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Topically-informed bilingually-constrained
recursive autoencoders for statistical
machine translation

ZHIWEI RUAN AND RONGRONG J1I

Learning high-quality phrase vector representations is one of im-
portant research topics in statistical machine translation (SMT).
Towards phrase embeddings, most existing works mainly explore
syntactic and semantic clues among internal words within phrases,
which are however insufficient for representation learning due to
the lack of context information. In this paper, we propose topically-
informed Dbilingually-constrained recursive autoencoders for
SMT, which substantially extends the conventional bilingually-
constrained recursive autoencoders by exploiting latent topics in
two ways. First, we introduce topical contexts to induce topical
phrase embeddings. Second, word topic assignments from a latent
topic model are leveraged to constrain the learning of word and
topic embeddings, both of which form the base of the contextual
phrase embedding learning in the proposed model. Experiment re-
sults on Chinese-English translation show that the proposed model
significantly improves the translation quality on NIST test sets.

1. Introduction

In the past decade, statistical machine translation (SMT) has made great
progress and consequently attracted extensive research focus. Generally, trans-
lation models [3, 16] are trained with bilingual data, which suffer from the is-
sue of data sparsity and the difficulty to exploit semantic information. There-
fore, learning accurate semantic representations of translation units is crucial
for SMT. With the rapid development of deep learning, it has become a trend
to convert translation units into vector representations. To this end, most
prior work mainly focus on learning bilingual word embeddings to improve
individual components of SMT systems [, 6, 9, 14, 18, B0, B, B7, 42, 46].
However, SMT systems translate sentences with sequences of synchronous
rules or phrases, rather than translating words separately. Hence, phrase-level
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compact vector representation becomes a key issue in deep neural network
based SMT.

Inspired by the success of monolingual phrase embeddings [b, 22, 25—
27], many approaches have been presented to implement bilingual phrase
embeddings for SMT [4, R, 21}, 28, B2, 44]. Similar to that in multi-modal cases
[24, B3, B4, B6, 43], which are dedicated to learn a common space for data of
different modalities, the intuition behind them is that a phrase and its correct
translation should share the same semantic meaning, and thus, they should
be embedded closely to each other in the shared embedding space. However,
only semantic compositions of internal words within phrases are considered in
the existing work, while the semantic information beyond phrases are ignored,
which limits the potential of the learned phrase vector representations.

In this paper, we propose Topically-informed Bilingually-constrained Re-
cursive Auto-encoders (TBRAE), which address the aforementioned issue in
learning contextual bilingual phrase embeddings. Incorporating contextual
clues into phrase vector representations, our model substantially extends the
Bilingually-constrained Recursive Auto-encoders (BRAE) [44] by exploiting
latent topics in two ways. Our first inspiration comes from the observation
that the meanings of phrases are often context-dependent. Hence, we rep-
resent the document-level context of each phrase with its document-topic
distribution, which can be incorporated with the RAE to produce the topical
phrase embedding. Our second inspiration derives from the observation that
the word topic assignments outputted by the latent topic model reflect the se-
mantic correlations between words and topics, which can be used to constrain
the learning of their embeddings. To this end, we design word-topic semantic
constraints to encourage words with similar topic assignments to be placed
closely in the embedding space. Comparing with BRAE, the TBRAE model
not only considers the document-level context beyond the phrases, but also
directly models the interactions between word and topic embeddings, both of
which are the bases of topical phrase embeddings. To summarize, the main
contributions of our work are the following;:

e We enhance the representation capability of phrase embeddings by in-
troducing the topic-based document-level context.

e We exploit the word topic assignments outputted by topic model to
constrain the learning of word and topic embedding, both of which
directly affect the final phrase semantic representations. To the best of
our knowledge, this has not been investigated before.
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e We integrate two phrase-level similarity features based on the TBRAE
model to enhance a state-of-the-art SMT system, which achieves signif-
icant improvements on Chinese-English translation.

2. Background

We give brief introductions to the Latent Dirichlet Allocation (LDA) [2] and
BRAE, both of which are related to the proposed TBRAE model.

2.1. LDA

In the last decade, topic models have drawn much attention and been applied
successfully in various NLP tasks. Among these topic models, LDA is the most
commonly used one at present, and therefore we use it to mine topics in our
work. Based on the “bag-of-words” assumption, LDA views each document
as a mixture of underlying topics, and generates each word according to the
multinomial distribution conditioned on a topic. After training, LDA learns
two types of parameters. The first one is the document-topic distribution
recording the topic distribution of each document, which is often used to
capture the document-level context in topic-based SMT [[7, 11, 13, B9, 41, 45].
The second one relates to the topic-word distribution that represents each
topic as a distribution over words. Based on this distribution, LDA samples a
topic to generate each word in a document. The word topic assignments reflect
the semantic correlations between words and topics, which can be used as the
semantic constraints when learning phrase embeddings.

2.2. BRAE

The BRAE model is the bilingual variant of RAE, which jointly learns two
RAE:s for the source and target phrase embeddings. Figure ﬂ shows the frame-
work of the RAE and BRAE models. Its basic idea is that translation equiv-
alents share the same semantic meaning, and thus, they can supervise each
other to learn their semantic vector representations.

Given the BRAE model with parameters 6, there are two kinds of errors
involved for the phrase pair (f,e): (1) reconstruction error E,..(f,e;0)
used to measure how well the learned vector representations f and € represent
the phrases f and e, respectively. Similar to RAE, the reconstruction error of
each phrase is defined as the sum of the reconstruction error at each node in its
optimal binary tree, which is obtained in a greedy fashion [27]; (2) semantic
error Fgen(f,e;0) that evaluates the semantic distances between f and €.
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Figure 1: The illustration of the RAE and BRAE architectures.

Assuming there exist bidirectional transformations between the source- and
target-side semantic embedding spaces, Zhang et al. first separately learn
phrase embeddings for two languages, and then fine-tune them according to
the semantic distance between translation equivalents [@I Furthermore, to
enhance the semantic error with positive and negative examples, Zhang et al.
propose the maz-semantic-margin error to minimize the semantic distance
between translation equivalents and maximize that between non-translation
pairs simultaneously [@I

3. The TBRAE model

In this section, we first give an overview of the TBRAE model, followed by
the methods of modeling words, phrases and contexts, word-topic semantic
constraints, respectively. Afterwards, we describe the model objective and the
strategy for model training. Figure P provides the architecture of the TBRAE
model, which is an extension of the BRAE [@] It consists of four components:
(1) two recursive auto encoders that separately summarize the semantic
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topical context mapping

source-side topical phrase embedding target-side topical phrase embedding

W, %
: -
W, “
s
H V4
W e
v
source-side word-topic semantic constraint target-side word-topic semantic constraint

Figure 2: The illustration of the TBRAE architecture. w, and z, represent
the words and topics for two languages, respectively. Rectangles in mauve
stand for the context representation models while canary yellow and light
green rectangles represent the RAE-based phrase embeddings and the word-
topic semantic constraints separately.

meanings of the source and target phrases; (2) two context representation
models which are respectively used to model the source-side and the target-
side topical contexts; (3) bidirectional semantic constraints for topi-
cal phrase embeddings that minimize the bidirectional semantic distances
between phrases and their translations in topical contexts; (4) two word-
topic semantic constraints which exploit the word topic assignments to
constrain word and topic embeddings in two languages, respectively.

Before training the model, we employ LDA to obtain the topic distribu-
tions of documents and the word topic assignments. The former is available
for the topical phrase embeddings, while the latter is used to constrain the
learning of word and topic embeddings.

3.1. RAE-based phrase modeling

In our model, each word in the vocabulary V' corresponds to an n-dimensional
real-valued vector, and all the vectors are stacked into a word embedding
matrix L, € RVl Regarding the phrase p as the meaningful composition
of its internal words, we apply an RAE to learn its vector representation p, as
shown in Figure [lj(a). The vector representations ( x1,z2,x3) of the ordered
words in the phrase serve as the input to the RAE. For two children vectors
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71 and s, the parent vector 4 is
(1) i = FWO[E; 3] + 60

where W) € R"*2" ig 4 parameter matrix, b € R™*! is a bias term, and
f is an element-wise activation function such as tanh(-), which is used in our
experiments. In this way, #; is also a n-dimensional vector. To evaluate how
well 4 represents its children, we reconstruct the vector representations &
and @, of the original children nodes in the following way:

(2) (7 @) = FV g +63)

where W) e R2"*" and b3 € R?"*1 Considering two children vectors 7
and Z'3, we then further apply Eq. (m) to compute the parent vector ¢5. This
combination and reconstruction process of auto-encoder repeats at each node
until the entire phrase vector is generated. To obtain the optimal binary
tree and phrase representation for p, we employ a greedy algorithm [27] to
minimize the sum of the reconstruction error at each node in the binary tree

T(p):

s o
(3) Erec(p; 9) = Z 5 || [01;02]1/ - [6/1762]9 H2
yeT'(p)

where y represents a non-leaf node in 7'(p). It has two children vectors ¢; and
¢y which are reconstructed as the vectors ¢ and .

3.2. Context modeling

Inspired by topic-based SMT, we use the document-topic distribution to rep-
resent the document-level context of phrases in each document. To make
topical context computable, we regard each topic z in the topic set Z out-
putted by LDA as a pseudo word, of which semantic representation is also
an n-dimensional real-valued vector. Thus, all topic embeddings can also be
stacked to form a matrix L, € R**IZl.

For the phrase p with the vector representation p in the document d, we
define the semantic representation dc of its document-level context as the
weighted sum of topic embeddings 2"

(4) de= p(zld) - 2
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During training, we apply the above-mentioned approach to obtain the
topical contexts of the phrase pair (f,e) in two languages, which are repre-
sented as de ¢ and dce, respectively. It has the advantage of exploiting extra
monolingual corpora for better topic modeling. However, only source language
documents are available during translation. To obtain the target-side topical
context, we conduct topical context mapping in the source-to-target direc-
tion, and minimize the semantic distance Ejycn(f|e;0) between the topical
context embeddings in two languages as below:

1 -
(5) Etcm(f|€; 9) = 5”(166 - (WJEQL dCf + bf2e)||2

where W}g)e € R™ ™ is the mapping matrix and 6}32)6 € R™*! is the correspond-

ing bias term.
3.3. Bilingually-constrained topical phrase embeddings

Similar to the BRAE model, our TBRAE model exploits cross-lingual seman-
tic equivalence to learn the topical phrase embeddings. The intuition behind
TBRAE is that the source- and target-side parts of each phrase pair share
the same semantic meanings under topical contexts. Thus, they can consider
each other as the gold vector representation to learn the phrasal semantic
representations under the topical contexts in two languages.

To model this intuition, we first introduce a standard neural network layer
to produce the topical phrase embedding py.

(6) e = g(WD G de] + b))

where W®) € R"*27 and b4 € R,

Notice that all the embedding parameters for two languages are learned
separately, and therefore the produced source- and target-side topical phrase
embeddings ﬁic and €y, are located in different vector spaces. For this, we
apply a semantic transformation matrix to map a topical phrase embedding
to the semantic space in the other language, and then minimize the seman-
tic distance between its transformed vector and the embedding vector of its
translation. Formally, we calculate the semantic distance between ﬁlc and €y,
in the target-side embedding space as follows:

1 .
(7) Buern(f1e39) = 51 — FOW (3L fac + b3 2
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where Wg) € R™ " is the semantic mapping matrix in the source-to-target

e
direction, and > € R"*1 is the corresponding bias term.
Then, we follow Zhang et al. to introduce a maz-semantic-margin error
EZ...(fle;0) to exploit the positive example (f,e) and the negative example
(f,€') simultaneously [44]:

(8) Elem(fle;0) = maz{0, Esem(fle;0) — Esem(fle’,0) + 1}

where €’ is another candidate translation of f or a bad translation that re-
places the words in e with randomly chosen target language words.

Note that the above-mentioned semantic transformation can also be per-
formed in the target-to-source direction. Therefore, the semantic distance is
bidirectional. Due to the limitation of space, we do not describe it.

3.4. Word-topic semantic constraint modeling

As stated previously, word and topic embeddings constitute the basis of the
contextual phrase semantic representations in TBRAE. Inspired by Tang et
al., who study heterogeneous text network embeddings [29] , we exploit the
semantic correlation between words and topics for better topical phrase em-
beddings.

The basic idea of our approach is as follows. In LDA model training, one
topic is sampled to generate each word in the document. Thus, the topic
assignments of each word reflect its semantic information in the topic space.
According to the principle of maximum likelihood estimation, we first define
the empirical conditional probability p(z|w) of topic z given word w based
on the topic assignments of words

count(w, z)

(9) pzlw) = 5

. count(w, z')

where count(w, z) denotes the number of times z sampled to generate w.
Thus, the semantic correlation between words w and w’ in the topic space can
actually be determined by their conditional distributions p(z|w) and p(z|w’).
If they are semantically related, then w and w’ should be represented closely
in the embedding space.

To preserve the semantic correlations between words when learning topical
phrase embeddings, we also define the conditional probability p(z|w) based
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on the word and topic embeddings as follows:
exp(wW - 2)
S exp(id - 2)

where W denotes the embedding vector of word w. Then, we choose the
Kullback-Leibler divergence E,(w;6) to encourage p(x|w) to be close to

Plx|w):

(10) p(zlw) =

(11) Bt (w; 0) = Ay - d(p(x|w), p(x|w))

Here we introduce the weight A, that is defined as the frequency of w to dis-
tinguish the effects of different words. Omitting some constants, the objective
function imposed on w becomes

(12) Eyi(w;0) = Zcount(w, 2)logp(z|w)

z

Similarly, the word-topic semantic constraints mentioned here can apply
to the embedding learning in two languages.

3.5. The model objective

The above objective functions either act on each phrase pair or are used as
global word-topic semantic constraints to learn the topical phrase embed-
dings.

For a phrase pair (f, e), there are three kinds of errors involved: (1) recon-
struction error E,..(f,e;0): how well the learned vector representations f
and € represent the phrases f and e respectively? (2) topical context map-
ping error Ei.,,(f| e;0): what is the semantic distance between the learned
vector representations of topical contexts d_éf and dc.? (3) semantic er-
10T Esern(f,€;0): what is the semantic distance between the learned topical
phrase embeddings f:zc and €y.? Formally, the joint error of (f,e) is defined
as below:

(13) E(f,e;0) = a- Epec(f,e;0) 4+ B Erem(fle; 0)
—1—(1—04_ﬁ) 'Esem(f>6;0)

where the hyper-parameters o and 8 are used to weight different error func-
tions, Erec(f,e;0) is the sum of Eyeo(f;0) and Eyec(e;0), while Eser(f,€;0)
equals E?,, (fle;0) plus E%., . (e|f;0).

Sem sem
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Besides, we impose the word-topic semantic constraint, mentioned in Sec-
tion 3.4, on words in two languages. Thus, the final objective over the training
set D becomes:

1
(14) JTBRAE = Z E(f,e;0)
(f,e)eD

ZEwtfe

Vil f|fevf ev.

Euwi(e:0) | + R(9)

where v is the hyper-parameter used to reflect the effect of the word-topic
semantic constraints, Fy(*;0) denotes the error functions of the word-topic
semantic constraints for two languages, and R(6) is the regularization term
involving the following parameter sets:® (1) 6, : the word embedding ma-
trices; (2) 0r.: the topic embedding matrices; (3) Oy¢.: the RAE parameter
matrices W1, W®) and bias terms b)), b3); (4) Gyepn: the topical context
mapping matrix Wg)e and bias term bchQ)e; (5) O4p: the topical phrase em-
bedding parameter matrices W®) and bias terms b(®): (6) Osem: the phrase
semantic transformation matrices W) and bias terms b®). Here we assign
parameter sets different weights for regularization:

)\Lw )\TSC
(15) R(G) = T 0 wH2 + 9 H‘grecH2
)\1; )\t A
CmHgtcmH2 + p||9tp”2 %HesemHZ

We apply a similar co-training style algorithm as [44] to train the model
parameters. Specifically, for each phrase pair, we fix its target-side contextual
phrase representation to update its source-side parameters, and vice versa. In
this process, we apply mini-batch to tune parameters based on gradients over
the joint error. In each batch, we only use the forced decoding phrase pairs of
a document for model training. Note that the word-topic semantic constraints
are imposed on words rather than phrases. For this, we just consider the topic
assignments of words occurring in the document and calculate their semantic
constraint errors. This procedure repeats until either the joint error (shown
in Eq. (@)) reaches a local minimum or the number of iterations is larger
than the pre-defined one (25 is used in experiments).

Note that the source and target languages have different sets of parameters.
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4. Experiments

To validate the effectiveness of our TBRAE model, we conducted experiments
on NIST Chinese-English translation task. Given a bilingual phrase (f, e) used
to translate the source document, we successively implemented RAE-based
phrase embeddings, topical context modelings and mapping, topical phrase
embeddings, and semantic transformations. Finally, we calculated the cosine
similarities between f and e in two directions, which are used as two additional
features in the log-linear framework of SMT system.

4.1. Setup

Following Zhang et al. we chose a phrase-based translation system with a max-
imum entropy based reordering model (MEBTG) [35, 0] as our experiment
system [44]. Our training data consists of the FBIS corpus and the Hansards
part of LDC2004T07 corpus, with 1.0M parallel sentences (25.2M Chinese
words and 29M English words). Following Zhang et al., we performed forced
decoding with Leaving-One-Out [B&] on the parallel sentences to collect 3.65M
phrase pairs of high quality for the model training [44]. We trained a 5-gram
language model on the Xinhua portion of Gigaword corpus using SRILM
Toolkits.? Besides, we used NIST MT05 and MT06/MT08 data set as the
development and test set, respectively. For translation results, we chose the
case-insensitive BLEU-4 [23] as the evaluation metric, and performed paired
bootstrap sampling [[15] to calculate the statistical significance in BLEU score
differences.

For the topic model, we used the GibbsLDA++® for estimation and infer-
ence. Following [0, B9], we set the parameters as follows: the topic number
N,=30, the hyper-parameters a,=50/N, and (3,=0.1, and the iteration num-
ber Njie=1000.

In the experiments, we set the vector dimension as 50 and the learning rate
as 0.01, as implemented in [44]. To tune the hyper-parameters, we randomly
selected 250,000 forced decoding bilingual phrases as training set, 5000 as
development set, and another 5000 as test set. We first incrementally drew «
from 0.05 to 0.3, 8 from 0.05 to 0.25 with step 0.05, v from 0.01 to 0.1 with
step 0.01, and A, exponentially from 107 to 1072, and then determined the
optimal hyper-parameters according to the overall error of the proposed model
on the test set. Noting that too many hyper-parameters will lead to difficulties

http://www.speech.sri.com /projects/srilm /download.html
3http://gibbslda.sourceforge.net/
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in model training, we first learned word embeddings, RAE parameters, and
some hyper-parameters such as A, Arec; Asem Using the BRAE model. Then,
we fixed these parameters, hyper-parameters and tuned the others during the
TBARE model training. Finally, we set a=0.1, 3=0.1, v=0.08, A, =105,
AL=1077, X\ree=10"2 Neru=1075, A\,=1073 and Age,,=1077.

Model | MT06 | MT08
MEGBT 29.66 21.52
BRAE 30.27 22.53

TBRAE(cont) | 30.35" | 22.77°
TBRAE(ss) | 30.88°" | 23.34%TF
TBRAE(ts) | 30.68" | 23.117F
TBRAE 31167 | 23717 T

Table 1: Experiment results on the test sets when setting dimension n=>50.
* /%% significantly better than MEBTG (p<0.05/0.01), +/4+: significantly
better than BRAE (p<0.05/0.01)

4.2. Overall performance

First, we investigated the overall performance of the TBRAE model. Fol-
lowing Zhang et al., we set the dimensionality of the word and the topic
embedding as 50 [44]. In addition to the conventional MEBTG system and
the BRAE model, we also compared our model with its three variants: (1)
TBRAE(cont) which explores only topical contexts while ignoring the word-
topic semantic constraints; (2) TBRAE(ss) that uses only the cosine similarity
feature in the source-side semantic space; (3) TBRAE(ts) that uses only the
cosine similarity feature in the target-side semantic space.

Table [If summarizes the comparison results of different models on the
test sets. In all cases, TBRAE performs better than MEBTG, BRAE and
TBRAE(cont), even if it use only one similarity feature. When using bidi-
rectional similarity features together, TBRAE achieves the best performance,
which is better than MEBTG, BRAE and TBRAE(cont) by 1.5/2.19,
0.89/1.18 and 0.81/0.94 BLEU points on the two sets, respectively. These
experiments show that the exploitation of latent topics, especially word-topic
constraints, contributes to outperforming MEBTG and BRAE both of which
consider only internal semantic information of bilingual phrases.
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4.3. Effect of embedding dimensionality

To investigate the generality of the TBRAE model, we tried four different
dimensions from 25 to 100 with an increment of 25 each time.

TBRAE (Dimension) | 25 | 50 | 75 | 100

MTO06 30.95 | 31.16 | 30.87 | 30.70
MTO08 23.54 | 23.71 | 23.32 | 23.43

Table 2: Experiment results for different dimensionalities.

The results are displayed in Table E We found that the TBRAE model is
not consistently improved with the increment of dimensionality, and we can
get satisfactory results when setting d= 50. These results are consistent with

[28], which concludes that a larger dimension makes parameter tuning more
difficult.

4.4. Result analysis

In order to know how our TBRAE model improves the SMT system more
intuitively, we analyzed the experiment results from two angles.

Model | BRAE | TBRAE(cont) |  TBRAE
ASG(ss) 0.0196 0.0267 0.1521
ASG((ts) 0.0147 -0.0043 0.1109

Table 3: The average cosine similarity gaps between MT05/06/08 phrase
pairs and non-translation pairs. ASG(ss) and ASG(ts) denote average the
similarity gaps in the source-side and the target-side semantic spaces, respec-
tively.

Particularly, we first extracted phrase pairs from the word-aligned MT05,
MTO06, MTO8 data sets and constructed a negative example for each phrase
pair using the method described in Section 3.3. Then, we calculated the av-
erage cosine similarity gaps in two directions between phrase pairs and non-
translation pairs using different models. Table § provides the calculation re-
sults. When using the TBRAE model, we observed that both of the average
gaps in two directions are larger than other models. For these results, we
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believe the TBRAE model is able to distinguish different translations more
precisely by making better use of latent topics. These results echo the exper-
iment results reported in Section 4.2.

SRC LB ORAL i M B REL .
Ref ... massive opposition protests and political [chaos| .
BRAE | - large-scale protests of oppozsmon parties and political

[confusion) .
TBRAE | - large-scale protests of opposition parties and political

[chaos] .

Table 4: Translation result analysis.

To clearly understand the superiority of the TBRAE model on learning
semantic phrase embeddings, we compared the best translations of the SMT
system using the BRAE and TBRAE models. We found that our approach
really improves translation quality by utilizing latent topics which are, on the
contrary, ignored in BRAE. In the example shown in Table H, BRAE fails to
obtain the right translation for the word “J&iL” due to the higher frequency
of “confusion” than “chaos” in translation (203 vs 127). In fact, in the doc-
ument related to politic topic, it is more likely that “JEiiL” is interpreted as
“chaos” rather than “confusion”, which is captured by our TBRAE model.
As a result, the SMT system enhanced by TBRAE is able to correctly choose
the translation “chaos” for “JEHEL”.

5. Related work

Recently, learning bilingual text embeddings has attracted great attention,
especially for SMT. Li et al. proposed an RAE-based ITG reordering classifier
[17]. Kalchbrenner and Blunsom introduced recurrent continuous translation
models that comprise a class of purely continuous sentence-level translation
models [14]. Lu et al. applied the deep autoencoder to automatically learn
new features for the phrase-based translation model [21]. Gao et al. presented
a continuous-space phrase translation model to project bilingual phrases into
the continuous-valued vector representations [8]. Zhang et al. proposed the
BRAE model [44], which is the basis of our TBRAE model. Cho et al. pro-
posed a novel Encoder-Decoder that consists of two RNNs for bilingual phrase
embeddings [4] . Su et al. explored inner structures and semantic correspon-
dence inside bilingual phrases for better phrase embeddings [28] . Hu et al.
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proposed a context-dependent convolutional matching model to capture the
semantic similarities between context-sensitive phrase pairs [[12]. Significantly
different from these studies, our model introduces latent topics to improve
bilingual phrase embeddings.

Specifically, we exploited latent topics in two ways in TBRAE. Inspired
by topic-based SMT [{, 11, 13, B9, 41, 45], we introduce topical contexts to
implement the topical phrase embeddings. More importantly, we design two
semantic constraints based on word topic assignments to refine the word and
topic embeddings in our model. In this aspect, recently, Liu et al., introduced
the latent topic model to globally cluster words into different topics according
to their contexts [20] . Furthermore, Liu et al. used a tensor layer to capture
more interactions between words and topics under different contexts [[19]. Dif-
ferent from the methods mentioned here, our TBRAE model further exploits
2-step semantic correlations between words and topics for phrase embeddings,
which, to the best of our knowledge, has never been investigated before.

6. Conclusions and future work

We have presented a topically-informed BRAE model which exploits latent
topics to improve phrase embeddings for SMT. Topical contexts are intro-
duced to enhance the determinativeness of phrase embeddings in different
contexts. Word topic assignments are also used to constrain the learning of
word and topic embeddings, both of which directly affect the learned contex-
tual phrase embeddings. The experiment results on Chinese-English transla-
tion demonstrate the superiority of our model over a state-of-the-art baseline
and BRAE [44].

There are some valuable research directions in the future. First, it is
interesting to follow Liu et al. [19] to directly model the interaction between
words and topics for bilingual phrase embeddings. Second, our model holds
the potential to be extended to other phrase-based and even syntax-based
systems.
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