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Understanding self-paced learning under

Concave Conjugacy Theory
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Kai-Dong Wang, and Yong Zhang†

By simulating the easy-to-hard learning manners of humans/ani-
mals, the learning regimes called curriculum learning (CL) and self-
paced learning (SPL) have been recently investigated and invoked
broad interests. However, the intrinsic mechanism for analyzing
why such learning regimes can work has not been comprehensively
investigated. To this issue, this paper proposes a concave conjugacy
theory for looking into the insight of CL/SPL. Specifically, by us-
ing this theory, we prove the equivalence of the SPL regime and
a latent concave objective, which is closely related to the known
non-convex regularized penalty widely used in statistics and ma-
chine learning. Beyond the previous theory for explaining CL/SPL
insights, this new theoretical framework on one hand facilitates two
direct approaches for designing new SPL models for certain tasks,
and on the other hand can help conduct the latent objective of self-
paced curriculum learning, which is the advanced version of both
CL/SPL and possess advantages of both learning regimes to a cer-
tain extent. This further facilitates a theoretical understanding for
SPCL, instead of only CL/SPL as conventional. Under this theory,
we attempt to attain intrinsic latent objectives of two curriculum
forms, the partial order and group curriculums, which easily follow
the theoretical understanding of the corresponding SPCL regimes.

1. Introduction

Since being raised recently, self-paced learning (SPL)[1] and curriculum
learning (CL)[2] have been grabbing attention in machine learning and ar-
tificial intelligence. Both learning paradigms are designed by simulating the
learning principle of humans/animals, attempting to start learning from
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2 S.-Q Liu, et al.

easier examples and gradually including more complex ones into the train-
ing process. The CL regime [2–4] was formerly designed by setting a series
of learning curriculums for ranking samples from easy to hard manually,
and the SPL methodology [1] has then been latterly proposed to make this
easy-to-hard learning manner automatically implementable by imposing a
regularization term into a general learning object, which enables the learning
machine to objectively evaluate the “easiness” of a sample and automatically
learn the object in an adaptive way. This learning paradigm has been empir-
ically verified to be helpful on alleviating the local-minimum issue for a non-
convex optimization problem [5], while later on more comprehensively to be
verified to be capable of making the learning method more robust to heavy
noises/outliers [6]. Recently, such a new learning regime has been applied
to many practical problems, such as multimedia event detection [7], neu-
ral network training [8], matrix factorization [5], multi-view clustering [9],
multi-task learning [10], boosting classification [11], object tracking [12], per-
son re-identification [13], face identification [14], object segmentation [15],
and some related mechanisms have been applied to weakly supervised learn-
ing [16],[17], [18]. Furthermore, an intrinsic advanced version of CL/SPL,
called self-paced curriculum learning (SPCL) [19], has been designed, which
tends to inherit advantages of both SPL and CL and to have a broader ap-
plication [20]. Besides, many variations of SPL realization schemes have also
been constructed, like self-paced reranking [7], self-paced multiple instance
learning [21, 22], self-paced learning with diversity [23], multi-objective self-
paced learning [24], self-paced co-training [25] and etc.

For understanding the theoretical insights of the working mechanism
underlying the CL/SPL strategy, some beneficial investigations have been
made. Meng et al [6] proved that the alternative search algorithm generally
used to solve the self-paced learning problem is equivalent to a majorization
minimization algorithm implemented on a latent SPL object function, which
is closely related to the non-convex penalty used in statistics and machine
learning [6]. This follows a natural explanation for the intrinsic robustness
of CL/SPL. Recently, they have further proved that SPL scheme converges
to a critical point of the latent objective [26]. Afterwards, Fan et al. [27]
explored an implicit regularization perspective of self-paced learning, which
also conducts similar robust understandings for this learning regime. Re-
cently, Li et al. [28] proposed a general way to find the desired self-paced
functions, which is beneficial for constructing more variations of SPL forms
in practice.
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Understanding SPL under Concave Conjugacy Theory 3

However, these investigations explore the SPL theory mainly through ex-
ploring the equivalence of the alternative search algorithm on the SPL objec-
tives and other algorithms implemented on some latent objective functions,
while not on the SPL objective function, as well as its self-paced regularizer,
itself. This makes the theory not sufficiently insightful to the problem. For
example, the intrinsic relationships between self-paced regularizers and the
weighting scheme to measure the importance of training samples in a SPL
model is generally implicit, and hard to be intuitively explained. Besides,
after adding curriculum constraint in SPL regime to form a SPCL model,
current theories cannot attain the latent function like under general SPL
framework. The rationality of SPCL thus still rests on the intuitive level.

To alleviate these issues, this study mainly makes the following contri-
butions: Firstly, we establish a systematic theoretical framework under con-
cave conjugacy theory for understanding the CL/SPL/SPCL insights. We
find that the concave conjugacy theory surprisingly tallies with the require-
ments of the SPL model. And under this framework, the relationship among
self-paced regularizer, latent SPL object function and sample weights can
be clarified in a theoretically sound manner. Besides, by using this theory,
the redundancy of the original SPL axiom can be removed and simplified,
and the influence of the age parameter can be interpreted. Secondly, we can
render a general approach for designing the SPL regime by using this theory.
Furthermore, one can easily embed the required prior knowledge directly to
the sample weights under this framework to make it properly used in specific
applications. Thirdly, the latent objective of SPCL can be obtained under
this theory. We especially discuss the form of the latent objective functions
of SPCL under the partial order and group curriculums. This theory is thus
meaningful for providing generalizable explanation for more general CL/SPL
variations.

The paper is organized as follows. Section 2 introduces the necessary
concepts and theories on concave conjugacy. Section 3 proposes the concave
conjugacy theory for understanding CL/SPL. Section 4 presents two general
approaches for designing a specific SPL model. Section 5 provides the the-
oretical understanding for SPCL under this new theory, and discusses the
latent objectives of two specific curriculums.

2. Related contents on concave conjugacy

In the following we use the bolded lower letter to denote a vector, and the
non-bolded lower letter to denote a scaler. For v and u, denote (v, u) as a
vector in Rn+1 by arranging u after the last position of v. The inequality
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v � u means that satisfies vi ≥ ui for i = 1, . . . , n; 〈v, l〉 = vT l denotes the
inner products of v and l. For a concave function, we assume that it takes
−∞ out of its domain; for a convex function, we assume that it takes +∞
out of its domain. Before giving more related concepts, we first presents the
following definition.

Definition 1 (Increasing Function). A multivariate function f(v) is
increasing if f(v) ≥ f(u) for all v � u lying in its domain denoted by dom f .

2.1. Conjugate

We first present some necessary concepts and their related properties on the
conjugate theory.

Definition 2 (Hypograph). The hypograph associated with the func-
tion g : Rn −→ R is the set of points lying on or below its graph:

hyp g = {(v, u) : v ∈ Rn, u ∈ R, u ≤ g(v)} ⊂ Rn+1.

Property 1 (Hypograph Correspondence[29]). The function g(·) and
its hypograph satisfy the following correspondence:

g(v) = sup
(v,u)∈hyp g

u.

Property 2 (Concave function). g(·) is a concave function if and only
if hyp g is a convex set.

Definition 3 (Closure of Function). The closure of the function g(·) is
a function generated by the closure of its hypograph:

cl g = sup
(v,u)∈cl (hyp g)

u.

It yields

hyp (cl g) = cl (hyp g).

Definition 4 (Concave Conjugate). The concave conjugate of a func-
tion g(·) is defined as follows:

g∗(l) = inf
v∈Rn

{〈v, l〉 − g(v)}.
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Understanding SPL under Concave Conjugacy Theory 5

Property 3 (Relation of Concave Conjugate and Convex Conjugate
[29]). For a convex function f(v) = −g(v), it holds that:

g∗(l) = −f∗(−l)

where f∗(l) is the convex conjugate of f(v) defined as:

f∗(l) = sup
v∈Rn

{〈v, l〉 − f(v)}.

For notation convenience, in the follows we also use conjugate to repre-
sent concave conjugate.

Definition 5 (Proper Function). A concave function g(·) is proper if it
takes value on [−∞,+∞) and there is at least one v such that g(v) > −∞.

Following the proof given by W.Fenchel [30] regarding the property of
the conjugate convex function, one can easily prove that if g(v) is proper,
then g∗(v) is a closed concave function. The concave conjugacy inherits the
following duality properties of convex conjugacy as well.

Property 4 (Duality[29]). If g(·) is a upper semi-continuous, concave
and proper function,

g∗∗(v) = g(v)

i.e.

g(v) = inf
l∈Rn
{〈v, l, 〉 − g∗(l)}.

It can be observed that the concave conjugate presents a one-to-one
correspondence for all closed proper concave functions defined on Rn.

2.2. Additive properties

The additive properties of concave conjugacy are also required to prove the
related theory for SPL. We thus introduce the following necessary definitions
and properties.

Definition 6 (Sup-Convolution). The sup-convolution of functions f(·)
and g(·) is defined as:

f ⊕ g(v) = sup
v1+v2=v

{f(v1) + g(v2)}
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6 S.-Q Liu, et al.

The sup-convolution has the following properties:

Property 5 (Increasing and Concave Preserving). Let h = f ⊕ g,
and then

• if f(·) and g(·) are increasing function, so is h;

• if f(·) and g(·) are concave function, so is h.

The relationship between the sup-convolution and the concave conjugate
can be well illustrated by the following result.

Property 6 (Additive Property). Let g1(·), . . . , gm(·) be proper concave
functions defined on Rn. Then we have:

(g1 ⊕ · · · ⊕ gm)∗ = g∗1 + · · ·+ g∗n,

(cl g1 + · · ·+ cl gm)∗ = cl(g∗1 ⊕ · · · ⊕ g∗m).

If the relative interior of (dom gi), i = 1, . . . ,m have a point in common, the
closure operation can be omitted from the above second formula, and

(g1 + · · ·+ gm)∗ = g∗1 ⊕ · · · ⊕ g∗m,
(g1 + · · ·+ gm)∗(l) = sup

l1+···+lm=l
{g∗1(l1) + · · ·+ g∗m(lm)},

where for each l the supremum is attained.

The proof of this property can be referred to in [29].

2.3. Differential theory

The differential theory regarding the concave conjugate plays an important
role in our SPL theory. Some necessary definitions and properties are thus
introduced as follows.

Definition 7 (Subgradient). A vector l is a subgradient of a concave
function g(·) at v if

g(z) ≤ g(l) + 〈l, z− l〉, ∀z ∈ Rn.

The set of all subgradients of g(·) at v is called the subdifferential of g(·) at
v and is denoted by ∂g(v).
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Understanding SPL under Concave Conjugacy Theory 7

Correspondingly, the subgradient l of a convex function f(v) = −g(v)
at v if

f(z) ≥ f(v) + 〈l, z− v〉,∀z ∈ Rn.

The set of all subgradients of f(·) at v is called the subdifferential of f(·) at
v and is denoted by ∂f(v).

The above subdifferentials of f(·) and g(·) have the following relation

∂g(v) = −∂f(v).

Property 7 (Duality of Subdifferential [29]). For any closed proper
concave function g(·) and any vector v, the following conditions on a vector
l are equivalent to each other:

• l ∈ ∂g(v);

• 〈z, l〉 − g(z) achieves its infmum in z at z = v;

• g(v) + g∗(l) = 〈z, l〉;

• v ∈ ∂g∗(l);

• 〈v, z〉 − g(z) achieves its infmum in z at z = l.

Property 8 (Structure of Subdifferential [29]). Let g(·) be a closed
proper concave function such that dom g has a non-empty interior. Then

∂g(x) = cl(convS(x)) +K(x) ∀x ∈ Rn,

where K(x) = {x∗|〈y − x,x∗〉 ≥ 0 ∀y ∈ dom g} is the normal cone to dom g
at x and S(x) is the set of all limits of sequences (∇g(x1),∇g(x2), . . . ) such
that g(·) is differentiable at xi and xi converges to x.

Theorem 1 (Duality of essential strictly convex and essentially
smooth[29]). A closed proper convex function is essential strictly convex
if and only if its conjugate is essential smooth.

Corollary 2. If f(·) is a closed strictly convex function with bounded do-
main, then f∗(·) is a closed differentiable function on the whole space.

Proof. Since f(·) is with bounded domain, we know f(·) is co-finite. And
then we have that f∗(·) is defined on whole space [29].

Furthermore, since f(·) is strictly convex, we can deduce that it is
essential strictly convex [29]. According to theorem 1, f∗(·) is essential
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smooth on the whole space, meaning that f∗(·) is differentiable on the whole
space [29]. �

2.4. Indicator function

The following theory illustrates that a restriction imposed on feasible region
can be viewed as the addition of an indicator function of the restricted
feasible region to the objective function.

Definition 8 (Indicator Function). The indicator function of a convex
set C ⊂ Rn is defined by:

δ(v|C) =

{
0 v ∈ C,

−∞ v /∈ C.

The closure of δ(v|C) satisfies cl δ(v|C) = δ(v|cl C).

Definition 9. We call the conjugate of δ(v|C) the support function of C :

δ∗(l|C) = inf
v∈C
〈v, l〉.

Based on the above definitions of indictor function and support func-
tion, the concave conjugate with constraint can be interpreted in a new way.
Specifically, suppose g(·) is a upper semi-continuous, proper, concave func-
tion, Ψ is a closed convex set and the relative interior of dom g and Ψ have
at lease a point in common. Then we have

inf
v∈Ψ
{〈v, l〉 − g(v)} = inf

v∈Rn
{〈v, l〉 − g(v)− δ(v|Ψ)}

= (g(v) + δ(v|Ψ))∗ = g∗ ⊕ δ∗(l|Ψ).

This implies that a concave conjugate with domain constraint can be under-
stood as the addition of two conjugate terms. This will help a lot to deduce
the related theory on explaining SPCL. Details will be shown in Section 4.

Theorem 3 (Monotone Conjugate). If g(v) is a function defined on a
closed set Ψ ⊂ Rn+, then

g∗(l) = inf
v∈Ψ
{〈v, l〉 − g(v)}

is increasing on Rn.

The proof of this theorem can be seen in Appendix A.
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Understanding SPL under Concave Conjugacy Theory 9

3. Concave conjugate theory for SPL

3.1. SPL Regime

We first give a short review to the generally used SPL regime.
For a given data set D = {zi}ni=1, where zi = (xi, yi) is a training sample

with a datum and its corresponding label, SPL uses the following model for
learning [5, 7]:

inf
f∈F ,v∈[0,1]n

E(f,v;λ) = inf
fw∈F ,v∈[0,1]n

n∑
i=1

viL(f, zi)(1)

+RSP (v, λ) +RF (f),

where v=(v1, v2, . . . , vn)=(Weight(z1), . . . ,Weight(zn)) represent the vec-
tor of weights imposed on all training samples, RSP (v, λ) is called self-paced
regularizer which encodes the learning procedures following the principle
from easy to hard, RF (f) is the general regularizer for the model parame-
ters to alleviate the overfitting problem, and λ is a parameter that controls
the learning pace and guarantees the easy-to-complex learning procedure.
By gradually increasing the age parameter, more samples can be automati-
cally included with higher weights into training in a purely self-paced way.
f is the decision function for the task, like a classifier or a regressor, L(·, ·) is
the loss function (the function f is generally parameterized by parameters
w and L is then the function with respect to w and z). Let l denote the
loss vector (L(f, z1), . . . , L(f, zn))T . This leads to a brief expression for the
model:

inf
w∈W,v∈[0,1]n

〈v, l〉+RSP (v, λ) +RW(w).

A common way to solve the SPL model is to alternatively optimize the
target function f and the weight vector v as follows:

• Optimize f :

(2) fk = inf
f∈F
〈vk−1, l(f)〉+RF (f).

• Optimize v:

(3) vk = inf
v∈[0,1]n

〈v, l(fk)〉+RSP (v, λ).
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The SP-regularizer should satisfy necessary conditions to guarantee an
expected easy-to-hard learning manner [5, 7]:

Definition 10 (SP-regularizer). RSP (v, λ) is called a SP-regularizer, if

• RSP (v, λ) is convex with respect to v ∈ [0, 1]n;

• vi(λ, li) decrease with respect to l, and it holds that ∀i ∈ {1, 2, . . . , n},
vi(λ, li) ≤ 1 and lim

li→+∞
vi(λ, li) = 0;

• vi(λ, li) increase with respect to λ, and it holds that ∀i ∈ {1, 2, . . . , n},
vi(λ, li) ≤ 1 and lim

λ→0
vi(λ, li) = 0(li > 0),

where v(λ, l) = arg inf
v∈[0,1]n

{〈v, l〉+RSP (v, λ)}.

By using such defined SP-regularizer, SPL can conduct the learning man-
ner that imposes larger weights on easier samples while smaller on harder
ones, and gradually increases the sample weights with the age parameter
increasing.

3.2. Conjugate theory of SP-regularizer

We can prove the following conjugate result on a SP-regularizer RSP (v, λ)
as follows:

Theorem 4 (Conjugate Equivalence). For arbitrary function RSP (v)
satisfying domv RSP (v) ⊂ [0, 1]n, let g(v) = −RSP (v), and then

inf
v∈[0,1]n

{〈v, l〉+RSP (v)} = inf
v∈[0,1]n

{〈v, l〉 − g∗∗(v)}

= inf
v∈[0,1]n

{〈v, l〉+RSP (v)},

where RSP (v) = −g∗∗(v).

The proof is provided in Appendix B.
From the above theorem, it can be found that there are redundancy in

the definition of SP-regularizer, which can be simplified as follows:

Theorem 5 (SP-regularizer Simplification). If RSP (v, λ) satisfies

• RSP (v, λ) is strictly convex in v;

• RSP (v, λ) is lower semi-continuous in v;
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Understanding SPL under Concave Conjugacy Theory 11

• domv RSP (v, λ) ⊂ [0, 1]n and 0,1 ∈ cl(domv RSP (v, λ)),

then it holds that ∀i ∈ {1, 2, . . . , n}:

• vi(λ, li) decrease with respect to li; vi(λ, li) ≤ 1 ; lim
li→+∞

vi(λ, li) = 0.

• If RSP (v, λ) = λRSP (v) where RSP (v) satisfy the above condition in
v, then ∀i∈{1, 2, . . . , n}, vi(λ, li) increases with respect to λ, vi(λ, li) ≤
1, lim

λ→0
vi(λ, li) = 0 (li > 0),

where v(λ, l) = arg inf
v∈[0,1]n

{〈v, l〉+RSP (v, λ)}.

The proof is presented in Appendix C.
This theorem shows that the conditions in l can be implied by the

conditions being directly imposed on the SP-regularizer. According to sim-
plification theorem, determining one easily handled representative in the
equivalence class, the following assumption gives weaker conditions for a
SP-regularizer.

Definition 11 (SP-regularizer simplification). RSP (v, λ) is called a
self-paced regularizer with simplified conditions if:

1) RSP (v, λ) is convex in v;

2) RSP (v, λ) is lower semi-continuous in v;

3) domv RSP (v, λ) ⊂ [0, 1]n and 0,1 ∈ cl(domv RSP (v, λ)).

3.3. Model Equivalence

Based on the concave conjugacy of SPL, its equivalent model can be derived
as follows. For convenience, let gλ(v) = −RSP (v, λ), and then it holds that:

inf
f∈F ,v∈[0,1]n

E(f,v;λ)

⇐⇒ inf
f∈F

RF (f) + inf
v∈[0,1]n

n∑
i=1

viL(f, zi) +RSP (v, λ)

⇐⇒ inf
f∈F

g∗λ(l(f)) +RF (f)⇐⇒ inf
f∈F

Fλ(l(f)) +RF (f)

where Fλ(l) = g∗λ(l). According to the property of the concave conjugate,
Fλ(l) is a proper closed concave function. Through this analysis, we can try
to get more insights of SPL.
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3.3.1. Latent SPL objective. Mostly, we can separate a SPL optimiza-
tion model to multiple 1 dimension sub-problems:

inf
f∈F ,v∈[0,1]n

E(f,v;λ) = inf
f∈F ,v∈[0,1]n

{
n∑
i=1

(vili +RSPi(vi, λ)) +RF (f)}.

Then, the optimization on v can be reformulated as solving the following
multiple subproblems on each of its component vi:

inf
v∈[0,1]

E(w, v;λ) = inf
v∈[0,1]

{vl +RSP (v, λ)}.

We denote

v(λ, l) = arg inf
v∈[0,1]

{〈v, l〉+ f(v, λ)}

In [6], it is proved that the alternative search algorithm on the SPL ob-
jective is equivalent to the MM algorithm implemented on a latent objective∫ l

0
v(λ, j) dj

on l. We can get the similar result under concave conjugate theory as follows.

Theorem 6 (Model Equivalence). If RSP (v, λ) satisfy the simplified
conditions of SPL as defined in 11 and be strictly convex, then the latent
SPL objective can be written as:

Fλ(l) =

∫ l

0
v(λ, j) dj + C(λ),

where C(λ) is a function in λ.

The proof is listed in Appendix D.

3.4. Relations

In the following theorem, we want to make the relations among the SP-
regularizer RSP (v, λ), latent objective Fλ(l), and the weight function v(λ, l)
clear.
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Theorem 7. If RSP (v, λ) satisfy the simplified conditions of SPL, then we
have:

lλ(v) = ∂v(−RSP (v, λ)),

v(λ, l) = l−1
λ (l),

v(λ, l) = ∂Fλ(l),

Fλ(l) = 〈v(λ, l), l〉+RSP (v(λ, l), λ),

RSP (v, λ) = 〈v, lλ(v)〉 −RSP (v, λ)(lλ(v)).

Furthermore, if RSP (v, λ) and Fλ(l) is strictly convex in v and l, respectively
and we can further obtain that

Fλ(l) =

∫ l

0
v(λ, j) dj + C(λ),

RSP (v, λ) = −
∫ v

0
lλ(j) dj + C(λ).

The theorem is directly got from the Duality of Subdifferential Proper-
ties 7 and the latter two inequalities can be obtained based on Theorem 6.

According to Theorem 7, one can easily derive the weight function from
the SP-regularizer through the differential and inverse step, which is empiri-
cally more convenient than through the arg-minimization analysis. We then
discuss on how to specify the age parameter in the model.

3.5. On age parameter

An easy way to construct a SP-regularizer is first to generate a regularizer,
denoted by RSP (v), satisfying the simplified conditions of SPL, and then use
the SP-regularizer as λRSP (v). The reason why it works can be interpreted
as follows:

Let g(v) = −RSP (v) and let the concave conjugate of g∗(l) = F (l). Then
we have:

Fλ(l) = (λg(v))∗ = inf
v∈[0,1]n

{〈v, l〉 − λg(v)}

= λ inf
v∈[0,1]n

{< v, λ−1l > −g(v)} = λF (λ−1l).

For simplicity, we assume g(v) is strictly concave. As a result, F (l) is
differentiable and the original v(l) = ∇F (l), and then we have:

v(λ, l) = ∇lFλ(l) = λ∇lF (λ−1l) = v(λ−1l).
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Thus, vi(λ, li) increase with respect to λ, and it holds that ∀i ∈ {1, 2, . . . ,
n}, lim

λ→0
vi(λ, li)= lim

λ→0
vi(λ

−1li) = 0 and lim
λ→+∞

vi(λ, li)= lim
λ→+∞

vi(λ
−1li) ≤ 1.

Besides, since v(λ, l) = v(λ−1l), the change of the λ stretches the shape
of v(λ, l). In particular, if the v(l) is with threshold, then v(λ, l) shifts the
threshold through λ which reflexes the change of decision boundary regard-
ing learning or not.

Then we give a discussion on how to specify a proper age parameter in
the learning process.

Generally the SP-regularizer has the data screening properties, that is,
there exists some λ∗ such that v(l ≥ λ∗) = 0. One can use two ways for
specifying the age parameter. The first is suggested by [1]: first to choose a
λ such that around half of example are used with positive weight, and then
gradually increase the λ to include more samples into training. Another
strategy is suggested in [7]: first calculate the loss of each example, and
choose a age parameter such that a portion of samples with smaller loss is
with positive weights and the other with zero weights; and then increase the
portion number to implicitly increase the age parameter. Also some other
variations [8] have also been discussed and can be considered in application.

4. Two methods for designing a SPL regime

By utilizing the aforementioned theoretical results, we can construct two
methods for designing a general SPL regime in practice.

We call the first method as the vFlRλ method. The progress for one
dimension sub-problem is provided as follows:

1) Design v(l) satisfying v(l) decrease with respect to l and

lim
l→0

v(l) = 1 lim
l→+∞

v(l) = 0;

2) F (l) =
∫ l

0 v(j) dj;

3) l(v) = v−1(v);

4) RSP (v) = −〈v, l(v)〉+ F (l(v));

5) RSP (v, λ) = λRSP (v); Fλ(l) = λF (λ−1l); v(λ, l) = v(λ−1l).

If F (l) is given then v(l) = ∂F (l) and the other steps are the same.
We can then provide an example for designing SPL by using this method.

1) v(l) = (1− l)[0,1];
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Understanding SPL under Concave Conjugacy Theory 15

2) F (l) =
∫ l

0 v(j) dj = min(l − l2

2 ,
1
2);

3) l(v) = v−1(v) =

{
1− v v ∈ (0, 1],

[1,+∞) v = 0;

4) RSP (v)=−〈v, l(v)〉+F (l(v)), whose component is computed by (1−v)2

2 ;

5) RSP (v, λ) = λRSP (v) = λ(1−v)2

2 ; Fλ(l) = λF (λ−1l) = min(l − l2

2λ ,
λ
2 );

v(λ, l) = v(λ−1l) = (1− l
λ)(0,λ).

In this example, linear SP-regularizer[7] is derivated from the weight function
that linearly weights the sample whose loss is between 0 and λ.

The second method is called the flvFλ method. Its main process for one
dimension sub-problem includes the following steps:

1) RSP (v) satisfy:
• dom RSP (v) ⊂ [0, 1]n;
• 0, 1 ∈ cl(dom RSP (v));
• RSP (v) is convex and continuous;

2) l(v) = ∂(−RSP (v));

3) v(l) = l−1(v);

4) F (l) = 〈v(l), l〉+RSP (v(l));

5) RSP (v, λ) = λRSP (v); Fλ(l) = λF (λ−1l); v(λ, l) = v(λ−1l).

We also present an example for using this method to design SPL.

1) RSP (v) = − log v v ∈ (0, 1];

2) l(v) = ∂(−RSP (v)) =

{
v−1 v ∈ (0, 1),

(−∞, 1] v = 1;

3) v(l) = min(1, l−1);

4) F (l) = 〈v(l), l〉+RSP (v(l)) =

{
1 + log l, l ∈ (1,+∞),

l, l ∈ (−∞, 1];

5) • RSP (v, λ) = λRSP (v) = −λ log v v ∈ (0, 1];

• Fλ(l) = λF (λ−1l) =

{
λ+ log l − log λ l ∈ (λ,+∞),

l l ∈ (−∞, λ];

• v(λ, l) = v(λ−1l) = min(1, λl−1).
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In this example, the weight function, which weights the sample by the min-
imal of 1 and λ times its loss reciprocal, is derived from the LOG-like SP-
regularizer.

5. Concave conjugate theory for SPCL

In the conventional SPCL strategies, a curriculum region needs to be speci-
fied and added into a general SPL optimization as a constraint [19]. In this
way, however, the latent objective of SPL as deduced in the previous sec-
tions is changed and cannot be obtained by the previous theory. We thus
attempt to discuss this point, and provide explicit latent objective functions
underlying SPCL for two specific curriculums. For notation convenience, in
the following we omit λ in SPL functions.

5.1. Latent objective of SPCL

In the following theorem we propose the form of the latent objective under-
lying SPCL.

Theorem 8. Suppose the self-paced regularizer is RSP (v) satisfying the
simplified conditions of SPL. Let F (l) = inf

v∈Rn
{〈v, l〉+RSP (v)} denote the

concave conjugate of −RSP (v) in v. Ψ is closed convex set and ri([0, 1]n ∩
Ψ) 6= ∅ and δ(v|Ψ) is the indicator function. Then

Fnew(l) , inf
v∈Ψ
{〈v, l〉+RSP (v)} = F ⊕ δ∗(·|Ψ)(l),

and

inf
f∈F ,v∈[0,1]n∩Ψ

E(f,v) = inf
f∈F
{RF (f) + Fnew(l(f))}.

Proof.

inf
v∈Ψ
{〈v, l〉+RSP (v)} = inf

v∈Rn
{〈v, l〉+RSP (v)− δ(v|Ψ)}

= (−RSP (v) + δ(v|Ψ))∗ = F ⊕ δ∗(·|Ψ)(l).

�

From the theorem, we know that the latent objective of SPCL under
certain curriculum region Ψ is the sup convolution of the original SPL latent
objective without this constraint and the support function on it. There are
several properties on this new objective Fnew(l).
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Property 9. If the conditions of the theorem 8 hold, then Fnew(l) has the
following properties.

• It is upper semi-continuous and concave since it is the concave conju-
gate.

• It is increasing according to the Theorem 3.

• Fnew(l) ≥ max(F (l), δ∗(l|Ψ)) due to the property of sup convolution
and the fact that δ∗(0|Ψ)) ≥ 0.

Moreover, if RSP (v) is strictly convex, it yields that

• According to Corollary 2, Fnew(l) is differentiable.

5.2. Curriculum function

Through the above discussion, we may find that the curriculum region can
be interpreted as a special family of curriculum function.

Suppose we provide the SPL model by adding a curriculum function
RCL(v) which is a closed convex function and satisfies ri(dom RCL) ∩
ri(dom RSP ) 6= ∅. Then the new latent objective function can be obtained
by the following:

Fnew(l) = inf
v∈[0,1]n

{〈v, l〉+RSP (v) +RCL(v)} = F ⊕ (−RCL)∗(l).

It can be seen that the curriculum properties depends on the conjugate of
the curriculum function and the sup convolution step.

Suppose we have K curriculum functions which are proper closed convex
functions, and let RCL0 denote RSP . If they satisfy ∩Ki=0ri(dom RCLi) 6= ∅,
then according to Property 6 the objective function of SPCL is

Fnew(l) = ⊕Ki=0(−RCLi)∗(l).

By introducing a new curriculum function RCL into the model, new
latent objective is obtained by sup convolution of original object function
and conjugate of the curriculum function. The result can be viewed as the
action of the new curriculum on the original latentive objective. We call this
action Curriculum Action in the follows for convenience.



i
i

“1-Liu” — 2018/5/30 — 10:28 — page 18 — #18 i
i

i
i

i
i

18 S.-Q Liu, et al.

5.3. Basic curriculum region

Consider the following case that the feasible region of v is Rn and the SP-
regularizer is 0, and then

inf
v∈Rn

〈v, l〉 = δ(l|0),

which means that it takes finite value 0 when the component of l equals 0
and it takes −∞ on Rn \ 0.

For all proper concave function f(l), it holds that

f(l)⊕ δ(l|0) = f(l).

We can then give the following definition related to curriculums:

Definition 12 (Basic Curriculum Region). For the SPL model

inf
v∈Rn

〈v, l〉+RSP (v),

we call the dom RSP (·) the basic curriculum region.

The commonly discussed SP-regularizers are defined on [0, 1]n. Suppose
the regularizer g(v) = −RSP (v) is a concave function being differentiable
on [0, 1]n, and it can be extended to an open set which contains [0, 1]n.
According to Property 8 the structure of subdifferential, we can obtain

∂g(v) =


∇g(1) +Rn− v = 1

∇g(ai)+ < bi1e
1, . . . , bine

n > v = ai ∈ V ([0, 1]n)
∇g(0) +Rn+ v = 0
∇g(v) +K(v) v ∈ ∂[0, 1]n/{V ([0, 1])n}
∇g(v) v ∈ (0, 1)n

where ai is the vertex of the hypercube [0, 1]n , bij =

{
1 aij = 0

−1 aij = 1
, 〈bi1e1,

. . . , bine
n〉 represents the cone generated by bi1e

1, . . . , bine
n with positive co-

efficients and V ([0, 1]n) represents all the vertices of [0, 1]n.
By calculating the inverse of set-valued function ∂g(v), the weight set-

valued function v(l) can be obtained.

5.3.1. Linear Regularizer.
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Definition 13 (Linear Regularizer). We call

RSP (v) = −λTv

linear regularizer for the SPL model

Once we select the linear regularizer, we can obtain:

−RSP (v) = λTv

∂(−RSP )(v) =


λ+Rn− v = 1,

λ+ < bi1e
1, . . . , bine

n > v = ai ∈ V ([0, 1]n)),
λ+Rn+ v = 0,
λ+K(v) v ∈ ∂[0, 1]n/{V ([0, 1])n},

λ v ∈ (0, 1)n.

According to the Property 7, we can obtain that

∂F (l) =


v = 1 l ∈ λ+ (Rn−)◦

v = ai l ∈ λ+ < bi1e
1, . . . , bine

n >◦ v = ai ∈ V ([0, 1]n))
v = 0 l ∈ λ+ (Rn+)◦

· · ·

Hence, the domain of ∂F (l) = v(l) can be separated into 2n part, each taking
the same value corresponding to the vertex of the hypercube [0, 1]n.

5.4. Linear homogeneous curriculum

One of the most commonly used curriculum is the partial order curriculum.
For instance, if one has the prior knowledge that example 1 is more im-
portant or reliable than example 2, it’s reasonable to restrict their feasible
region such that v1 ≥ v2. In regard to v1 − v2 ≥ 0, we call it linear homo-
geneous curriculum. Generally, those knowledge come as a series of linear
inequalities and we call them partial order curriculum. For simplicity, in the
following we consider the simple linear homogeneous curriculum and, for
more curriculums, we can treat them one by one.

In order to avoid the disfunctional curriculum and to make analysis con-
venient, we render the following nonsingular assumption for the curriculum
region.

Assumption 1 (Assumption for Curriculum Region). A curriculum
region Ψ satisfies the following conditions:
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• int(Ψ) ∩ int(dom RSP ) 6= ∅,

• Ψ ∩ dom RSP 6= dom RSP .

Definition 14 (Linear Homogeneous Curriculum). If Ψ = {v|vTk ≥
0}, we call Ψ a linear homogeneous curriculum and k the linear homogeneous
curriculum direction.

We can then prove the following result:

Theorem 9. Suppose RSP (v) satisfies Definition 11 and the curriculum as
vTk ≥ 0 corresponding to Ψ = {v|vTk ≥ 0}. If Ψ satisfies Assumption 1,
then we have:

Fnew(l) = F ⊕ δ(·|Ψ◦)(l) = sup
l1+l2=l

{F (l1)) + δ(l2|Ψ◦)} = sup
l1∈l−rayk

F (l1〉 ≥ 0}

is another non-empty closed convex cone and rayk denotes the ray starting
from the origin in direction k.

Proof in Appendix E.
Theorem 9 illustrates that the latent objective of SPCL is the supremum

of the original objective function of SPL without curriculum constraint on
the ray which starts from l to the direction −k. We then give the theorem
on the action of linear homogeneous curriculum.

Theorem 10 (Action of Linear Homogeneous Curriculum). Suppose
RSP (v) is essential strictly convex and satisfies Definition 11. Suppose we
have the curriculum constraint vTk ≥ 0, corresponding to the curriculum
region Ψ = {v|vTk ≥ 0}. Then if Ψ satisfies assumption 1, it holds that
∇Fnew(l)Tk = vnew(l)Tk ≥ 0 and

Fnew(l) =

{
F (l) l ∈ ∂(−RSP )(k⊥)− rayk,

sup
l′∈l+linek

F (l′)(≥ F (l)) l ∈ ∂(−RSP )(k⊥) + rayk.

The proof is presented in Appendix F.
Theorem 10 illustrates the form of the latent objective of SPCL following

the restriction imposed on the curriculum region. This naturally leads to
the following concept of the critical region: We call (−RSP )(k⊥) the critical
region for the new latent objective of SPCL.

According to Theorem 10, the most important thing for determining
Fnew(l) is to determine the critical region (−RSP )(k⊥), since the critical
region divides the Rn into two parts.
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On one part, the linear homogeneous curriculum has no effects. On the
other part, the more increase in the curriculum direction, the bigger penal-
ization of the new latent function on the loss.

5.4.1. Partial Order Curriculum. We can then evaluate the insights
of SPCL with partial order curriculum, where v1 ≥ v2 encoding the prior
knowledge that example 1 is more important and reliable than example 2.
The SP-regularizer is chosen to be the exponential RSP (v) = v log v − v +
1. We can then deduce the following results by using the aforementioned
theoretical results:

• The original SPL latent objective (without this curriculum) is F (l) =
1− e−l1 + 1− e−l2 ;

• l(v) = ∂(−RSP (v)) = −(log v1, log v2)T ;

• Curriculum direction is k = (1,−1)T ;

• The critical region is line(1,1)T ;

• The new latent objective is

Fnew(l) =

{
1− e−l1 + 1− e−l2 l1 ≤ l2,

2(1− e−
l1+l2

2 ) l1 ≥ l2;

• The new weighting function

vnew(l) =

{
(e−l1 , e−l2)T l1 ≤ l2,

(e−
l1+l2

2 , e−
l1+l2

2 )T l1 ≥ l2.

When hard SP-regularizer is chosen, the partial order curriculum can
determine the learning order of each example [19].

5.4.2. Linear Curriculum. It’s natural to extend the above discussion
to the more general linear curriculum case, as defined in the following.

Definition 15 (Linear Curriculum). If Ψ = {v|vTk ≥ b}, we call Ψ the
linear curriculum and we call k the linear curriculum direction.

Then we can prove the following result:
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Theorem 11. Suppose RSP (v) is essential strictly convex and satisfies
Definition 11. Suppose the curriculum is vTk ≥ b corresponding to the cur-
riculum region Ψ = {v|vTk ≥ b}. If Ψ satisfies Assumption 1, then

Fnew(l) =

{
F (l) l ∈ ∂g(k⊥ + bk

‖k‖2 )− rayk,
F (l− β0(l)k) + β0b(≥ F (l)) l ∈ ∂g(k⊥ + bk

‖k‖2 ) + rayk,

where β0(l) = max argβ{∇F (l− βk)Tk = 0}.

Proof in Appendix G.
Theorem 11 helps to obtain the latent objective under SPCL with linear

curriculum, which shares the similar structure comparing the one in The-
orem 10. The critical region here becomes ∂g(k⊥ + bk

‖k‖2 ). It is easy to see
that the linear curriculum punishes the loss on one side of the critical region
and keeps the other side the same.

5.5. Group Curriculum

When we have the prior knowledge that some training samples are coming
from the similar group with similar importance weights, we can group all
samples into multiple categories and make each group share similar weights.
In regard to weight sharing, we call it the group curriculum.

Suppose the original RSP regularizer of each example is the same and
SPL model can be separated into 1 dimesion sub-problem.

inf
v∈[0,1]n

E(f,v;λ) = inf
v1∈[0,1]

{v1l1 +RSP (v1, λ)}

+ · · ·+ inf
vn∈[0,1]

{vnln +RSP (vn, λ)}+RF (f).

Suppose {i1, . . . , isi} are members of the group i and there are k groups.
By adding the group curriculum, we obtain the new object function as:

inf
v1∈[0,1]

s1RSP (v1, λ) + v1

s1∑
j=1

l1j


+ · · ·+ inf

vk∈[0,1]

skRSP (vk, λ) + vk

sk∑
j=1

lkj

+RF (f).
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Suppose the latent objective function in SPL without such curriculum con-
straint for one example is F̄λ, and then the new latent objective is

Fnew(l) = (s1 ? F̄λ)

 s1∑
j=1

l1j

+ · · ·+ (sk ? F̄λ)

 sk∑
j=1

lkj

 ,

where s1 ? F̄λ(x) , s1F̄λ(s−1
1 x).

It can be seen that the group curriculum corresponds to a special cur-
riculum region that weights in the same group are restricted to be the same.
In regard to knowledge confidence of different group, the partial order cur-
riculum can also be introduced together.

6. Conclusion

In this paper we have established a systematic theory for analyzing the
SPL and SPCL via the concave conjugacy theory. We prove that the SPL
model corresponds to optimizing a concave, increasing and continuous latent
objective function. The relations among weight function, latent objective
function and SP-regularizer can thus be obtained explicitly. Furthermore,
two general methods for designing the SPL model has been rendered under
this theoretical framework. Besides, the latent objective function of SPCL
can be derived, instead of only those of SPL by some conventional methods.
Such a study tends to be beneficial to facilitate deeper understandings and
broader applications of SPL in the future research.

Appendix A

Theorem 3. If g(v) is a function on a set Ψ ⊂ Rn+, then

g∗(l) = inf
v∈Ψ
{〈v, l〉 − g(v)}

is increasing on Rn.

Proof. Suppose l1 ≥ l2. ∀ε > 0,∃vε ∈ Ψ ⊂ Rn+ such that

g∗(l1) + ε > 〈vε, l1〉 − g(vε) ≥ 〈vε, l2 > −g(vε) ≥ g∗(l2)

Thus, it yields g∗(l1) ≥ g∗(l2). �

.
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Appendix B

Theorem 4. For arbitrary function RSP (v) satisfying dom RSP (v)⊂ [0, 1]n,
let g(v) = −RSP (v). Then

inf
v∈[0,1]n

{〈v, l〉+RSP (v)} = inf
v∈[0,1]n

{〈v, l〉 − g∗∗(v)}

= inf
v∈[0,1]n

{〈v, l〉+RSP (v)}

RSP (v) = −g∗∗(v).

Proof. According to property 6, since dom RSP (v) ⊂ [0, 1]n, it yields

inf
v∈[0,1]n

{〈v, l〉+RSP (v)} = inf
v∈Rn

{〈v, l〉+RSP (v)} = inf
v∈Rn

{〈v, l〉 − g(v)}

= g∗(v) = (g∗∗)∗(v) = inf
v∈Rn

{〈v, l〉 − g∗∗(v)}.

According to the one-to-one correspondence of proper closed concave func-
tion, the hypograph of g∗∗(v) is the closed convex hull of the hyp g.

It yields that dom g∗∗(v) ⊂ [0, 1]n, and g∗∗(v) is a proper concave and
upper semi-continuous function. Thus, RSP (v) = −g∗∗(v) is a proper convex
and lower semi-continuous function. �

Appendix C

Theorem 5. Suppose that v is a weight vector, l is the loss vector in Rn+,
and λ is the age parameter.if RSP (v, λ) satisfy

1) RSP (v, λ) is strictly convex in v

2) RSP (v, λ) is lower semi-continuous in v

3) domv RSP (v, λ) ⊂ [0, 1]n and 0,1 ∈ cl(domv RSP (v, λ))

then Condition in l holds ∀i ∈ {1, 2, . . . , n}:
vi(λ, l) decrease with respect to li; vi(λ, l) ≤ 1 ; lim

li→+∞
vi(λ, l) = 0.

If RSP (v, λ) = λRSP (v) where RSP (v) satisfy the above condition in v,
then Condition in λ holds ∀i ∈ {1, 2, . . . , n}:

vi(λ, l) increase with respect to λ; vi(λ, l) ≤ 1; lim
λ→0

vi(λ, l) = 0 (li > 0)

where v(λ, l) = arg inf
v∈[0,1]n

{〈v, l〉+RSP (v, λ)}.
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Appendix D

Theorem 6. If RSP (v, λ) satisfy the simplified conditions on SPL and be
strictly convex, then the latent SPL objective is of the form:

Fλ(l) =

∫ l

0
v(λ, j) dj + C(λ)

where C(λ) is a function in λ.

Proof. According to property 7 and corollary 2, v(λ, l) = ∇Fλ(l). Therefore,

Fλ(l) =

∫ l

0
v(λ, j) dj + C(λ)

where C(λ) is a function in λ. �

Appendix E

Theorem 9. Suppose RSP (v) satisfies Definition 11 and the curriculum as
vTk ≥ 0 corresponding to Ψ = {v|vTk ≥ 0}. If Ψ satisfies Assumption 1,
then we have:

Fnew(l) = F ⊕ δ(·|Ψ◦)(l) = sup
l1+l2=l

{F (l1)) + δ(l2|Ψ◦)} = sup
l1∈l−rayk

F (l1〉 ≥ 0}

is another non-empty closed convex cone and rayk denotes the ray starting
from the origin in direction k.

Proof. If Ψ is a non-empty closed convex cone containing origin, then it
holds that

inf
v∈Ψ
{〈v, l〉 − δ(v|Ψ)} = δ∗(l|Ψ) = δ(l|Ψ◦),

where Ψ◦ = {l|∀v ∈ Ψ 〈v, l〉 ≥ 0} is another non-empty closed convex cone.
Based on this relationship, we have

Fnew(l) = F (l)⊕ δ(l|Ψ◦) = sup
l1+l2=l

{F (l1)) + δ(l2|Ψ◦)} = sup
l1∈l−Ψ◦

F (l1).

Let rayk denote the ray starting from the origin oriented to the direction k.
Then

Ψ◦ = {l|∀v ∈ Ψ 〈v, l〉 ≥ 0} = {βk|β ≥ 0} = rayk.

�
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Appendix F

Theorem 10. Suppose RSP (v) is essential strictly convex, and satisfies
Definition 11. Suppose we have the curriculum constraint vTk ≥ 0, corre-
sponding to the curriculum region Ψ = {v|vTk ≥ 0}. Then if Ψ satisfies
Assumption 1, it holds that ∇Fnew(l)Tk = vnew(l)Tk ≥ 0 and

Fnew(l) =

{
F (l) l ∈ ∂(−RSP )(k⊥)− rayk,

sup
l′∈l+linek

F (l′)(≥ F (l)) l ∈ ∂(−RSP )(k⊥) + rayk.

Before proving the theorem, we first give two lemmas.

Lemma 1 (Limits of Direction Derivatives). If F (l) is a closed con-
cave and differentiable function with the effective domain Rn, and vk(l)
represents the directional derivative of F (l) in direction k, then

F0+(l) = lim
β→+∞

vk(l + βk)

where F0+(l) is the recession function of F (l) determined by

hyp F0+ = ({y|y + hyp F ⊂ hyp F}

Proof. Based on the results given by [25], it holds that

F0+(k) = lim
β→+∞

F (l + βk)− F (l)

β
.

Since F (l) is concave and differentiable, F (l + βk) is still concave and differ-
entiable in β. Therefore, vk(l + βk) is decreasing in β, the Newton-Leibniz
formula can be applied to getting:

F0+(k) = lim
β→+∞

F (l + βk)− F (l)

β
= lim

β→+∞

∫ β
0 vk(l + tk)dt

β
,

vk(l) ≥ lim
β→+∞

∫ β
0 vk(l + tk)dt

β
≥ lim

β→+∞
vk(l + βk).

Hence, we have:

lim
β→+∞

vk(l + βk) = F0+(k).

�
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Lemma 2 (Duality of Recession Function and Support Function).
The support function of cl(dom RSP ) is the recession function F0+(l) of
F (l), i.e.

F0+(k) = δ∗(k|cl(dom RSP )),

where F (l) = infv〈v, l〉+RSP (v).

Proof. Let ∗ denote the concave conjugate, ′ denote the convex conjugate,
0+ denote the recession function generated by the recession cone of its hy-
pograph and 0− denote the recession function generated by the recession
cone of its epigraph. Then it can be deduced that:

F0+(k) = −((−F )0−)(k)

= −(−δ)′(k|cl(−dom RSP )) = δ∗(k|cl(dom RSP )).

The second equality holds due to Theorem 13.3 of the convex analysis [25]
and the property 3, relation of concave conjugate and convex conjugate. �

Proof of the theorem. According to Theorem 9,

Fnew(l) = sup
l1∈l−rayk

F (l1) = sup
β≥0| l1=l−βk

F (l1(β)).

Since l1 = l − βk is an affine mapping, F (l1(β)) is still a concave function
in β. Take the derivative of F (l1(β) in β, and we have

v−k(l− βk) = ∇βF (l1(β) = −v(l1(β))Tk.

The dom RSP reflects some properties of the latent objective as well as
its direction derivative. According to Lemmas 1 and 2, we know that

lim
β→+∞

v−k(l− βk) = F0+(−k)

lim
β→+∞

vvk(l + βk) = − lim
β→−∞

v−k(l− βk) = F0+(k)

lim
β→−∞

v−k(l− βk) = −F0+(k).

In order to consider the properties of the direction derivative more pre-
cisely, the situation can be divided into the following cases.

case 1. 0 ∈ (F0+(−k),−F0+(k))
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F0+(k) = δ∗(k|cl(dom RSP )) < 0 implies that there exists

v1 ∈ cl(dom RSP )

such that 〈v1,k〉 < 0.
F0+(−k) = δ∗(−k|cl(dom RSP )) < 0 implies that there exists

v2 ∈ cl(dom RSP )

such that 〈v2,k〉 > 0.
Therefore,

0 ∈ (F0+(−k),−F0+(k))⇐⇒
∃v1,v2 ∈ cl(dom RSP ) s.t.〈v1,k〉 < 0 and〈v2,k〉 > 0.

case 2. 0 ≤ F0+(k)

F0+(k) = δ∗(k|cl(dom RSP )) ≥ 0

⇐⇒ 〈v,k〉 ≥ 0 ∀v ∈ cl(dom RSP )

⇐⇒ cl(dom RSP ) ⊂ Ψ

case 3. 0 ≤ F0+(−k)

F0+(−k) = δ∗(−k|cl(dom RSP )) ≥ 0

⇐⇒ 〈v,k〉 ≤ 0 ∀v ∈ cl(dom RSP )

⇐⇒ −(cl(dom RSP )) ⊂ Ψ

=⇒ int(Ψ) ∩ int([0, 1]n) ∩ int(dom RSP ) = ∅

Hence, case 2 and case 3 have already been excluded by the assump-
tions regarding Ψ.

In case 1,

0 ∈ ( lim
β→+∞

v−k(l− βk), lim
β→−∞

v−k(l− βk))

i.e.

0 ∈ ( lim
β→−∞

vk(l− βk), lim
β→+∞

vk(l− βk)).

Due to the Darboux theorem, there exists some β0(l) ∈ (−∞,+∞)
such that vk(l− β0(l)k) = ∇βF (l1(β0(l)) = 0. Based on the monotonicity
of ∇βF (l1(β) and the continuity of F (l1(β), the maximum must be attained
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at a point or a closed finite interval. Thus, we set β0(l) = max argβ{vk(l−
βk) = 0}

Let l∗(l) = l1(β0(l)) = l− β0(l)k and it holds that F (l) realizes the max-
imum on the line in direction k at point l∗(l). Further, ∀β ≥ 0 l∗(l) =
l∗(l + βk) takes the same value on the line in direction k.

For the value of Fnew(l) on the line with direction k, it holds that Fnew(l)
equals to F (l) on the side l∗(l) /∈ l− rayk while Fnew(l) equals to the con-
stant F (l∗(l)) on the other side l∗(l) ∈ l− rayk.

We can then obtain

Fnew(l) = sup
β≥0| l1=l−βk

F (l1) =

{
F (l) l∗(l) /∈ l− rayk

F (l∗(l)) l∗(l) ∈ l− rayk

Since F (l) is differentiable, RSP (v) is strictly concave on [0, 1]n as well
as [0, 1]n ∩Ψ. As a result of the previous analysis, Fnew(l) is differentiable.

For a fixed l, consider

∇βFnew(l1(β)) =

{
−vnew(l1(β))Tk = −v(l1(β))Tk l∗(l) /∈ l − rayk

−vnew(l1(β))Tk = 0 l∗(l) ∈ l − rayk

Since Fnew(l1(β)) = sup
α≥0| l1=l−βk−αk

F (l1) = sup
α≥β| l1=l−αk

F (l1) is a de-

creasing function in β, it holds that ∇βFnew(l1(β)) ≤ 0.
In case l∗(l) /∈ l− rayk, by plugging β = 0 into it, it yields

vnew(l)Tk ≥ 0.

In case l∗(l) ∈ l − rayk, one can obtain that

vnew(l)T l = 0.

Fnew(l) = sup
β≥0| l1=l−βk

F (l1) =

{
F (l) l∗(l) /∈ l− rayk

F (l∗(l))(≥ F (l)) l∗(l) ∈ l− rayk

=

{
F (l) l − β0(l)k /∈ l − rayk

F (l− β0(l)k)(≥ F (l)) l − β0(l)k ∈ l − rayk

=

{
F (l) β0(l) < 0

F (l− β0(l)k)(≥ F (l)) β0(ll) ≥ 0

The most important thing for determining Fnew(l) is to determine the
critical region {l|β0(l) = 0}, since the critical region divides the Rn into two
parts.
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• Fnew(l) becomes larger than F (l) on the part in the direction k of the
critical region.

• Fnew(l) keep the same value with F (l) on the part in the direction −k
of the critical region.

β0(l) = 0 =⇒ 0 = ∇βF (l− βk)|β=0 = −∇F (l)Tk

⇐⇒ ∇F (l) ∈ k⊥ ⇐⇒ l ∈ ∂(−RSP )(k⊥).

∂(−RSP )(k⊥)1 is the critical region of the problem with respect to the
Ψ = {v|vTk ≥ 0}.

Then we obtain

Fnew(l) =

{
F (l) l ∈ ∂(−RSP )(k⊥)− rayk

F (l− β0(l)k)(≥ F (l)) l ∈ ∂(−RSP )(k⊥) + rayk

The equivalence can then be illustrated as follows:

• l ∈ ∂(−RSP )(k⊥)− rayk ⇐⇒ ∃β̃ ≤ 0 s.t.vk(l − β̃k) = 0

=⇒ ∃β̃ ≤ 0 s.t. β0(l) ≥ β̃ and vk(l− β̃k) = 0

If β0(l) < 0 then we obtain the result that we need. If β0(l) ≥ 0 then
0 ∈ [β̃, β0(l)]. It still yields that sup

β≥0| l1=l−βk
F (l1) = F (l − βk) β ∈

[β̃, β0(l)]. That means Fnew(l) = F (l).

• l ∈ ∂(−RSP )(k⊥) + rayk ⇐⇒ ∃β̃ ≥ 0 s.t.vk(l− β̃k) = 0

=⇒ ∃β̃ ≥ 0 s.t. β0(l) ≥ β̃ ≥ 0

Therefore, Fnew = F (l− β0(l)k).

Hence,

Fnew(l) =

{
F (l) l ∈ ∂(−RSP )(k⊥)− rayk,

sup
l′∈l+linek

F (l′)(≥ F (l)) l ∈ ∂(−RSP )(k⊥) + rayk.

�

1Notice

int(dom RSP ∩ [0, 1]n) = int(dom (−RSP )) ⊂ dom ∂(−RSP )

⊂ dom (−RSP ) = dom RSP ∩ [0, 1]n.
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Appendix G

Theorem 11. Suppose RSP (v) is essential strictly convex, and satisfies
Definition 11. Suppose the curriculum is vTk ≥ b corresponding to the cur-
riculum region Ψ = {v|vTk ≥ b}. If Ψ satisfies Assumption 1, then

Fnew(l) =

{
F (l) l ∈ ∂g(k⊥ + bk

‖k‖2 )− rayk,
F (l− β0(l)k) + β0b(≥ F (l)) l ∈ ∂g(k⊥ + bk

‖k‖2 ) + rayk,

where β0(l) = max argβ{∇F (l− βk)Tk = 0}.

Proof. Since Ψ = {vTk ≥ b} satisfies assumption 1, we have that

δ∗(l|Ψ) =

{
blTk
‖k‖2 l ∈ rayk,
−∞ l /∈ rayk,

Fnew(l) = F (l)⊕ δ∗(l|Ψ) = sup
l1+l2=l

{F (l1)) + δ∗(l2|Ψ)}

= sup
β≥0|l1+βk=l

F (l1) + βb = sup
β≥0

F (l− βk) + βb.

It also holds that ∇β(F (l− βk) + βb) = v−k(l− βk) + b and F0+(−k) =
lim

β→+∞
v−k(l − βk), −F0+(k) = lim

β→−∞
v−k(l− βk).

F0+(k) = δ∗(k|cl(dom RSP )) < b implies that there exists

v1 ∈ cl(dom RSP )

such that 〈v1,k〉 < b; and F0+(−k) = δ∗(−k|cl(dom RSP )) < b implies that
there exists v2 ∈ cl(dom RSP ) such that 〈v2,k〉 > b. Therefore,

−b ∈ (F0+(−k),−F0+(k))⇐⇒
∃v1,v2 ∈ cl(dom RSP ) s.t. 〈v1,k〉 < b and 〈v2,k〉 > b.

Thus, the supremum can be attained on each line in direction k. The critical
region is obtained by:

0 = ∇βF (l− βk)|β=0 + b = −∇F (l)Tk + b

⇐⇒ ∇F (l) ∈ k⊥ +
bk

‖k‖2
⇐⇒ l ∈ ∂g

(
k⊥ +

bk

‖k‖2

)
.
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By inheriting the analysis in the proof of Theorem 10, it can be obtained
that:

Fnew(l) =

{
F (l) l ∈ ∂g(k⊥ + bk

‖k‖2 )− rayk,
F (l− β0(l)k) + β0b(≥ F (l)) l ∈ ∂g(k⊥ + bk

‖k‖2 ) + rayk.

�
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