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Algebraic equation of geodesics on the 2D

Euclidean space with an exponential

density function
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Yuanfeng Zhou, Ying He, and Changhe Tu

Given two points s and t on the two-dimensional Euclidean space,
the straight-line segment connecting s and t gives the shortest
path, or geodesic, between them. However, when the 2D plane is
equipped with a non-uniform density function, generally one can-
not find a closed-form solution to characterize the shortest path,
assuming that the endpoints are given. We observe that when the
2D plane is equipped with an exponential-type density function,
the algebraic equation of a geodesic path between two points, as
well as the corresponding length, can be found explicitly by a vari-
ational approach. We systematically give both the theoretical and
experimental results in this paper. We also extend the approach
to compute the geodesic problem on a polyhedral surface with a
pre-defined density function.

1. Introduction

The density-weighted distance, or geodesic distance, is used to measure the
distance between two points where the sub-path passing through the high-
density area is given more influence. Density based distance is central to
many research fields including nonlinear interpolation and clustering [15],
applied statistics and data analysis [3, 5, 22], transmission via non-uniform
media [9] and feature-preserving adaptive remeshing [2, 26].

Generally speaking, when the domain of interest is equipped with a
uniform density function, geodesics usually have a simple form. For exam-
ple, it’s a common sense that the shortest path between two points in Rn
is exactly a straight-line segment. However, if the density function is non-
uniform, the distance query problem becomes highly non-trivial. To our best
knowledge, no explicit algebraic equation (or parametric equation array) has
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91



i
i

“2-Chen” — 2018/10/17 — 18:22 — page 92 — #2 i
i

i
i

i
i

92 S. Chen, et al.

been reported for solving the geodesic problem with a non-uniform density
function. Researchers have to use some approximation techniques to solve
the density based distance problems. Once the domain has been discreti-
cized, Dijkstra’s algorithm [4, 8] and the fast marching method [10] are the
two most commonly used techniques.

In this paper, we observe that when the 2D plane is associated with
an exponential density function, the algebraic equation of a geodesic path
between two points (x1, y1) and (x2, y2), as well as the corresponding length,
can be found by a variational approach. We systematically give a set of
theoretical and experimental results assuming the density function to be
e−y. Our observations include

1) When x1=x2, the geodesic is given by the straight-line between (x1, y1)
and (x2, y2).

2) The geodesic equation is cos(x− x0) = ey−y0 if |x1 − x2| < π, where
x0 and y0 are two parameters determined by the boundary condition.
Furthermore, the length of the weighted shortest path is e−y2 sin(x2 −
x0)− e−y1 sin(x1 − x0).

3) When |x2 − x1| ≥ π, the geodesic path between the two endpoints con-
sists of two rays, one being (x1, y1)→ (x1,+∞) and the other being
(x2, y2)→ (x2,+∞).

4) Let Γ(x1, y1, x2, y2) be the geodesic curve between (x1, y1) and (x2, y2).
When we move the two endpoints in (δx, δy) at the same time, the
resulting geodesic curve can be obtained by translating Γ(x1, y1, x2, y2)
in (δx, δy).

5) Let y1, y2 be fixed. The density-weighted distance is a non-decreasing
function with regard to |x1 − x2| assuming |x1 − x2| ≤ π. When |x1 −
x2| ≥ π, the density-weighted distance is e−y1 + e−y2 .

Finally, when there is a pre-defined density function on a given poly-
hedral surface, generally one cannot compute exact geodesic paths even if
the density function is approximated by a piece-wise linear function. In this
paper, we find that it is reasonable to approximate the density function with
an exponential function on a sufficiently small triangle. In this way, we can
trace geodesic paths accurately even if the input surface is equipped with a
non-uniform density function.
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2. Formulation

2.1. Problem statement

Suppose that an exponential function ρ(x, y) = e−y is defined on R2. Given
two points s(x1, y1), t(x2, y2) ∈ R2, our task is to find the ρ-weighted shortest
path, or geodesic, that can be represented by an algebraic equation formed
as

(1) g(x, y) = 0

subject to the boundary condition

(2)

{
g(x1, y1) = 0

g(x2, y2) = 0.

Or alternatively, it suffices if we can find the parameterized form Γ(t) =
(x(t), y(t)) : [0, 1] 7→ R2:

(3)

{
x = x(t)

y = y(t)

subject to

(4)

{
x(0) = x1, y(0) = y1

x(1) = x2, y(1) = y2.

The length of the path Γ(t) : [0, 1] 7→ R2 is

L(x1, y1, x2, y2) =

∫ 1

0
ρ(x(t), y(t))

√
x′2(t) + y′2(t)dt

=

∫ 1

0
e−y(t)

√
x′2(t) + y′2(t)dt.(5)

2.2. Geodesic equation

In the following, we make an arbitrary assumption that the shortest path be
represented by y = y(x), while leaving the discussion of various situations
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into the next subsection. Our task is to minimize

(6) L(y) =

∫ 1

0
e−y

√
1 + y′2dx ,

∫ 1

0
P (y, y′)dx,

where y1 = y(x1), y2 = y(x2). According to the variational theory, i.e.,

(7) P − y′∂P
∂y′

= C,

we have

(8) e−y
√

1 + y′2 − y′2e−y√
1 + y′2

= C

or

(9) Cey
√

1 + y′2 = 1

Let y′ = tan t, t ∈ [−π/2, π/2], we get

(10) y = ln cos t− lnC , ln cos t+ y0.

Thus

(11)
dx

dt
=

1

y′
· dy
dt

= −1,

or x = −t+ x0. Therefore, the geodesic curve can be parameterized into

(12)

{
x = −t+ x0,

y = ln cos t+ y0.

Obviously, it can also be written as the following algebraic equation:

(13) y = ln cos(x0 − x) + y0,

or

(14) cos(x− x0) = ey−y0 .

Remark. Note that here x0, y0 are two unknown constants and they can be
determined by two user-specified endpoints or “one endpoint, one tangent
direction”.
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2.3. Three situations

Without doubt, whether Eq. (14) makes sense depends on the setting of
endpoints. In the following, we discuss the boundary condition on three
cases: (1) x1 = x2, (2) 0 < |x1 − x2| < π and (3) |x1 − x2| ≥ π.

Figure 1: The shortest path when x1 = x2 on the 2D plane with a density
function ρ(x, y) = e−y.

2.3.1. x1 = x2. First, let us consider the case of x1 = x2. In this case,
the parameterized form becomes

(15)

{
x = c

y = y(t), 0 ≤ t ≤ 1,

and the length becomes

L(x1, y1, x2, y2) =

∫ 1

0
e−y(t)

√
x′2(t) + y′2(t)dt

≥
∫ 1

0
e−y(t)|y′(t)|dt

≥ |
∫ 1

0
e−y(t)y′(t)dt|

= |e−y1 − e−y2 |.(16)
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At the same time, it is easy to know that when L gets minimized, x′(t) =
0 and y′(t) doesn’t change its sign for 0 ≤ t ≤ 1, which implies that the
shortest path is a straight-line segment between (x1, y1) and (x2, y2), as
shown in Figure 1. Furthermore, it is easy to show that the weighted path
length is exactly |e−y1 − e−y2 |.

Lemma 1. When x1 = x2, the shortest path between (x1, y1) and (x2, y2) is
exactly the straight-line segment between (x1, y1) and (x2, y2), whose length
is |e−y1 − e−y2 |.

Figure 2: The shortest path when 0 < |x1 − x2| < π on the 2D plane with
a density function ρ(x, y) = e−y.

2.3.2. 0 < |x1 − x2| < π. Without loss of generality, we assume that
0 < x2 − x1 < π. Prior to the following discussion, we introduce a lemma
first.

Lemma 2. Suppose 0 < x2 − x1 < π and λ > 0 is a constant. There exists
a unique x∗0 ∈ (x1 − π/2, x2 − π/2) such that

h(x0) = cos(x2 − x0)− λ cos(x1 − x0) = 0.

Furthermore, all the possible values of x0 can be represented by x0 = x∗0 + kπ,
k = 0,±1,±2 · · · .
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Proof. According to

h(x1 − π/2) = sin(x2 − x1) > 0

and

h(x2 − π/2) = −λ sin(x2 − x1) < 0,

we can verify the existence of the roots between x1 − π/2 and x2 − π/2.
On the other hand, h(x0) is a periodic sine function with a least period

of 2π, and has two roots in each period. Therefore, the uniqueness of x0 ∈
(x1 − π/2, x2 − π/2) is immediate from the fact that the interval length is
less than π. �

Theorem 3. Suppose 0 < x2 − x1 < π. The shortest path exists and meets
the algebraic equation cos(x− x0) = ey−y0 subject to Eq. (17), and its length
is given by

Lmin(x1, y1, x2, y2) = e−y2 sin(x2 − x0)− e−y1 sin(x1 − x0),

where x0 can be found from Eq. (18). Furthermore, when x2 − x1 → π−,
Lmin(x1, y1, x2, y2)→ e−y1 + e−y2 .

Proof. Consider the boundary condition:

(17)

{
cos(x1 − x0) = ey1−y0 ,

cos(x2 − x0) = ey2−y0 .

By eliminating y0, we get

(18) cos(x2 − x0)− cos(x1 − x0)× ey2−y1 = 0.

Lemma 2 shows that Eq. (18) has one solution x0 ∈ (x1 − π/2, x2 − π/2),
and thus y0 = y1 − ln cos(x1 − x0) can be found since −π/2 < x1 − x0 <
π/2. This asserts the existence of the geodesic path meeting the given bound-
ary condition.
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According to Eq. (14),

Lmin(x1, y1, x2, y2) =

∫ x2

x1

e−y
√

1 + y′2dx

=

∫ x2

x1

e− ln cos(x−x0)−y0 × sec(x− x0)dx

= e−y0
∫ x2

x1

sec2(x− x0)dx

= e−y0 [tan(x2 − x0)− tan(x1 − x0)].(19)

Considering that Eq. (17) implies e−y0 = e−y1 cos(x1 − x0) = e−y2 cos(x2 −
x0), we have

Lmin(x1, y1, x2, y2) = e−y0 [tan(x2 − x0)− tan(x1 − x0)]
= e−y2 sin(x2 − x0)− e−y1 sin(x1 − x0)
≤ e−y1 + e−y2 .(20)

x2 − x1 → π− can be replaced by x2 = x1 + π − ε, where ε→ 0+. If x0
is set to x1 − π/2, the left side of Eq. (18) becomes − sin ε, which is neg-
ative. If x0 is set to x1 − π/2− ε, the left side of Eq. (18) becomes sin ε×
ey2−y1 , which is positive. Therefore, it is reasonable to assume x0 → x1 −
π/2. (Strictly speaking, x0 has infinitely many choices; See Lemma 2. We
only consider one of the values close to x1 − π/2.) It is easy to show sin(x2 −
x0)→ 1 and sin(x1 − x0)→ −1 when ε→ 0. Taking them into Eq. (20), we
finish the proof. �

Figure 2 shows a geodesic path between (0, 0) and (1, 1) on the 2D plane
with a density setting ρ(x, y) = e−y. From Eq. (17), we can easily observe
that the geodesic path is unchanged up to a translation.

Corollary 1. Suppose 0 < x2 − x1 < π. Let Γ(x1, y1, x2, y2) denote the geo-
desic path between (x1, y1) and (x2, y2). Then the geodesic path Γ(x1 + δx,
y1 + δy, x2 + δx, y2 + δy) can be obtained by a translation of (δx, δy) on
Γ(x1, y1, x2, y2).

Besides, we observe the length of the geodesic path will increase, or at
least remains unchanged, if we fix y1, y2 while moving x1 and x2 away from
each other.

Theorem 4. Suppose 0 ≤ x2 − x1 < π. Lmin(x1, y1, x2, y2) is non-decreasing
with regard to x2 − x1.
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Proof. Suppose that 0 < x
(1)
2 − x1 < x

(2)
2 − x1 < π. Let

a =
x
(1)
2 − x1
x
(2)
2 − x1

.

Then the mapping (x, y) −→ (a(x− x1) + x1, y) is able to transform the

geodesic Γ(x1, y1, x
(2)
2 , y1) to a path (may not be the shortest) between

(x1, y1) and (x
(1)
2 , y1). Let Lscaled(x1, y1, x

(1)
2 , y1) be the length of the re-

sulting curve. We have

Lmin(x1, y1, x
(1)
2 , y1) ≤ Lscaled(x1, y1, x

(1)
2 , y1)

=

∫ x
(1)
2

x1

e−y
√

1 + y′2dx

=

∫ x
(2)
2

x1

ae−y
√

1 +
y′2

a2
dx

=

∫ x
(2)
2

x1

e−y
√
a2 + y′2dx

≤
∫ x

(2)
2

x1

e−y
√

1 + y′2dx

= Lmin(x1, y1, x
(2)
2 , y1).

�

2.3.3. |x1 − x2| ≥ π. Without loss of generality, we assume x2 − x1 ≥
π. It’s impossible that for all x ∈ [x1, x2], cos(x− x0) is always positive.
Therefore, Eq. (14) cannot give the shortest path for the case of |x1 − x2| ≥
π.

As Theorem 3 states, when x2 − x1 → π−, the path length approaches
e−y1 + e−y2 . In fact, when x2 − x1 ≥ π, the geodesic path between the two
endpoints can be understood in this way:

(x1, y1)
e−y1

−−−→ (x1,+∞)
0−−→ (x2,+∞)

e−y2

−−−→ (x2, y2).

The first segment is e−y1 in length and the last segment is e−y2 in length,
which is immediate from Lemma 1. See an example in Figure 3.
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Figure 3: The shortest path when |x1 − x2| ≥ π on the 2D plane with a
density function ρ(x, y) = e−y.

2.4. Examples

We give more examples to help readers understand the geodesic equation
on the 2D plane with an exponential density function. Figure 4(a) shows 4
geodesics rooted at the origin point. It can be seen that when we fix one
endpoint while moving the other endpoint (assuming |x2 − x1| < π), the re-
sulting geodesics don’t intersect each other except at the starting point.
Figure 4(b-c) shows that the geodesic shape doesn’t have any change if we
move the endpoints with the same quantity, whether vertically or horizon-
tally. Figure 4(d) shows that when we increase the gap between x1 and
x2, the geodesic tends to have an arched shape. When |x2 − x1| = π, the
geodesic degenerates into two rays, one being x = x1, y ≥ y1, and the other
being x = x2, y ≥ y2.
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(a) (b)

(c) (d)

Figure 4: More examples.

3. Extension to polygonal surfaces with non-uniform density
setting

Computing geodesic distances and paths has broad applications in computer
graphics, such as sampling [28], non-rigid registration [6], surface classifi-
cation [7], geodesic Voronoi diagram [12, 24], intrinsic Delaunay triangu-
lation [11], shape segmentation [21], texture mapping [19], parameteriza-
tion [17, 29], image segmentation [13], and many others. To our best knowl-
edge, existing exact geodesic algorithms [1, 14, 16, 18, 20, 23, 25, 27] fail to
deal with the case that the input surface is equipped with a non-uniform
density function. Although some approximate algorithms [10] support a non-
uniform density setting, they cannot achieve a high accuracy requirement.
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Rather than viewing the density function as a piece-wise linear function,
we approximate the density function in each triangle with an exponential
function. Suppose the density function at v1, v2, v3, the vertices of a triangle
face, is respectively ρv1(x1, y1), ρv2(x2, y2), ρv3(x3, y3). Considering that there
may be a rotation and a translation with regard to the coordinate system,
we have

(21)


e−c(− sin θ·x1+cos θ·y1+y0) = ρv1
e−c(− sin θ·x2+cos θ·y2+y0) = ρv2
e−c(− sin θ·x3+cos θ·y3+y0) = ρv3 ,

from which we can solve the three unknown constants c, y0 and θ. We can
further trace a geodesic path according to Eq. (14); See Figure 5 for illus-
tration.

(a) (b) (c)

Figure 5: Tracing geodesics on surfaces with a pre-defined density function,
where the warm color means high density value. (a) Approximating the
density function with an exponential function inside a triangle to facilitate
tracing geodesic paths. (b-c) Solving the initial value problem of the discrete
geodesics assuming a non-uniform density function.

4. Conclusions and future works

In this paper, we found that the algebraic equation of geodesic exists on
the 2D plane associated with an exponential density function. Based on
the variational approach, we systematically give a set of theoretical and
experimental results. It’s easy to extend the conclusions in this paper to the
case where the density function is set to ρ(x, y) = eax+by in 2D or ρ(x, y) =
eax+by+cz in 3D. We also use the result to solve the initial value problem of
the discrete geodesics on surfaces with a pre-defined density function.
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In the future, we will investigate whether our algorithm can be extended
to surfaces with general anisotropic metrics.
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