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An investigation for loss functions widely

used in machine learning

Feiping Nie, Zhanxuan Hu, and Xuelong Li

Over past few decades, numerous machine learning algorithms have
been developed for solving various problems arising in practical ap-
plications. And, loss function is one of the most significant factors
influencing the performance of algorithm. Nevertheless, most read-
ers may be confused about the reason why these loss functions are
effective in corresponding models. The confusion further interfere
them to select reasonable loss functions for their algorithms. In
this paper, we take a comprehensive investigation for some repre-
sentative loss functions and analyse the latent properties of them.
One of the goals of the investigation is to find the reason why bi-
lateral loss functions are more suitable for regression task, while
unilateral loss functions are more suitable for classification task.
In addition, a significant question we discuss is that how to judge
the robustness of a loss function. The investigation is useful for
readers to develop or improve their future works.

1. Introduction

Numerous machine learning models have been constructed and various tax-
onomies have been proposed from different perspectives, for instance differ-
ent learning strategies, different learning types, and so on. Here, we adopt
the second taxonomy, i.e., different learning types, and roughly group most
existing machine learning algorithms into the following two categories: su-
pervised learning and unsupervised learning.

Classification [9, 13, 27] and regression [3, 24] are two basic tasks in
supervised learning. Suppose the input data consists of n samples {xi}n1
and a target vector y = (y1; y2; . . . ; yn), the goal of supervised learning is
to learn a model, i.e., a function f(x) which help users predict the value
of y for a new sample x. The main difference between regression task and
classification task is the target value of prediction. Generally, regression
model aims to return a continuous target value for x, while classification
model aims to return a discrete target value for x. In practice, however,
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the common purpose of them is to learn a function f(x) that achieves the
minimum loss on all training data. Mathematically, a regression model can
be formulated as:

(1) min
f(x)

n∑
i=1

l(f(xi)− yi) +Rλ(f) ,

where f(xi)− yi represents the deviation between f(xi) and target value,
l(r) represents a loss function that measures the loss generated by devia-
tion, Rλ(f) is the regularization term for reducing the risk of overfitting.
Correspondingly, a binary classification model can be formulated as:

(2) min
f(x)

n∑
i=1

l(yif(xi)) +Rλ(f) ,

where yi is the label of xi, and yif(xi) represents the deviation between
f(xi) and hyperplane. For each kind of task, a lot of algorithms have been
developed, and loss function is one of the most significant differences between
them. For instance, Capped SVR [22] as well as RSVR-GL [26] for support
vector regression task, and Capped SVM [19], ramp loss [17, 28], truncated
pinball loss [23] and C-Loss [29] for support vector classification task. Facing
various loss functions, readers may have the following two questions.

• Question 1: Which types of loss functions can be used to cope with
the regression task? And, which types of loss functions can be used to
cope with the classification task?

• Question 2: How to judge the robustness of a loss function?

In fact, the second question also occurs in unsupervised learning, such as
the problem of low rank approximation. Given a data matrix X, a general
formulation for low rank approximation is:

(3) min
L
‖P(L)−X‖` +Rλ(L) .

where P is a operator, ` denotes the loss function, and Rλ(L) denotes the
regularization term. The model (3) and its variants have been applied into
various fields including Robust principal component analysis (RPCA) [1],
matrix completion [2], image denoising [7], and non-rigid structure from
moition [5]. In this paper, our investigation is mainly based on the RPCA.
The `2 norm based loss function is generally used in Eq. (3) due to its con-
vexity and smoothness. In practice, however, the `2-norm based loss function
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is very sensitive to the outliers, the entries that deviate the optimal target
values seriously. Recently, numerous robust loss functions have been devel-
oped for solving the setting that input data is corrupted by outliers, such as
`p norm based loss function (0 < p ≤ 1) [20], and Capped norm based loss
function [25]. All of them have improved the robustness of algorithm signif-
icantly, but none has provided an explanation or analysis for the improve-
ment. In this paper, we try to fill this blank. We summarize the contribution
of this paper as follows:

• By comparing the difference between classification task and regression
task, we provide an answer to the Question 1.

• We provide an investigation for loss functions widely used in machine
learning, and analyze the robustness of them by comparing some rep-
resentatives.

• We conduct numerous experiments to verify the conclusions proposed
in this paper.

Note that the regularization term is also a significant factor influencing the
performances of algorithms mentioned above, but it is not the focus of us in
this paper. The rest is organized as follows. In Section 2, we try to answer
the question 1. In Section 3, we will discuss the robustness of various loss
functions used in machine learning via a low rank approximation model. In
Section 4, we implement some experiments to verify the conclusions proposed
in this paper. In Sect. 5, we end up this paper by a short discussion.

2. Difference between regression task and classification task

As mentioned above, the main difference between regression task and classifi-
cation task is the target value of prediction. In this section, we will analyze its
impact on the selection of loss function. Note that our investigation is based
on two simple models: a linear regression model and a linear classification
model. Both of them are very concise, but are convenient for visualization
and understanding.

2.1. Regression task

A toy example for linear regression model has been presented in Fig. 1a,
where f(x) = wTx + b is the current regression model learned from training
data. The deviation between f(xi) and target value yi is denoted by ri =
wTxi + b− yi, and the corresponding loss is l(ri). The Fig. 1a shows that
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(a) Linear Regression model.
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(b) Linear Classification model

Figure 1. Two examples with respect to regression task and classification
task. Here, l(r) is a loss function that measures the loss generated by de-
viation. In regression task, the deviation between f(xi) and target value
is denoted by ri = f(xi)− yi. In classification task, the deviation between
f(xi) and hyperplane is denoted by ri = yif(xi). In Fig. 1a, ri+1 > 0 and
ri < 0, but both xi+1 and xi should be published, and the punishment level
should be equal when |ri| = |ri+1|. Hence, for regression task, we expect that
l(r) = l(−r). Obviously, the bilateral loss function is a reasonable choice for
regression task. In Fig. 1b, the sample xi with ri < 0 is an incorrect classi-
fication and should be punished, while the sample xi+1 with ri+1 > 0 is a
correct classification and should not be punished. Hence, for classification
task, we expect that l(ri+1)� l(ri) when ri < 0 and ri+1 > 0. Obviously,
the unilateral loss function is a reasonable choice in classification task.

the value of ri+1 is larger than 0, while the value of ri is smaller than 0.
In practice, however, both of them should be punished in regression task.
Particularly, without considering the imbalanced loss, the punishments to
xi and xi+1 should be equal when |ri| = |ri+1|, and the punishment to xi
should be larger than to xi+1 when |ri| > |ri+1|. As the punishment level
for sample depends on its loss value, in regression task we should select a
loss function satisfying the conditions that l(r) = l(−r) as well as l(|r|) is
monotonically increasing. Obviously, bilateral loss function, such as l(r) = r2

as presented in Fig. 2a is a reasonable choice. Actually, there are some
asymmetric loss functions have been utilized to cope with the regression
task, such as expectile loss [18]. For this type of loss functions are suitable
for some particular settings, we omit them in this paper.
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(a) Bilateral loss function
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(b) Unilateral loss function

Figure 2. One dimensional illustrations for some representative loss func-
tions widely used in regression task and classification task. The bilateral
loss functions are generally used in regression task, and the unilateral loss
functions are generally used in classification task. Note that r = f(x)− y in
regression task, and r = yf(x) in classification task.

2.2. Classification task

We now start to observe the characteristics of a linear classification model.
In contrast with regression, it aims to learn a model f(x) = wTx + b that
can return a discrete label value for a new sample. More exactly, given a
data point x in a two classification task, the target value of y is determined
by:

(4) y =

{
1 , if wTx + b > 0

−1 , else.

A toy example for linear classification model has been presented in
Fig. 1b, where f(x) = wTx + b is the current classification model learned
from training data. The labels of samples represented by disc are +1 and
the labels of samples represented by square are −1. The deviation between
f(xi) and hyperplane is denoted by ri = yif(xi) in classification task, and
the corresponding loss is l(ri). The Fig. 1b shows that the value of ri+1 is
larger than 0, while the value of ri is smaller than 0. In practice, however,
the sample xi+1 is a correct classification and should not be punished, but
the sample xi is an incorrect classification and should be punished. As the
punishment level for sample depends on its loss value, in classification task
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Table 1. Some representative loss functions widely used in regression task
and classification task. Note that r = f(x)− y in regression task, and r =
yf(x) in classification task. Most of these loss functions can also be used to
deal with other tasks.

Type Loss function Formulation

Bilateral

squares loss function (l2 loss) l(r) = r2

absolute value loss (l1 loss) l(r) = |r|
`p based loss(0 < p < 1) l(r) = |r|p

SVR loss [24] l(r) = max(0, |r| − ε)

Huber loss [14] HL (r) =

{
r2

2 , |r| ≤ k
k |r| − k2

2 , |r| > k
Capped `p-norm(0 < p < 2) [22] l(r) = min(|r|p, a)

Unilateral

Hinge loss used in SVM [4] l(r) = max(0, 1− r)
Squared Hinge loss l(r) = (max(0, 1− r))2

Capped `p-norm Hinge [21] l(r) = min((max(0, 1− r))p, ε)
Exponential loss [12] l(r) = exp(−r)

Logistic loss [11] l(r) = log(1 + e−r)
Unilateral Huber loss [30] l(r) = max(0, a−HL(r))

we should select a loss functions satisfying the condition that l(r)� 0 when
r → −∞ as well as l(r)→ 0 when r → +∞. Obviously, the unilateral loss
function, such as hinge loss l(r) = max(1− r, 0) as presented in Fig. 2b is a
reasonable choice in classification task.

In summary, bilateral loss functions are more suitable for re-
gression task, while unilateral loss functions are more suitable for
classification task. We report some representative loss functions widely
used in regression and classification tasks in Tab. 1. Note that these loss
functions can also be applied into other tasks. Robustness is one of the main
differences between them, and it will be discussed in next section.

3. How to judge the robustness of a loss function

In this section, we will discuss the robustness of various loss functions. Note
that taking a comprehensive study for loss functions used in all machine
learning fields beyond the scope of this paper. Here, we investigate only some
representative loss functions and analyze the robustness of them by studying
the problem of low rank approximation. The investigation is also suitable
for other machine learning tasks including classification and regression.
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In addition to the bilateral loss functions reported in Table 1, recently,
various loss functions have been developed and can be used to improve the
robustness of low rank approximation models [6, 8, 10, 16]. In practice,
however, few people analyze the fundamental reason for the improvement.
In this section we try to fill this blank.

We start by presenting a variant of the Eq. (3) as follows:

(5) min
U ,V
‖UV −X‖` .

where U ∈ Rm×r and V ∈ Rr×n are two low rank matrices, and L can be
seen as a product of U and V , i.e., L = UV . Further, it can be rewritten
as:

(6) min
U ,V

m∑
i=1

n∑
j=1

l(rij) .

where rij = uivj −Xij
1 is the deviation between Lij and Xij . l(x) is the

loss function that measures the deviation.
Actually, each entry of X can be considered as a target value, and we

aim to find a low rank matrix L = UV that achieves the minimum deviation
with X on all entries. It is well known that the model generally prefers to
punish the entries with larger loss, namely outliers. Note that the outliers are
the entries of X that deviate the optimal low rank matrix L significantly in
low rank approximation task, and the outliers are the samples that deviate
the the optimal model seriously in classification task as well as regression
task. Based on the above analysis, we start to discuss the robustness of
different loss functions.

• `2 loss, where l2(r) = r2;

• `1 loss, where l1(r) = |r|;

• `p loss, where lp(r) = |r|p, where p = 0.1;

• Capped `p loss (0 < p < 2), namely lc loss, where lc(r) = min(|r|p, t),
and t is the cap we set.

One dimensional illustrations with respect to four loss functions have
been presented in Fig. 3, where p = 0.1 for lp loss, and p = 1 for lc loss.
Observing the Fig. 3a, we can find the gap between l1 loss and l2 loss is
monotonously increasing with the increasing of |r|, when |r| > |r1|, and the

1For a matrix X, we denote its i-row and j-th column by xi and xj , respectively.
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Figure 3. One dimensional illustrations for representative loss functions,
where l2(r) = r2, l1(r) = |r|, lp(r) = |r|p (p = 0.1), and lc(r) = min(|r|, t).
Observing (a), we can find that the gap d(r1) between l1(r) and l2(r) in-
creases monotonously with the increasing of r. In addition, lp(r)� l1(r)�
l2(r) when |r| → ∞. Observing (b), we can find that lc(r) = lc(r1) for any
r > r1, and the gap between lc(r) and l1(r) increases monotonously with
the increasing of r. Hence, the robustness of lc(r) loss to outliers with large
magnitude is better than l1 loss.

loss generated by l2(r) is far greater than l1(r) and lp(r), when r takes a
large value. Hence, comparing to the models based on l1 loss and lp loss,
the models based on l2 loss will pay more attention to the outliers. For lp
loss, the gap between lp(r) and lp(r0) is very small, even when r →∞. This
property result in the lp norm based loss function being robust to outliers
with large magnitude but sensitive to the noise with small magnitude.

Further, observing the Fig. 3b, we find that the loss generated by lc
is less than l1 when |r| > |r1|, and lc(r) = lc(r1) for any |r| > |r1|. That is,
the loss generated by lc(r) is not higher than t = lc(r1), even when r →∞,
which demonstrates that the impact caused by outliers is limited in lc loss
based model. Hence, the robustness of lc loss to outliers with high magnitude
is better than l1 loss. Besides, as lc(r)=l1(r) when r ≤ r1, the lc loss with
p = 1 is also robust to the outliers with small magnitude.

In summary, the loss function l(r) with an appropriate upper
bound when r takes a large value is generally robust to the out-
liers. In this section, only serval loss functions are discussed, actually, the
robustness of other loss functions can also be judged from the viewpoint.
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Figure 4. Comparison between two models for Linear Classification (LC)
problem. Obviously, the partition result provided by Hinge loss, an unilat-
eral loss function, is better than the partition result provided by `2 loss,
a bilateral loss function. For punishing correct classification and incorrect
classification simultaneously, the l2 loss based model prefers to fit rather
than divide the data points.

4. Experiments

In section 4.1, we compare the performances of two models for linear clas-
sification task. Note that these two models are based on l2 loss and Hinge
loss, respectively. In Sect. 4.2, we test the robustness of four different loss
functions by utilizing them to construct four low rank approximation mod-
els. Note that, all experiments are conducted on generated data for the noise
level can be controlled arbitrarily.

4.1. Comparison between two models for classification

In this subsection, we use l2 loss and Hinge loss to construct two linear
classification models. In particular, we generate n = 70 2-dimensional points
x1,x2, . . . ,xn as presented in Fig. 4. For each i, the labels of samples with
red are yi = +1, and the labels of samples with green are yi = −1. The final
results returned by two models are presented in Fig. 4, which shows that the
Hinge loss based model can partition data points perfectly, while the l2 loss
based model prefers to fit rather than divide the data points. The reason
is that l2 loss will punish correct classification and incorrect classification
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simultaneously. Furthermore, we can conclude that using l2 loss or other
bilateral loss functions is inappropriate in classification task.

4.2. Investigate the robustness of different loss functions

In this subsection, we implement numerous experiments to compare the
robustness of four loss functions including l2 loss, l1 loss, lp loss with p = 0.1,
and lc loss with p = 1. The comparison is based on the problem of low rank
approximation. Here, we utilize the formulation (5) to cope with the issue,
and utilize four loss functions to generate different models. The optimal
solution is provided by conducting SVD when l2 loss is used. And, for models
based on residual loss functions, we utilize the ALM (Augmented Lagrange
Multiplier) method [15, 31] to optimize.

4.2.1. Experiments on low dimensional data. In this section we con-
duct all low rank approximation algorithms, except for the lc loss based
model, on low dimensional data, which is very convenient for visualization.
In particular, we generate the input data by the following procedure. First,
a matrix L ∈ R2×100 is generated, where 100 is the number of samples and
2 is the dimensionality of sample. Suppose li is the ith column of matrix L,
for each i we have:

(7) 0.2 =
li2
li1
,

where lij denotes the jth element of li. Thus, we know that rank(L) = 1,
and its principal direction is (1, 0.2). In addition, note that the entries of
the first row of L are sampled from N (0, 1). Then, we generate two noise
matrices E and G, where E a sparse noise matrix with α% entries being k
and the residuals being 0, and G is a matrix with entries are sampled from
N (0, 0.05). The noise level are controlled by the values of α and k. Particu-
larly, we vary α in the set Sα = {10, 20} and k in the set Sk = {0.1, 0.5, 1, 2}.
The final results are reported in Fig 5, which shows that to reduce the total
loss on samples all models we learned will close to the outliers. Observing the
Fig. 5a and Fig. 5b, we find that lp loss is very sensitive to the small noise,
and its performance is lower than l2 loss based loss function. Not only the
number but also the magnitude of outliers will degenerate the performances
of l1 loss and l2 loss based models. While the robustness of lp loss to noise
with large magnitude is prominent.

4.2.2. Experiments on high dimensional data. In this section, we
report numerous experimental results on high dimensional data. The low
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(a) α = 10,k = 0.1
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(d) α = 20,k = 0.5
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(e) α = 10,k = 1
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(f) α = 20,k = 1

Figure 5. Experimental results on low dimensional data. Here α controls the
number of outliers, k controls the magnitude of outliers.
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Figure 5. Experimental results on low dimensional data. Here α controls the
number of outliers, k controls the magnitude of outliers.

Table 2. Experimental results on generated data. The l1 loss is only robust
to noise small magnitude, and lp loss with p = 0.1 is only robust to noise
large magnitude. The capped l1 loss, i.e., lc loss is robust to both of them.

size Noise level l2 loss l1 loss lp loss Capped l1 loss

m = 100
k = 0.01 9.72e− 04 1.09e− 08 1.35e− 03 1.03e− 08
k = 1 9.44e− 02 9.43e− 09 5.22e− 09 9.21e− 09
k = 5 5.98e− 01 2.28e− 01 8.65e− 09 6.78e− 09

m = 200
k = 0.01 9.04e− 04 1.05e− 08 1.01e− 03 1.02e− 08
k = 1 5.21e− 02 7.18e− 09 4.58e− 09 5.32e− 09
k = 5 5.35e− 01 1.01e− 01 7.37e− 09 6.21e− 09

m = 300
k = 0.01 8.61e− 04 7.76e− 09 8.31e− 04 7.69e− 09
k = 1 8.52e− 02 7.83e− 09 4.25e− 09 7.58e− 09
k = 5 4.56e− 01 8.59e− 02 6.63e− 09 1.58e− 08

rank matrix L ∈ Rm×n with rank r is generated by the following proce-
dure. Firstly, we generate two low rank matrices U ∈ Rm×r and V ∈ Rr×n
with entries sampled from N (0, 1), and then generate L by L = UV . Sub-
sequently, we generate a sparse matrix E ∈ Rm×n serve as noise matrix. In
particular, 90% entries of E are zero, and the residuals are k. The input
noisy matrix is X = L + E. In this test, we fix m = n, and vary k in the set
S = {0.01, 1, 5}. The precision is measured by RE (Relative Error), which
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is defined by:

(8) RE =
‖X∗ −L‖2F
‖L‖2F

.

where X∗ is the solution provided by low rank approximation model. The
final results are reported in Tab 2, which shows that lp (p=0.1) loss is sensi-
tive to the noise with small magnitude, while l1 as well as l2 loss are sensitive
to the noise with large magnitude. Particularly, the Capped l1 loss achieves
high precision on the all settings. The results are consistent with our analysis
mentioned in Sect. 3.

5. Conclusion

This paper provided a comprehensive investigation for loss functions widely
used in machine learning. By analysing two simple linear models, we obtain
a significant conclusion that the bilateral loss functions are more suitable
for regression task, while the unilateral loss functions are more suitable for
classification task. Utilizing the proposition that model generally prefers to
punish the samples with larger loss, we discussed the robustness of four
representative loss functions. Numerical experimental results on toy data
demonstrate that the loss functions with an appropriate upper bound value,
such as capped norm based loss function when deviation takes a large value,
are generally robust to outliers. We mainly discussed three fundamental
machine learning models as well as four loss functions in this paper, but
most existing complicated algorithms or loss functions can be considered as
the variants of them. In addition to loss function, the investigation provided
in this paper may be useful for the selection of regularizer, which is also
a significant factor influencing the performance of algorithm. The relevant
analysis will be presented in our future work. The conclusions summarized
in this paper can provide some suggestions to readers for developing or
improving their algorithms.
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