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An approximate method for circle packing
and disc covering
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Circle packing is to optimize the arrangement of circles (of equal
or varying sizes) on a given domain with the maximal packing
density such that no overlapping occurs. As an NP-hard problem,
it is scientifically challenging so that no procedure is able to ex-
actly solve the problem in deterministic polynomial time even for
the Euclidean domains. In this paper, we develop an approximate
method for packing a large number of circles (of similar sizes). In
contrast to the existing methods that use nonlinear optimization
with carefully designed strategies to deal with complex boundaries,
our methods are purely geometrical and highly intuitive. Observ-
ing that circle packing is closely related to disc covering, we formu-
late both problems in a centroidal Voronoi tessellation (CVT)-like
computational framework and show that a locally optimal solution
to the covering (resp. packing) problem can be obtained by itera-
tively updating the centers of the circumscribed (resp. inscribed)
circles of the Voronoi cells. Using geodesic exponential map, we
can compute those centers efficiently on manifold triangle meshes,
hereby extending our 2D algorithm to non-Euclidean domains. Ex-
perimental results on synthetic and real-world models demonstrate
the efficacy of our method.

1. Introduction

Circle packing is to optimize the arrangement of circles (of equal or vary-
ing sizes) on a given domain with the maximal packing density such that
no overlapping occurs. It has a wide range of applications in engineering
field [I1, 2 5l 13, 21]. However, as an NP-hard problem, it is scientifically
challenging so that no procedure is able to exactly solve the problem in
deterministic polynomial time even for the Euclidean domains [7]. Hence,
the existing ezact methods are only able to pack tens of circles in simple

fShiging Xin is the corresponding author of this paper.

73



74 S. Chen, et al.

domains, such as a square or a disk [9, [17]. To pack circles in irregular or
non-Euclidean domains, there are some theoretical research results [3], 19],
but practical algorithms are quite few, to our best knowledge. Available
approzimate methods [10, 1], [14] 15, 22] are often driven by nonlinear op-
timization with carefully designed strategies to handle boundary condition.
We refer readers to [12] for a comprehensive survey.

In this paper, we focus on a general setting for packing an arbitrary
number of circles of similar sizes in non-Euclidean domains. Due to a lack of
closed-form of geodesic distances, the above-mentioned methods cannot be
extended for our case. Observing that circle packing is closely related to disc
covering, which is to find the minimum number of disks (of user-specified
sizes) such that the domain of interest is totally covered, we formulate both
problems in a centroidal Voronoi tessellation (CVT)-like optimization frame-
work as follows: Given a manifold triangle mesh M and a set of points {c;}7_;
on M, we compute the geodesic Voronoi diagram that partitions M into n
disjoint regions. We show that the supremum of the radii of the circum-
scribed circles of the Voronoi cells is the size of disk to cover the domain €2,
while the infimum of the radii of the inscribed circles is disk size for packing.
Therefore, we can obtain the local optimal solution to the covering (resp.
packing) problem by iteratively updating the centers of the circumscribed
(resp. inscribed) circles of the Voronoi cells.

Since it is technically challenging to directly compute those centers in
non-Euclidean domains, we adopt an indirect approach that first generates
a set of randomly and uniformly distributed samples {s;} on M and then
approximately computes the centers using farthest Voronoi diagrams. We
prove that if the samples {s;} satisfy the e-condition, i.e., for any point
q € M, there exists a sample s;, whose distance to q is less than &, the errors
of the computed centers are less than €. Based on our theoretical results,
we develop a simple Lloyd-like method to iteratively compute the centers of
circumscribed and inscribed circles. Experimental results on synthetic and
real-world models demonstrate the efficacy of our method. See Figure [ for
an example on the Bunny model.

2. Problem statement and main results in 2D

In this section, we present the main results in Euclidean domains. Then we
extend it to non-Euclidean domains in the next section. Let Q C R? be a
compact and connected 2D domain. Denote by 9€2 the boundary of Q2. We
assume the packing circles and covering disks are of the same size and their
number is fixed, say, n. Our goal is to optimize the arrangement of the centers
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Figure 1: Our method provides approximate solutions to the disc covering
(the top row) and circle packing (the bottom row) problems on triangle
meshes.

{ci}"; such that the disk covering/packing radii reach the extremum. To
be more specific, we answer the following questions:

Q1: What’s the minimum radius R for covering €2 using the given number
of disks?

Q2: What’s the maximum radius r for packing the given number of circles
into Q7

Mathematically, the covering radius R is given by
(1) R = supmin ||x — ¢;|[,x € Q,
X 7
while the packing radius r is

et . .
(2) 7 = min (2 X min lei — ¢, | ki | — CiH) :
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Figure 2: Circumscribed and inscribed circles of polygons. Note that the

circumscribed circles (blue) are unique, whereas the inscribed circles (green)
are not (e.g., the left-most polygon).

O
W

Most of the existing methods [10}, 11, 14}, 15l 22] solve the packing and
covering problems using non-linear optimization. However, since the objec-
tive functions are highly non-linear, their performance is quite low. More-
over, as mentioned above, it is difficult to extend those methods to non-
Euclidean domains due to lack of closed-form formula to measure geodesic
distances.

Our method is based on Voronoi diagrams. Let €); denote the Voronoi
cell for point c¢;. Before presenting the technical details, we define the cir-
cumscribed circle and inscribed circle of €2;. The circumscribed circle is the
smallest circle that can cover {2;, while the inscribed circle is the largest cir-
cle contained in ;. Note that our definitions are slightly different from the
conventional ones where the circumcircle has to pass through all the vertices
of the given polygon and the inscribed circle has to touch all the edges. It
is easy to prove that the circumcircle is unique, whereas the inscribed circle
is not. See Figure 2 for examples of inscribed and circumscribed circles for
polygons.

We are motivated by the Lloyd algorithm for computing centroidal
Voronoi tessellation [4], a Voronoi diagram whose generating points are the
centroids (centers of mass) of the corresponding Voronoi regions. Lloyd’s
algorithm computes CVT in an iterative manner. For each iteration, it im-
proves the result by moving the generators of the Voronoi regions to the
corresponding centers of masses. Lloyd’s method is conceptually simple and
easy to implement. It decreases the CV'T energy monotonically at each iter-
ation and is guaranteed to converge. As a gradient decent method, Lloyd’s
method has a linear convergence rate.
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Similar to Lloyd’s method, our method also starts with random points

in the domain €. At each iteration, it computes the Voronoi diagram for
the given generators, and then moves them to the centers of the circum-
scribed /inscribed circles of the Voronoi cells. Theorem 1 guarantees that
the algorithm converges in finite steps under certain assumptions.

We show the pseudocode of our algorithm in Algorithm 1 and illustrate

it on a unit square with n = 4 discs/circles in Figure [4] Since the final result
is dependent on the initial positions, our algorithm is locally optimal, which
can be observed from the circle packing result.

-

©

10

Input: Q: a compact and connected 2D domain;
n: the number of circles/discs;
d: the convergence threshold.
Output: The covering (resp. packing) radius and the centers of the
disks (resp. circles).

Generate n random points {CEO)\CEO) eQi=1,...,nk
do
Taking {cgk)} as the generators, compute the Voronoi diagram;
for each Voronoi cell ); do

Compute the center of the circumscribed (resp. inscribed)

circle of €;;

Update cl(-kﬂ) to the center;
end
k+—k+1;
while max; ||cZ(
Compute the radius of the packing circles (resp. covering discs).

k+1) c(k)” > 5

Algorithm 1: Solving the circle packing and disc covering problems in
2D.

Theorem 1. Algorithm 1 converges in finite steps if the domain is convez.

Proof. The proof is based on the following key observations:
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(b)

Figure 3: (a) The farthest-point Voronoi diagram of 5 sites partitions the
plane into 5 regions. Each site c; is associated with a convex polygonal region
C(c;) (in the same color) such that c; is the farthest neighbor of every point
in C(c;). The smallest enclosing circle passes through points ¢1, co and c3.
The center O is the point common to C(c1), C(c2) and C(c3). (b) The Voronoi
diagram induced by the edge set is exactly the skeleton of the polygon. The
maximum inscribed circle must be centered at one of the vertices of the
skeleton.

e The center of the circumscribed circle of €; must be a vertex of the
farthest-point Voronoi diagram EI of the vertices of ; [20]. If the cir-
cumscribed circle passes through sites c;,, ..., c;,, the center is the
point common to the farthest-point Voronoi cells of these sites (see

Figure [3(a)).
e The center of the inscribed circle of €); is a vertex of the Voronoi
diagram of the edges of Q; (see Figure [3(b)).

During the k-the iteration, each generator si-“, 1 <i¢ < n, dominates a
Voronoi cell QF in the Voronoi decomposition. Let @(Ci(k),RZ(k) ) and
®(ck,r¥) be the circumscribed and inscribed circles of QF. Our iterative
scheme implies that sl(-kﬂ) is exactly Ci(k) in the disc covering case while
cgk) in the circle packing case. Obviously, UO(CZ.(k),R(k)) covers the do-
main € and U@(cgk),r(k)) is a valid packing. Let R £ maX{REk)} and
rk) & min{r(k)}

g

!The farthest-point Voronoi diagram associates each site c¢; a convex polygonal
region such that c; is the farthest neighbor of every point in the region. The farthest-
point Voronoi diagram is also known as the (n — 1)-th order Voronoi diagram for a
set of n generators[20].
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In the following, we first prove the convergence for the disc covering
algorithm. The key is to show that each circumscribed circle ()(CF, R¥) in

the previous iteration is able to cover the Voronoi cell Ql(-kﬂ), dominated by
sz(.kﬂ) or equivalently Cf , in the next iteration. Consider an arbitrary point

pE Q% Since in the k-th iteration U@(Ci(k)aR(k)) covers the whole

domaizn Q, the point p must be inside some circle(s). We further observe that
p must be inside @(Ci(k), R®)) since p is a point belong to Q§k+1), ie. pis
closer to sgkﬂ) (C’Z-(k)) than s§k+1) (C](k)),j # i. Due to the arbitrariness of
p, we conclude that @(C'Z-(k), R™) is able to cover the cell ngﬂ). Therefore,
R*+1D must be less than or equal to R*), which implies the convergence.
Note that the center of @(Cl(k , R®)) must be inside the domain ©Q due to
the fact that the center of the minimum enclosing circle of a convex shape
must be located in the interior of the shape or on the boundary of the shape.

Next we come to the circle packing algorithm. Similar to disc covering,
our goal is to show that each inscribed circle @(cgk),r(k)) in the previous
(k+1) (k+1)

iteration is located inside the Voronoi cell §2; i
(k)

)

, dominated by s or

, in the next iteration. That is to say, for any point p on the
(k+1)
i

"N

equivalently ¢

boundary of €2 , we cannot find an index 3j such that both distances
I (lpes”)

(k+1) (
lps;™" Il (llpe; Ipe;
since any two generators are at least 2r(%) apart in the k-th iteration. O

and Hps§ are less than +(®), This is true

Remark 1. The convergence means the monotonic change of the radii of the
circumscribed (inscribed) circles, which is independent of the centers of the
circumscribed (inscribed) circle sequence. Therefore, although the inscribed
circle may be not unique, our algorithm can still converge.

Remark 2. When the algorithm converges, the radii of the circumscribed
(inscribed) circles of Voronoi regions may be different.

3. An approximate algorithm for computing
circumscribed /inscribed circles

The key step in Algorithm 1 is to compute the circumscribed/inscribed circle
for each Voronoi cell. For 2D domains, many efficient algorithms are read-
ily available. For example, the sweep line algorithm [6] generates a Voronoi
diagram from a set of n 2D points using O(nlogn) time and O(n) space.
Megiddo’s algorithm [I8] computes the circumscribed circles for 2D poly-
gons. The algorithm recursively enlarges the enclosing circle for a progres-
sive point set until the circle covers all the points. Megiddo’s algorithm
takes O(k) time to determine the smallest enclosing circle for k£ points. For
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Figure 4: Illustration of our 2D covering (row 1) and packing (row 2) al-
gorithms in a unit square for n = 4. With random initialization, both algo-
rithms converge in only 10 iterations. Note that the circle packing result is
locally optimal.

a 2D polygon, the maximum inscribed circle must touch boundary edges
or concave vertices at at least 3 points. Garcia-Castellanos and Lombardo’s
algorithm [8] finds the best vertex-edge triplet by iteratively increasing the
radius of the up-to-date inscribed circle.

Extending Algorithm 1 to triangle meshes is non-trivial due to two rea-
sons: First, many algorithms in Euclidean spaces take for granted the readily
available distance function. Second, many properties in Euclidean spaces do
not hold in non-Euclidean domains due to the fundamental differences in
geometry and topology. For example, a key step in Megiddo’s algorithm [I§]
is to move the center along the bisector of two supporting points. Given
two points on a polyhedral surface, there may exist multiple geodesic paths
of equal length, hence the bisectors are not unique, making it difficult to
generalize Megiddo’s algorithm.

To tackle the above-mentioned challenges and develop a unified frame-
work for both Euclidean and non-Euclidean domains, we propose an indi-
rect approach for computing circumscribed and inscribed circles. Our key
idea is to sample the given domain using a set of randomly and uniformly
distributed points {s;}. We prove that if the samples {s;} satisfy the e-
condition, i.e., for any point q € M, there exists a sample s; whose distance
to q is less than e, the errors of the computed centers are less than . In
the following, we describe the method for 2D domains and then extend it to
triangle meshes in the next section.
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Definition 2. Let S = {s’} be a sample set in  C R?2. We say S is an
e-dense set w.r.t.  if for any p € (), there exists a sample point s’ € S such
that ||s’ — p|| <e.

Similarly, we can define the e-dense sample set {s?|gq} w.r.t. the bound-
ary 052, where each sample point s7|sq is located on 9.

Our goal is to approximate the circumscribed and inscribed disk radii
using an e-dense sample set {s’} | J{s?|sq}. The following theorem shows the
approximation error is determined by the sampling density e.

Theorem 3. Given a set of generators {c;}, the domain Q is partitioned
into a set of Voronoi cells {€0;}. Let {s’} be an e-dense set of sample points
w.r.t. Q CR? and {s7|sq} be e-dense w.r.t. the boundary 0. If we ap-
proximate the circumscribed disk radius R; and the inscribed disk radius r;
according to the sample set as discussed above, then the errors are bounded
by

OSRi—RQSe and Ogr;—mge.

Proof. Denote by D(E;X), RY) the circumscribed disk of {SZ} that is e-dense.
It is easy to show that the disk D(E?, R + ¢€) is able to cover every point
p € Q;, and thus R, + ¢ > R;. Combining with R, < R;, we have 0 < R; —
R, <e.

Similarly, when we shrink the approximate inscribed disk D(Ei@, r}) into
D(EzQ, i — €), it must be completely located in €2;, the Voronoi region of ¢;.
Therefore, 0 < 7"2 —r; < € also holds. ]

4. Extension to triangle meshes

Although Theorem 2 is presented for 2D domains, its idea can be extended
for computing circumscribed and inscribed disks on triangle meshes, given
effective tools for measuring geodesic distances and constructing geodesic
Voronoi diagrams (GVD).

Note that the state-of-the-art algorithms [16, 23] are able to compute
eract GVDs on arbitrary manifold triangle meshes. However, they are com-
putationally expensive. For a triangle mesh with n vertices and k (< n)
generators, the state-of-the-art algorithms run in O(n?logn) time. To im-
prove the performance, we use the saddle vertex graph (SVG) method [24].
Let M = (V, E, F) be the input manifold triangle mesh, where V', E and F
are the sets of vertices, edges and faces, respectively. SVG solves the discrete
geodesic problem by constructing an undirected graph G so that a geodesic
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Figure 5: Computing geodesic Voronoi diagram by clustering samples.

path on the mesh M is (approximately) equal to a shortest path on G. As a
pre-computation method, SVG enables information reuse and allows us to
compute geodesic distances efficiently and accurately.

Let {s7} denote the samples on M. We randomly generate n sites {CEO) } e
M as the initial covering (resp., packing) disk centers. To compute the
geodesic Voronoi diagram, we take {cl(.k)} as the source points and com-
pute the geodesic distance field using the saddle vertex graph G, which
assigns each sample a distance to its nearest source. If a sample is as-
signed two approximately equal distances, it is on the bisector of the cor-
responding sources. We then cluster all samples {s’} into n groups, each of
which is an approximate Voronoi cell (see Figure [5). To compute the the
inscribed /circumscribed disk center, we adopt the exponential map, which
maps all samples of a Voronoi cell to the tangent plane so that the 2D
algorithm in Section 2 can be applied.

5. Results

We implemented our algorithms in C4++ and tested them on a PC with
an Intel Xeon 2.66GHz CPU and 8GM memory. Figure [0] illustrates our
algorithm on a unit sphere, and Figure |5| and Figure [7| show the results on
the common 3D models. Table [1| gives detailed experimental data statistics.
For example, we observe that our algorithm takes about 50 iterations to
reach the stable results and each iteration takes less than a minute.
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Input: M: a manifold triangle mesh; n the number of disks; e: the

given tolerance; §: the convergence tolerance.
Output: The covering (resp., packing) radii and the disk centers

{ci}-

[y

{s7|par} are with a density e;

N

computation;

w

packing) disk centers;
4 do

5 Taking {cgk)} as the source points, compute the geodesic
distance field using G and cluster {s’} into n groups;

6 for each cluster do

7 Compute the exponential map centered at cgk);

8 Map the samples in the cluster to the tangent plane T'P );

9 Compute the center of the circumscribed (resp., inscribeél)

(k+1),

disk center c; ;

10 end

11 while max; |cl(

k+1) C(-k)| > 5

Generate a set of sample points {s’}, where both {s’|y/} and
Construct a saddle vertex graph G on M to facilitate distance

Randomly generate n sites {CEO)} € M as the initial covering (resp.,

12 Compute the covering (resp., packing) disk radius.
Algorithm 2: Solving the circle packing and disc covering problems on

triangle meshes.

Table 1: The detailed experimental data statistics

Model # Vertex|#Seed|#Iteration|Time(s) per iteration
Fig. I (top) | 120002 | 100 78 7.43
Fig. 1 (bottom)|| 120002 | 100 69 7.16
Fig. 6 (top) 655362 | 100 47 19.41
Fig. 6 (bottom)| 655362 | 100 52 18.54
Fig. 7 (#1) 90496 | 100 44 11.25
Fig. 7 (#2) 90496 | 100 59 10.96
Fig. 7 (#3) 90496 | 300 53 15.21
Fig. 7 (#4) 90496 | 300 82 15.87

83
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Initialization Iteration #10  Iteration #20  Iteration #50

Figure 6: Illustration of our algorithm on the unit sphere. The first row
shows how the covering radius decreases and the second row shows how the
packing radius increases.

Figure 7: Disc covering with n = 100 and 300 on the Fertility model.

6. Conclusions

We developed efficient algorithms for the circle packing and disc covering
problems on polyhedral surfaces. In contrast to the existing methods that use
nonlinear optimization with carefully designed strategies to deal with com-
plex boundaries, our methods are purely geometrical and highly intuitive.
We formulated both problems in a centroidal Voronoi tessellation (CVT)-
like computational framework and showed that a locally optimal solution to
the covering (resp. packing) problem can be obtained by iteratively updat-
ing the centers of the circumscribed (resp. inscribed) circles of the Voronoi
cells. Using saddle vertex graph and exponential map, we developed efficient
methods to compute those centers on arbitrary manifold triangle meshes.
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Figure 8: More results on 3D meshes.

Experimental results on synthetic and real-world models demonstrated the
efficacy of our method.

Our method has two limitations, which are worth of further improve-
ment. First, although the produced circles/discs are similar, it cannot guar-
antee they have the same radius. Second, similar to Lloyd’s method for
computing CVT, our method computes only the local optimal solution.
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