frame
feature correspondences. However, many deformable objects lack vi-
sually significant feature points, and thus they must have additional
markers mounted on the surface to provide reliable feedbacks. Such
marker-based workaround leads to inconvenience for practical appli-
cations. Moreover, most shape servoing systems assume that the full
state of the object’s surface can be observed all the time during the
task. As a result, when some feature points or markers become invis-
ible to the visual sensor due to occlusion, these systems may fail to
capture enough feature vectors for servoing control.

The aforementioned problems in both model-based method and shape
servoing method motivated us to propose a novel shape estimation method in
this paper. Our method satisfies the requirements of being real-time, model-
free and robust to noise and occlusion, and thus can be easily embedded into
current robotic systems for autonomous manipulation of general 3D soft ob-
jects. In our work, we further divide the shape estimation problem into two
subproblems, namely tracking and reconstruction (as shown in the bottom
row of Figure[l)). In the tracking phase, we estimate an inter-frame deforma-
tion model through non-rigid registration between a reference shape model
and the depth images provided by an RGB-D camera. In the reconstruc-
tion phase, we integrate multiple RGB-D images into the reference shape
model according to the estimated deformation model. One key contribution
of our work is that our simultaneous tracking and reconstruction framework
can capture the surface model of a deforming object, while gradually com-
plete and refine its details based on new RGB-D measurements. Because
the generated surface model is of high precision and is also robust to single-
frame noise and occlusion, it serves as an excellent feedback signal for shape
control.

2. Overview
In this section, we first present the mathematical notation to define the

shape and deformation models employed in our work. Then we outline the
pipeline of our simultaneous shape tracking and reconstruction framework.
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FO, Ft reference frame, live frame
MO M!  mesh model defined in the corresponding frame space

x0, xt voxel defined in the corresponding frame space

v .n%  the m-th vertex element and normal element of mesh M°
vttt the m-th vertex element and normal element of mesh M
\Y reference volume defined in the space of F9

D(+) TSDF component of the voxel in V

C() color component of the voxel in V

Q) weight component of the voxel in V

d(-) TSDF component of the voxel contributed by F*

c(+) color component of the voxel contributed by F*

w(+) weight component of the voxel contributed by F*

g deformation model of the target soft object

Thigid rigid component separated from G

Ggraph non-rigid component of G represented as graph

g the i-th node of the graph Ggrapn defined in the space of F 0
T; local deformation defined in g;

o; effective radius of T

N; neighbor set of g;

W(;G)  deformation function maps M° to M?, parameterized by G
Ct color map of F*

vertex map extracted from D?(-)
normal map extracted from D(-)
Table 1. Nomenclature

(

()
D(") depth map of F*
0

2.1. Shape representation

The main objective of deformable object manipulation is to deform the
object’s surface from an initial shape into a desired shape. The inner state
of the target object is actually ignored for shape control in most current
methods. Therefore in this work we are only interested in how to use an
appropriate shape representation to model the surface state. To generate
high-quality shape model containing rich geometry and texture details, one
commonly used solution, similar to the model-based method, is to represent
the surface based on the mesh structure extracted from the RGB-D image
data [20]. While such mesh-based representation is suitable to serve as the
reference model for shape tracking, its graph structure makes it hard to be
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Figure 2. Illustration of the reference volume V in 2D case. The signed
distance value of each voxel is defined as the distance from its center to
its closest point on the surface (shown as the solid blue, positive when the
voxel is on the “front” side of the surface and negative when it is on the
“back” side of the surface). We further truncate the signed distance with a
threshold to make its value belong to the range [—1,+1]. A reference mesh
can be extracted from the reference volume V by locating the zero-level of
the TSDF value.

fused with multiple image frames for shape reconstruction. Instead, encoding
the surface geometry and texture into a 3D volumetric grid structure is
more feasible since the shape reconstruction progress can be implemented
efficiently via parallel operation on the grids.

To combine the advantages of both representations, we follow previous
work [5l, I8, 19] by projecting multiple image frames data back into the
space of a reference frame F° (which is usually set as the initial frame)
according to the estimated inter-frame deformations and then integrating
these frames into a reference mesh MO. For efficient image integration, the
reference mesh M is maintained via a discrete truncated signed distance
function (TSDF) volume (as illustrated in Figure [2)), which we denote as
the reference volume V. In this reference volume V, the surface geometry is
voxelized as {D(x?), Q(x%)}, where D(x°) C [~1,+1] encodes the truncated
signed distance value for each voxel x°, and Q(x°) C [0, 1] is the associated
weight. The content of each voxel will be updated independently for image
integration. To obtain a high-quality mesh with texture, we also maintain
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the RGB information C(x") C [0,255]% in each voxel. As a summary, our
reference volume can be represented as V(x?) = {D(x°),C(x°), Q(x°)}.

From the reference volume V, we extract the reference mesh M° with
Marching Cubes algorithm [14]. The reference mesh M can be further de-
formed according to the estimated inter-frame deformation model to obtain
the live mesh M?, which indicates the object shape in the live frame F*. For
the convenience of discussion, we define the mesh vertices and corresponding
normals as {V,,, n,, }_; in this work, where M is the number of vertices in
the mesh.

2.2. Deformation representation

To achieve simultaneous shape tracking and reconstruction, we need a model
to formulate the deformation from the reference frame F° to the live frame
F*. In consideration of our model-free requirement, skeleton-based kinematic
models for articulated objects are infeasible to represent the deformation of
general soft objects. One possible solution is to model the deformation based
on Eulerian (grid-based) method or Lagrangian (particle-based) method
used in fluid simulation [4]. While both methods can provide high-quality
representation for general deformation based on their dense structures, such
high-dimensional models are not feasible for real-time estimation.

As a trade-off between complexity and precision, we employ the sparse
deformation graph model [25] with reduced dimensions for real-time imple-
mentation. In this method, the graph nodes are uniformly sampled from
the mesh model to have a layout roughly conform to the object’s shape.
Then the whole deformation is divided into a set of local transformations,
which are then assigned to the graph nodes one-to-one. The graph nodes
have overlapping domain of influence with their neighboring nodes in local
transformations. Thus for any given point in the nearby space of the graph
nodes, a smooth deformation function can be computed via interpolation of
the local transformations in the point’s nearest graph nodes.

Moreover, to avoid over-fitting of the deformation graph model during es-
timation, a regularization constraint is also needed. In our work, we regular-
ize the deformation graph via the widely used as-rigid-as-possible (ARAP)
constraint [24], which penalizes inconsistent local transformations between
neighboring graph nodes. Such penalty function is usually be represented
geometrically as the graph edges.

Except the graph model, we further divide the global rigid component
from the total deformation and model it separately. Overall, our deformation
model can be represented as G = Thigiq U Ggraph- Here Thigiq € SE(3) defines
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the separated global rigid transformation. Ggrapn denotes the non-rigid com-
ponent of G represented in the graph model. We further parameterize the
graph model as Ggrapn = {Ti,gi,ai,/\/i}{il. T; € SE(3) indicates the local
transformation in the i-th node. g; represents the position of the i-th node
in the reference frame F°. o; defines the effective radius of T;. The neighbor
set NV; contains the indices of those nodes which are connected with the i-th
node by graph edges. These nodes {g;|j € N;} are considered as the closest
neighbors of the i-th node. Note that in our method, {g;, o;, N}, remains
constant during estimation, and thus our deformation model can be fully
parameterized as G = {Tyigia} U {T:} X ;.

To deform the reference mesh MY according to the above model G,
we first assign each mesh vertex v¥, € M to its k-nearest nodes S, C
{1,..., K} on the graph model of G based on a set of skinning weights {wy, i :
k € Sm} C [0,1]. The skinning weight is calculated as wy, y = % exp(—||v9, —
grl?/202), where Z is a normalization factor ensuring >, wy, x = 1. Then
we calculate the deformed vertex v/, in the live frame F* based on the
following blending function:

(1) vi, = W(v;G) = Trigia Z Wi k TEVY,.
kesnl

0

m can be deformed

Similarly, the corresponding normal n¥ of the vertex v
using the following blending function:

(2) n!, =W(n;6) = Trigia > wmiTinp,.
KESm

2.3. Our system

As demonstrated in Figure[I], our system takes the image stream provided by
an RGB-D camera as input. It is composed of two parallel threads: track-
ing and reconstruction. The tracking thread takes charge of the real-time
estimation of the deformation model G. It aligns the live RGB-D frame F?!
with the reference mesh model M for geometric consistency. To capture the
surface geometry for alignment, the tracking thread extracts dense features
from the received depth map D! of the live frame F!, including a vertex
map V! and a corresponding normal map N!. At the core of this thread
is a highly-efficient GPU solver which optimizes the deformation model G
for frame-to-model alignment under the regularization constraint. We im-
plement the optimization solver based on a kernel merged preconditioned
conjugate gradient (PCG) algorithm using CUDA.
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Given the estimation of the deformation model G, the reconstruction
thread computes the voxel-to-pixel correspondences between the reference
volume V and the live frame F* and updates the content in each voxel of V
accordingly. After the previous volume fusion operation, the reconstruction
thread extracts a new reference mesh MY from the reference volume V and
obtains the associated live mesh M! based on the estimated deformation

model M = W(MY; G).

2.3.1. Tracking. The objective of the tracking thread is to provide accu-
rate estimation of the deformation model to assist the reconstruction thread.
In the tracking step, we optimize the deformation model to obtain the best
frame-to-model alignment between the live frame F* and the reference mesh
model MO,

To estimate the deformation model G, we formulate the following energy
function E(G):

(3) E(g) = )‘dataEdata(g) + )\regEreg(g),

where Egata(G) is the data term which penalizes the misalignment between
the reference mesh model M and the dense features extracted from the
live image frame F'. E,es(G) is the regularization term which penalizes the
inconsistent local transformations between neighboring nodes in the graph
model of G. Agata and Aeg denote the associated weights of these two terms.
Data Term To measure the misalignment between the reference mesh
model MY and the live frame F!, we first calculate a vertex map V* and
a normal map N? from the depth map D! to represent the geometric fea-
tures of the live frame F'. Then we deform the reference mesh vertices v
and normals n” according to the estimation of the deformation model G to
obtain their prediction represented in the live frame F!. In particular, the
predicated vertices are v¢(G) = W(v’;G) and the predicated normals are
nf(G) = W(n’; G). Finally, we quantify the misalignment between the pre-
dicted vertices ¥! and the geometric features {V*, N*} based on the point-
to-plane error function widely used in the Iterative Closest Point (ICP)
algorithm. As a result, we represent the geometric data term as

(4) Egeo(G) = ) IIng (¥,(G) — va)l3,

where {vg4,ng} denote the 3D-to-2D projected correspondences of the pre-
dicted vertex V%, in the feature map {V', N'}.
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Regularization Term The deformation graph model can easily become
over-fitting if it is not well regularized during estimation. To solve this prob-
lem, one widely used template-free method for general soft objects is to
introduce the ARAP constraint. In our work, we encode the neighboring
relationship of the ARAP constraint into the deformation graph neighbor
set {N;}X . Based on the neighbor set, we define the regularization term as

K
() Ereg =) > |Tigl - Tjgill3.

i=1 jEN;

2.3.2. Reconstruction. The reconstruction thread takes the live frame
F! and the newly estimated deformation model G as input. It updates the
surface geometry and texture by integrating multiple image frames incre-
mentally into the reference volume V. Because the surface geometry and
texture are encoded in the volumetric structure, we refer this procedure as
volume fusion.

We implement the volume fusion operation based on a non-rigid projec-
tive fusion approach [19]. In this approach, we first scan the voxels of V and
get their positions in the reference frame space, which are denoted as x.
Then we calculate the corresponding deformed positions xt = W%(x?; G) in
the live frame based on the blending function in Equation [I} The deformed
voxels x! are projected into the live frame image map to find their corre-
sponding pixels uf. Thus we determine the voxel-to-pixel correspondence
{x? «» u?} between the reference volume V and the live frame image F°.
For each voxel x", we calculate its new TSDF component d(x°) and color
component ¢(x”) contributed by the live frame F* as

(6) d(x") = max <min (M, 1> , —1> ,

T

(7) c(x”) = C'(u),

respectively. Here D?(-) and C'(-) denote the depth image and color image
of the live frame F*. |x|, represents the position of point x along Z-axis. 7
is the truncated threshold of TSDF value. Besides, we assign a weight w(x)
to the new components. Finally, we update the reference volume V as

D(x")Q(x?) + d(x")w(x")
Q(x%) + w(x0) ’

(8) D(x") «



Robust shape estimation 117

(9) C(x") ¢ c(x"),

(10) Q(x") + min (Q(xo) + w(x"), Qmax ) »

where Qpax is the upper threshold of the weight. In Equation [0 we do not
update the color component via integration as in Equation |8l The main
reason here is that our current work does not model and track the light
environment and material albedo. As a result, setting the color component
C(x") directly as its new value ¢(x") in live frame can obtain better response
than data fusion.

3. Experiments and results

We implement our shape estimation pipeline on a desktop PC with Intel Core
i7 3.4GHz CPU, 32GB of RAM and an NVIDIA GeForce GTX 1080 GPU.
To setup the working environment of typical deformable object manipulation
tasks, we employ one dual-arm robot (ABB YuMi, with seven degrees-of-
freedom in each arm) to perform demonstrations with different materials.
Besides, we take the RGB-D data provided by an Intel RealSense SR300
camera as input. The entire experimental setup is shown in the bottom left
corner of Figure

Because we encode the reference surface model M° explicitly into the
volumetric structure V, the real-time performance of our pipeline largely de-
pends on the parameters of the volumetric model V, including the volume’s
dimension in voxels, the truncated threshold of TSDF value 7, the weight of
the newly captured TSDF component w, and the upper-bound weight of ref-
erence TSDF component Q.x. In our experiment, we pre-defined a 0.7 m?3
cubic space as the reference volume V and discretized it based on 5123 vox-
els. Thus the actual resolution of the volumetric model is 7313 voxels per
cubic meters. Besides, we set 7, w(:) and Q.x as constants, in particular,
7 =0.0lm, w(-) = 1, and Qpax = 32. We measured the runtime cost of each
main computational components in our pipeline during our experiment, in-
cluding 3 ms for preprocessing (e.g., depth image filtering, vertex map and
normal map extracting), 35 ms for deformation tracking, and 10 ms for vol-
ume fusion. On average, our pipeline runs at 50 ms per frame to track and
reconstruct the surface of all deforming targets employed in our experiment,
which satisfies the real-time requirement of most robotic applications.

As previously mentioned, one main advantage of our method is that it
is robust to occlusion. Such robustness is crucial for applications involving
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Figure 3. Bottom left corner illustrates our experiment setup for a typi-
cal deformable object manipulation tasks using a dual arm robot. Top part
shows the results of the plastic sheet bending task containing synthetic occlu-
sions. The synthetic occlusion masks are highlighted as the red-solid boxes
in the first row. Bottom part shows the alignment errors between the
generated mesh models of our method and the raw image sequence without
synthetic occlusions. Because our method approximates the deformation be-
havior of the target object based on the ARAP constraint, it can provides
shape estimation even for the unobserved parts of the surface.

human-machine cooperation, where the human body may occlude the target
object from the camera. To demonstrate the advantage of our method, we
test it with a plastic sheet bending task. In this task, we let the robotic arm
deform the target sheet in front of an RGB-D camera. During the task, we
introduce some synthetic occlusions into the captured RGB-D stream and
make the corresponding surface areas become invisible to our system. The
synthetic occlusion masks are illustrated as the red-solid boxes in the top
row of Figure |3l To compared with most previous work [8] [10] (15 [17] which
employed single-frame data for shape estimation, we show the corresponding
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Figure 4. Shape estimation results in our simulated towel folding task. Top
row shows the raw color sequence captured by a RGB-D camera. Middle
row shows the live mesh model reconstructed from the single-frame depth
data. Bottom row shows the live mesh model generated by our method.
We zoom in on the highlighted areas in the last frame to demonstrate their
geometric details.

surface mesh model extracted from each frame in the second row of Figure 3]
Note since we encoded all surface information captured by the single-frame
image into such mesh model, it indicates the input data adopted by the
aforemetioned work. In our experiment, we extracted such mesh model by
projecting the recently captured singe-frame data into a new TSDF volume,
and then locating the zero-level surface based on the Marching Cubes algo-
rithm [I4] without consideration of the previously observed data. We refer
to such method as the single-frame method. The mesh models generated by
our method are illustrated in the third row of Figure [3| As we can observe,
the single-frame method cannot capture the geometry of the occluded part
of the object. Our method, on the other hand, approximates the deforma-
tion behavior of the unobserved part based on the ARAP constraint and
generates a complete shape estimation accordingly.
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Because the occlusions in the aforementioned experiment are synthetic,
we further evaluated the accuracy of our method, especially for the estimate
of the occluded surface part, by measuring the non-rigid alignment error
between the reconstructed mesh model and the raw image data without
synthetic occlusions based on the data term in Equation 4 We plot the
alignment errors measured at different time instants in the bottom right
corner of Figure [3] Consider the occluded surface part is totally driven by
the ARAP constraint in our method, there is no doubt a gap between our
deformation graph model and the object’s real deformation behavior. When
the occluded part undergoes small deformation as in the second column of
Figure 3] the ARAP constraint holds well and the alignment error is quite
close to the case without occlusion. The mentioned gap will become obvious
when the occluded part undergoes large deformation as in the fourth column
of Figure [3] However, even in the latter case, the ARAP constraint can still
contribute to a compelling mesh reconstruction. Moreover, its independence
of object prior knowledge is essential for our model-free implementation.

To demonstrate the robustness of our method to sensor data noise, we
design another folding towel task for testing. Again, we compare the recon-
struction results of two different methods in Figure {4} including the single-
frame method and our method. Because the RGB-D camera cannot provide
stable depth measurement for the wrinkle areas (as highlighted in the green
rectangle) and the nearly parallel areas (as highlighted in the red rectangle)
on the folded towel, the single-frame reconstructions omit some important
geometric details for the shape feedback. This problem exists in most cur-
rent shape servoing methods. Instead, our method updates the geometry of
the surface model via efficient image data fusion, and is capable of providing
continuous and smooth mesh reconstruction.

4. Conclusion, limitations and future work

We present a novel shape estimation method to provide reliable shape feed-
back for the deformable object manipulation problem. A series of exper-
iments are conducted to show the advantages of our method in terms of
being real-time, model-free and robust to noise and occlusion. All these
features make our method promising to be embedded into current robotic
manipulation systems for challenging applications.

Our method still has some limitations. First, our method relies on high-
precision deformation estimation for consistent and accurate shape recon-
struction. In other words, when the estimation step fails in some cases, the
drift error will be accumulated into the reconstruction result and cannot be
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corrected. One possible solution to this problem is to add a module into the
pipeline which does not rely on the deformation estimates provided by the
tracking thread for drift correction.

Second, our deformation model, especially the ARAP regularization
term, cannot always hold when the target object undergoes large defor-
mations or complex topological changes. The reasons for such limitation
are two-fold: On one hand, to stay within our computational budget for
real-time application, we approximated the ARAP regularization term by
penalizing inconsistent local deformations close in Euclidean space rather
than on the mesh manifold, which unfortunately introduces a gap between
the employed deformation model and the real-world physics. On the other
hand, the proposed system lacks the ability for perceiving and inferring the
surface topology. Thus even if the ARAP constraint is formulated strictly
according to the distance on the mesh manifold, it is still difficult for the
system to track and reconstruct the deforming surface undergoes fast or
complex topological changes. Due to these reasons, we only present experi-
ments based on deforming objects with simple topology and geometry. Note
improving the system’s robustness to handle topological changes is still chal-
lenging for all model-free methods in related fields, and we sincerely believe
that a topological segmentation front-end is essential for solving such a prob-
lem.

Besides resolving above limitations, for our future work, we will also
present a complete shape control pipeline embedded with our shape estima-
tion method.
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