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A novel rendering approach for

unstructured light field interpolation

Mandan Zhao and Xiangyang Hao

In this paper, a novel framework is proposed for light field re-
construction from a sparse set of views. The light field is the un-
structured, and has the large disparity. We indicate that the re-
construction can be efficiently modeled as angular restoration on
epipolar plane image (EPI). Based on “blur-restoration-deblur”
framework, we analyze the EPI with Fourier transform. What’s
more, a novel rendering approach is presented by combining pro-
posed “blur-restoration-deblur” framework and depth information
to handle large disparity and unstructured light field. We evaluate
our approach on several datasets and demonstrate the high perfor-
mance and robustness of the proposed framework compared with
the state-of-the-arts algorithms.

1. Introduction

Light field imaging [17, 23] is one of the most extensively used method for
capturing the 3D appearance of a scene. Rather than a limited collection of
2D image, the light field camera is able to collect not only the accumulated
intensity at each pixel but also light rays from different directions. Early
light field cameras, such as multi-camera arrays and light field gantries [37],
required expensive custom-made hardware or time-consuming capturing pro-
cess.

In recent years, the introduction of commercial and industrial light field
cameras such as Lytro [1] and RayTrix [2] have taken light field imaging into
a new era. These plenoptic (light field) cameras are composed by microlens
array and has the capacity of simultaneous capture. Unfortunately, due to
restricted sensor resolution, they must make a trade-off between spatial and
angular resolution, i.e., one can obtain dense sampling images in the spatial
dimensions but sparse sampling in the angular (viewing angle) dimensions,
or vice versa.

To solve this problem, some learning-based methods [14, 20, 39] are pro-
posed to super-resolve the light field in angular dimensions using a small
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set of views with high spatial resolution. Rather than some conventional re-
searches [27, 32, 42] that focus on novel view synthesis or reconstruction of
plenoptic function, the learning-based methods train the network by directly
minimizing the error between the synthetic view and the ground truth im-
age. However, the network training is data-dependent and can not be easily
transferred to data with different appearance properties, which limits the
universal usage of the network.

Among these methods, Wu et al. propose a novel learning-based frame-
work to reconstruct high angular resolution light field on epipolar plane
image (EPI). They achieve the state-of-the-art results. By taking advantage
of the special structure of the EPI, the light field reconstruction can be
effectively modeled as learning-based angular detail restoration on this 2D
structure. Compared with the sub-aperture images, the light field data share
similar property in the EPI domain.

Based on Wu et al.’s pipleline, we analyze the information asymmetry
of the EPI and demonstrate the resulting ghosting effects in the Fourier do-
main. And the efficacy of the proposed “blur-restoration-deblur” framework
is also validated in the Fourier domain; Second, beside the application for
depth enhancement which was shown in the preliminary version, we extend
the proposed framework for more applications including interpolation for
unstructured input such as unstructured light fields and video sequences;
Third, we present a novel rendering scheme that seamlessly combines the
proposed “blur-restoration-deblur” framework and depth information to ad-
dress the interpolation with large disparity. This application inherits the
rendering capability of handling large disparity from depth image-based ren-
dering technique as well as the robustness to depth uncertainties, occlusion
regions and non-Lambertian surfaces from the proposed framework. Fourth,
an in-depth analysis on the merits of the learning-based reconstruction using
EPIs is presented.

2. Related work

The main obstacle in light field imaging is the trade-off between spatial and
angular resolution due to limited sensor resolution. Super-resolution tech-
niques to improve spatial and angular resolution have been studied by many
researchers [6, 7, 15, 36, 39]. In this paper, we mainly focus on approaches
for improving the angular resolution of the light field.
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2.1. Light field view synthesis

Zhang et al. [42] proposed a phase-based approach using a micro-baseline
stereo pair. They applied a disparity (depth) assisted phase-based synthesis
strategy to integrate the disparity information into the phase term when
warping the input image to the novel view. However, their method was
specifically designed for a micro-baseline stereo pair, and causes artifacts
in the occluded regions when extrapolating novel views. Zhang et al. [41]
described a patch-based approach for various light field editing tasks. In their
work, the input depth map is decomposed into different depth layers and
presented to the user to achieve the editing goals. However, these approaches
rely heavily on quality of depth maps, which tends to fail in occluded, as well
as glossy or specular, regions, thus often fail to produce promising results.
In addition, they often focus on the quality of depth estimation, rather than
the synthetic views themselves.

Boominathan et al. [7] capture the dense views from the hybrid light
field. However, this would require lower spatial resolution. To break this
trade-off, they use the high-resolution image in the center of the light field
to provide the high-frequency detail information. Barnes et al. [5] proposed
modern patch-based methods, which they efficiently scale to high-resolution
photographs and collections of photos. So the data structure of their method
can be used to accelerate the light field image super-resolution algorithm
of Boominathan et al. [7]. For efficiency, they modify their algorithm by
reducing patch feature descriptors to 20 dimensions with PCA.

Alternatively, some researches are based on sampling and consecutive
reconstruction of the plenoptic function. For densely sampled light fields
in which the disparity between the neighboring views does not exceed 1
pixel, novel views can be directly rendered by ray interpolation [23]. For
sparsely sampled light fields, a reconstruction in Fourier domain has been
investigated in some studies. Levin and Durand [22] proposed a linear view
synthesis approach using a dimensionality gap light field prior to synthesize
novel views from a set of images sampled with a circular pattern. Shi et al.
[32] considered light field reconstruction as an optimization for sparsity in
the continuous Fourier dimain. Their work sampled a small number of 1D
viewpoint trajectories formed by a box and 2 diagonals to recover the full
light field. However, these methods require the light field to be captured
in a specific pattern, which limits its practical uses. Didyk et al. [11] used
the phase information from a complex steerable pyramid decomposition to
synthesize novel views with a small displacement; for large displacements,
only low frequency components can be reconstructed.
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2.2. Light field EPI structure

By taking advantage of EPI structure, Wanner and Goldluecke [36] em-
ployed structure tensor of an EPI to perform fast and robust local disparity
estimation, then a TV-L1 optimization scheme is applied to smooth the lo-
cal result. Based on Wanner and Goldluecke’s work, a certainty map was
proposed to enforce visibility constrains on the initial estimated depth map
in [24]. However, when implementing angular super-resolution, Wanner and
Goldluecke [36] fell back into sub-aperture image space and warped the in-
put images to synthesize novel views based on the disparity information. In
contrast, Vagharshakyan et al. [34] considered the angular super-resolution
as an inpainting problem on the EPI, and the angular aliasing could be
suppressed in the Fourier domain. They therefore utilized an adapted dis-
crete shearlet transform to reconstruct the light field from a sparse sampled
light field. However, the reconstruction exhibited poor quality in the border
regions, resulting in a reduction of angular extent. Moreover, the high fre-
quency components in the EPI are also lost while using discrete shearlet to
suppress high frequency leakage caused by angular aliasing.

2.3. Learning-based method

Recently, learning-based techniques have been explored for the light field
reconstruction. Cho et al. [9] adopted a sparse-coding-based (SC) method
to reconstruct light field using raw data. They generate image pairs using
Barycentric interpolation. Yoon et al. [39] trained a deep neural network
for spatial and angular super-resolution. However, the network used every
two images to generate a novel view between them, thus it underused the
potential of the full light field. Wang et al. [35] proposed several CNN ar-
chitectures, one of which was developed for the EPI slices; however, the
network is designed for material recognition, which is different with the EPI
restoration task.

Also, some studies for maximizing the quality of synthetic views have
been presented that are based on CNNs. Flynn et al. [14] proposed a deep
learning method to synthesize novel views using a sequence of images with
wide baselines. Kalantari et al. [20] used two sequential convolutional neural
networks to model depth and color estimation simultaneously by minimizing
the error between synthetic views and ground truth images. However, in
that study, the network is trained using a fixed sampling pattern, which
makes it unsuitable for universal applications. In addition, the approach
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L1 L2 L3

64 32 Residual

5×55×59×9

Output EPIInput EPI

Figure 1: The detail restoration network is composed of three layers. The
first and the second layers are followed by a rectified linear unit (ReLU).
The final output of the network is the sum of the predicted residual (detail)
and the input.

results in ghosting artifacts in the occluded regions and fails to handle some
challenging cases.

3. CNN-based restoration in “blur-restoration-deblur”
framework

3.1. CNN architecture

Based on Wu’s method [38] and inspired by Dong et al. [12]’s network,
the CNN architecture is shown in Fig. 1. The input EPI (E′L) is the low-
resolution one, which is up-sampling by bicubic to the size as the high-
resolution EPI. In the network, the desired output EPI f(E′L) is the sum of
the input E′L and the predicted residual R(E′L):

(1) f(E′L) = E′L +R(E′L).

The CNN comprises three convolution layers. There are 64 filters of size
1× 9× 9 in the first layer, where each filter operates on 9× 9 spatial region
across 64 channels (feature maps) and used for feature extraction. There
are 32 filters of size 64× 5× 5 in the second layer, and used for non-linear
mapping. The last layer contains 1 filter of size 32× 5× 5 used for detail
reconstruction. Both the first and the second layers are followed by a rectified
linear unit (ReLU).
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3.2. Training detail

The desired residuals are R = E′ −E′L, where E′ are the blurred ground
truth EPIs and E′L are the blurred and interpolated low angular resolution
EPIs. Our goal is to minimize the mean squared error 1

2‖E
′ − f(E′L)‖2. How-

ever, due to the residual network we use, the loss function is now formulated
as follows:

(2) L =
1

n

n∑
i=1

‖R(i) −R(E
′(i)
L )‖2,

where n is the number of training EPIs. The output of the network R(E′L)
represents the restored detail, which must be added back to the input EPI
E′L to obtain the final high angular resolution EPI f(E′L).

We use the Stanford Light Field Archive [3] (captured using a gantry
system) as the training data. The blurred ground truth EPIs are decomposed
to sub-EPIs of size 17× 17 with stride 14. To avoid overfitting, we adopted
data augmentation techniques [13, 21] that include flipping, downsampling
the spatial resolution of the light field as well as adding Gaussian noise.
To avoid the limitations of a fixed angular up-sampling factor, we use a
scale augmentation technique. Specifically, we downsample some EPIs with
a small angular extent by factor 4 and the desired output EPIs by factor 2,
then upsample them to the original resolution. The network is trained by
using the datasets downsampled by both factor 2 and factor 4. We use the
cascade of the network for the EPIs that are required to be up-sampled by
factor 4. In practice, we extract more than 8e6 examples which is sufficient
for the training. We select the mini-batches of size 64 as a trade-off between
speed and convergence.

In the paper, we followed the conventional methods of image super-
resolution to transform the EPIs into YCbCr space: only the Y channel
(i.e., the luminance channel) is applied to the network. This is because the
other two channels are blurrier than the Y channel and, thus, have less useful
in the restoration [12].

To improve the convergence speed, we adjust the learning rate consistent
with the increasing of the training iteration. The number of training itera-
tions is 8× 105 times. The learning rate is set to 0.01 initially and decreased
by a factor of 10 every 0.25× 105 iterations. When the training iterations are
5.0× 105 , the learning rate is decreased to 0.0001 in two reduction steps.
We initialize the filter weight of each layer using a Gaussian distribution
with zero mean and standard deviation 1e−3. The momentum parameter is
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set to 0.9. Training takes approximately 12 hours on GPU GTX 960 (Intel
CPU E3-1231 running at 3.40GHz with 32GB of memory). The training
model is implemented using the Caffe package [19].

4. Fourier analysis

In this section, we analyze the “blur-restoration-deblur” framework in the
Fourier domain. Consider a simple scene composed of four points located at
different depths. For an appropriate sampled light field, the resulting EPI
contains four lines of different slopes, where each the disparity does not
exceed 1 pixel (as shown in Fig. 2(a)). Fig. 2(b) shows the Fourier spectrum
of the EPI, where the intersection angles with the Ωu-axis are determined
by the depths of the objects in the scene. In Fig. 2(b), we mark the Fourier
spectrum of each line in Fig. 2(a) with arrow in its corresponding color.

We simulate the sparsely sampled light field in the angular domain by
downsampling the light field in the angular dimensions, generating an an-
gularly undersampled EPI whose disparity falls outside the one-pixel range.
The sampling influences little on the point with a small disparity. However,
for point with a large disparity, the sampling destroys high frequency detail
in the angular dimension, producing copies of the Fourier spectrum, as shown
in Fig. 2(c). Straightforward upsampling or CNN-based super-resolution will
cause high frequency leakage from the other copies [18] (shown in Fig. 2(d)).

To overcome the aliasing in the EPI, Stewart et al. [33] applied a band-
limit filter to reconstruct a light field in the Fourier domain. The filter pre-
serves certain frequency component and simultaneously removes high fre-
quency leakage by changing the shape of the filter (shown in the black dashed
box in Fig. 2(d)). However, Liang and Ramamoorthi [25] indicated that the
filter is depth-dependent, and simple reshaping the filter cannot reconstruct
light field in all depth-of-field. Instead, in the proposed “blur-restoration-
deblur” framework, we adopt a novel learning-based method to reconstruct
sparsely sampled light field.

Specifically, we first balance the information between the spatial and
angular information by a “blur” step. Unlike the band-limit filter described
above, we use a simple 1D Gaussian kernel whose kernel size depends on the
highest depth (disparity) of the light field. This “blur” step removes the high
frequency components in the spatial dimension. Fig. 3(a) shows the Fourier
spectrum of the blurred undersampled EPI. Compared with the Fourier
spectrum of the undersampled EPI shown in Fig. 2(c), the copies lying in
the high frequency regions are efficiently suppressed. The blurred EPI is
upsampled to the desired angular resolution using bicubic interpolation.
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Figure 2: (a) An densely sampled EPI that contains four lines of different
slopes. The disparity is no more than 1 pixel. (b) The Fourier spectrum
of the EPI in (a), where the lines in (a) are marked with arrows in their
corresponding colors. Note that the Fourier spectrum of the green line is
occluded by the Ωu-axis. (c) The light field is downsampled in the angular
dimensions, producing an angularly undersampled EPI. The undersampling
generates copies of the Fourier spectrum, where one of them is pointed out
by a black arrow. (d) Directly CNN-based super-resolution causes high fre-
quency leakage from the copies. A band-limit filter shown in the black dashed
box can only reconstruct light field in a certain depth. The color bar on the
right side of (b) shows the power range of the Fourier spectrum after taking
the logarithm.

Then the CNN-based “restoration” step is performed to restore the angu-
lar detail. Fig. 3(b) shows the Fourier spectrum of the EPI after the “restora-
tion” step. In the perspective of Fourier spectrum, the CNN is trained to
restore the high frequency components rather than the high frequency copies
that lead to aliasing.
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Figure 3: (a) The Fourier spectrum of the undersampled EPI after the
“blur” step, where the high frequency copies are efficiently suppressed. (b)
The Fourier spectrum of the EPI after the “restoration” step. Compared
with the Fourier spectrum in (a), the high frequency components are re-
stored, while the high copies that lead to aliasing are remained unchanged.
(c) The Fourier spectrum of the EPI after being processed by the entire
framework. (d) The superresolved EPI produced by the proposed frame-
work. The color bar on the right side of Fig. 2(b) shows the power range of
the Fourier spectrum after taking the logarithm.

The “deblur” step using the selected Gaussian kernel is adopted to re-
cover the high frequency components in the spatial dimension, which is an
inverse operation with respect to the “blur” step. Fig. 3(c) and (d) shows
the Fourier spectrum and the EPI, respectively, after being processed by the
entire “blur-restoration-deblur” framework. Due to the removing of the high
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frequency copies in the Fourier spectrum, the EPI is finally super-resolved
without aliasing.

5. Depth assisted rendering

The proposed framework by Wu et al. still has its limitations. They use
EPI blur to extract the low frequency components of the EPI in the spatial
dimension, where the size of the blur kernel is determined by the largest dis-
parity between the input neighboring views. The non-blind deblur is not able
to recover high quality EPIs when the kernel size is too large, and the max-
imum disparity we can handle when using the proposed ”blur-restoration-
deblur” framework is 5 pixels. In our strategy, we exploit depth information
to handle large disparity data, such as multi-view stereo data. In addition,
at least 3 views should be used in each angular dimension to provide enough
information for the bicubic interpolation.

So we extend this approach for rendering novel views using multi-view
input (e.g., multi-view stereo data) and a depth (disparity) map. Unlike the
existing depth image-based rendering (DIBR) techniques that are extremely
sensitive to the disparity quality, only a raw disparity map is required for the
proposed rendering approach. In addition, the novel view rendering method
inherits the capacity of generating plausible result in occlusion regions, and
non-Lambertian surfaces from the proposed learning-based framework.

5.1. EPI shearing

First, we take the 2D EPI for example, x represents the spatial domain, and
u represents the angular domain. So the EPI can be rewrite as,

(3) Lα (x, u) = L0

(
x+ u

(
1− 1

α

)
, u

)
,

L0 denotes the original EPI, Lα denotes the sheared EPI by a value of α.
Then, the extended 4D form can be expressed as, which is similar to the

equation from Ng et al., [28]

(4) Lα (x, y, u, v) = L0

(
x+ u

(
1− 1

α

)
, y + v

(
1− 1

α

)
, u, v

)
,

where, x, y represent the spatial domain, and u, v represent the angular
domain. Eq.4 is the formula which establishes the relationship between the
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(a) (b)

Shear

Figure 4: The comparison between original EPIs with their sheared versions.

original EPIs and thier sheared versions. Fig. 4 shows the effect before and
after the shearing.

5.2. Implementation

The main obstacle for reconstructing an EPI with large disparity is the
information asymmetry, instead of applying a blur kernel to mitigate the
asymmetry (which actually fail to work in this circumstance), we first shear
the EPI to an appropriate disparity range with the assistance of a disparity
map, then the novel view rendering can be considered as the super-resolving
problem on the sheared EPI using the proposed “blur-restoration-deblur”
framework.

Specifically, consider an EPI EL (where L denotes low angular resolu-
tion) and its discretized disparity D (see Fig. 5(a)), the collection of shear
values is equal to the collection of discretized disparity values in D, we first
shear the EPI with each shear value, constructing a set of sheared EPIs
{S(ED1

L ), S(ED2

L ), ..., S(EDN

L )} (see Fig. 5(b)), where S denotes the shear
operation and N is the number of the discretized disparity values. Then
the proposed “blur-restoration-deblur” framework is applied to super-resolve
the sheared EPIs in the angular dimension (see Fig. 5(c)), generating a set
of high angular resolution EPIs {S(ED1

H ), S(ED2

H ), ..., S(EDN

H )}. For regions
sheared using their corresponding disparity (demonstrated as the brighter
regions in Fig. 5(b) and (c)), we can obtain super-resolved results with best
performance; however, other regions (demonstrated as the darker regions in
Fig. 5(b) and (c)) are sheared with improper shear value, causing aliasing ef-
fects in the corresponding regions of the super-resolved EPIs. Fig. 5(e) shows
a close-up of one of those super-resolved regions. To combine all the best
super-resolved regions and obtain the final EPI EH , we implement the fol-
lowing steps: the super-resolved EPIs {S(ED1

H ), S(ED2

H ), ..., S(EDN

H )} are first
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(b) Sheared EPIs

Angular

 super-resolution

Shear operation

Inverse shear 

& blending

(c) Super-resolved EPIs

(a) Input EPI and disparity

(d) Output EPI

(e) Close-up

Figure 5: Pipeline of the proposed depth assisted rendering approach using
the “blur-restoration-deblur” framework. (a) The input EPI and its dis-
parity. The disparity is discretized for the shear operation; (b) The input
EPI is sheared by each shear value, constructing a set of sheared EPIs.
The brighter regions are sheared using their corresponding disparity, but
the darker regions are not; (c) The super-resolved EPIs using the proposed
“blur-restoration-deblur” framework; (d) The final high angular resolution
EPI is obtained by using the inverse shear and blending operation; (e) Close-
up of one of the super-resolved EPIs in (c).

inversely sheared using shear value {D1

α ,
D2

α , ...,
DN

α }, where α is the super-

resolution factor. Then the processed EPIs, denoted as {ED1

H , ED2

H , ..., EDN

H },
are blended using the following equation:

(5) EH =

N∑
i=1

EDi

H Wi,

and the weight Wi is equal to 1 for regions sheared using the corresponding
disparity, and 0 for other regions. Fig. 5(d) shows the final high angular
resolution EPI EH .

5.3. Results

We evaluate the proposed application for depth assisted rendering on Mid-
dleburry Stereo Datasets (including 2005 datasets and 2006 datasets [16, 30,
31]), which contains multiple views with large disparities (compared with
light field data). We employ the CostFilter [29] for disparity estimation us-
ing only two views in the input data. The previous DIBR technique used
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Figure 6: Depth assisted rendering results on Middleburry datasets. The
bottom shows the EPI super-resolved by the proposed approach.

Baby1 Books Bowling2 Reindeer Moebius

DIBR [8] 38.10/0.9907 35.95/0.9958 35.92/0.9947 31.50/0.9886 35.97/0.9947
Ours 41.07/0.9944 37.34/0.9959 38.22/0.9963 33.80/0.9906 38.41/0.9964

Table 1: Quantitative results (PSNR / SSIM) of the rendered views (results
are averaged on the three novel views).

for angular super-resolution of light fields [8] is applied for the comparison.
Each scene in the datasets contains 7 views, where 4 of them are used as
input and the others are for comparison.

Fig. 6 shows the visual comparison of rendered novel views against the
ground truth, and Table 1 offers the relevant numerical results in terms of
PSNR and SSIM. As we can see from the figure, results by DIBR method [8]



i
i

“3-Zhao” — 2018/2/7 — 18:17 — page 184 — #14 i
i

i
i

i
i

184 M. Zhao and X. Hao

O
cc

lu
si

o
n
 1

6
L

ea
v
es
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Figure 7: The error map comparison between Wu et al.’s [38] method and
our method.

usually contain ghosting artifacts in occlusion boundaries (see the close-up
in Fig. 6). In addition, due to extensive textureless regions in the last two
cases (Midd1 and Monopoly), the stereo matching approach being employed
has failed to produce plausible disparity maps, which causes great influence
on results by DIBR method [8]. However, the proposed approach is able to
render high quality views in both cases.

In spite that the proposed approach exploits depth information to render
novel views, the ”blur-restoration-deblur” framework can tolerate disparity
error within a certain range. This property makes the proposed depth as-
sisted approach more robust to common disparity noise in occlusion and
textureless regions.

Finally, since our method is based on Wu et al.’s [38] work, the results
of our method should be compared with their method. We take the Leaves
data [20] and Occlusions 16 [3] data as the examples. In order to test cases
in the large disparity (typically exceed 4 pixels), we take samples from every
three viewpoints to expand the disparity. The Leaves case includes complex
structure and the Occlusions 16 contains complicated occlusions that are
challenging. Both of them have the large disparity. Fig. 7 shows some exam-
ples that the error map results between the groundtruth and super-resolved
image in angular domain. The results of Wu et al.’s method are quite blurry
around the occluded regions such as branched and leaves. As demonstrated
in the error maps of the results, the proposed approach achieves a high
performance.
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Ground truth  Meyer et al. [26] Ours
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Figure 8: Results of the super-resolution of unstructured light field on the
Basket case from the dataset provided by Yücer et al. [40].
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Figure 9: Comparison of frame interpolation results for video sequences. The
interpolation results of a high frame rate video footage are shown in the top
of the figure. The red boxes show the close-up version of the 2D slices, where
the result by Meyer et al. [26] appears ghosting effects. The interpolation
results on the Army case from Middlebury dataset [4] are shown in the
bottom of the figure. The result produced by Meyer et al. [26] shows ghosting
effects and structure discontinuity (see the close-up version of the 2D slice).

6. Applications

We implement two different applications based on the proposed “blur-
restoration-deblur” framework: angular super-resolution for unstructured
light field and video interpolation.

The proposed approach is a depth-free framework that restores the an-
gular detail based on CNN without the need of geometry calibration and
depth estimation. Therefore, our framework is potentially capable to handle
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unstructured input, such as an unstructured light field and a video sequence.
This application can improve the accuracy of reconstructed 3D model [40]
when applied to the interpolation of unstructured light field, and further
used for frame rate conversion, slow motion video and motion interpolation
[26] when applied to video interpolation.

6.1. Angular super-resolution for unstructured light field.

Unlike common light field that is obtained by carefully calibrated camera(s),
an unstructured light field [10] is captured, e.g., by a hand-held commodity
camera. Therefore, ordinary angular super-resolution methods that synthe-
size novel views based on depth estimation usually fail to yield reasonable
results. On the contrary, the proposed framework implicitly reconstruct a
light field by restoring the angular detail on EPI, and thus, has the capacity
to super-resolve unstructured light field.

We demonstrate this application using the Basket case from the dataset
provided by Yücer et al. [40] (see Fig. 8). The original light field contains
49 views, in which 25 views is used as input for the super-resolution. We
compare our method against the approach by Meyer et al. [26]. They intro-
duces structure discontinuity when comparing the resulting 2D slices (see
the close-up version in Fig. 8). The averaged PSNR values are 41.60 for the
proposed framework and 40.43 for the approach by Meyer et al. [26].

6.2. Video interpolation

For the frame interpolation of a video sequence, we first obtain 2D slices,
which is similar with the EPIs in a light field, by gathering horizontal (or
vertical) lines at a certain coordinate in each frame; then the proposed frame-
work is implemented on them. We demonstrate the interpolation result us-
ing a high frame rate video footage. The original video footage contains 97
frames, and only 25 frames are used as the input. We compare the proposed
framework against phase-based frame interpolation approach proposed by
Meyer et al. [26]. The interpolation results of the 78th frame are shown in
the top of Fig. 9. The phase-based frame interpolation shows ghosting effects
when compared the 2D slice (see the close-up version in the red box). The
quantitative results in terms of PSNR (averaged on the interpolated frames)
are 47.89 for the proposed framework and 45.56 for the approach by Meyer
et al. [26].

The bottom of Fig. 9 shows the interpolation results on the Army case
from Middlebury optical flow dataset [4]. We apply 7 frames in the sequence,
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in which 4 frames are applied as the input. The sequence contains multiple
moving directions, which is challenge. The figure shows the interpolation
results of the 2nd frame. The result produced by the proposed framework
introduces slightly blurry in some large motion parts, such as the wheel
shown in the yellow box; while the result produced by Meyer et al.’s approach
[26] contains less detail and introduces ghosting effects. In addition, the
phase-based interpolation approach [26] uses only two frames to produce
intermediate images, introducing structure discontinuity in the 2D slices.
The averaged PSNR values are 41.76 for the proposed framework and 39.31
for the approach by Meyer et al. [26].

7. Conclusion and discussion

In this paper, based on Wu et al. [38], we further study extended applica-
tions including depth enhancement using reconstructed high angular reso-
lution light field, interpolation for unstructured input and depth assisted
rendering. In the following, we provide an in-depth analysis on the merits
of the learning-based reconstruction using EPIs as well as the limitation of
the proposed framework that should be overcome in the future work.
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