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Deep hashing using an extreme learning

machine with convolutional networks

Zhiyong Zeng∗, Shiqi Dai, Yunsong Li, Dunyu Chen

In this paper, we present a deep hashing approach for large scale
image search. It is different from most existing deep hash learn-
ing methods which use convolutional neural networks (CNN) to
execute feature extraction to learn binary codes. These methods
could achieve excellent results, but they depend on an extreme
huge and complex networks. We combine an extreme learning ma-
chine (ELM) with convolutional neural networks to speed up the
training of deep learning methods. In contrast to existing deep
hashing approaches, our method leads to faster and more accurate
feature learning. Meanwhile, it improves the generalization ability
of deep hashing. Experiments on large scale image datasets demon-
strate that the proposed approach can achieve better results with
state-of-the-art methods with much less complexity.

1. Introduction

With the growing of multimedia data, fast and effective search technique
has become a hot research topic. Among existing search techniques, hashing
is one of the most important retrieval techniques due to its fast query speed
and low memory cost.

Hashing methods can be divided into two categories: data-independent
[1–3], data-dependent [4–8]. For the first category, hash functions random
generated are first used to map data into feature space and then binarization
is carried out. Representative methods of this category are locality sensitive
hashing (LSH) [1] and its variants [2, 3]. For the second category, hash
functions are learned from training data to map samples into binary codes.
Data-dependent methods can be further classified into two categories: unsu-
pervised methods [11–13] and supervised methods[14–19]. The former only
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uses the feature information without utilizing supervised information dur-
ing training. Representative unsupervised methods contain isotropic hashing
[11], discrete graph hashing (DGH) [12], anchor graph hashing (AGH) [13]
and iterative quantization (ITQ) [4]. The latter uses feature information
and supervised information such as label to learn hash function. The label
information is given in three forms: point-wise labels, pair-wise labels and
ranking labels. Representative methods based on point-wise labels contain
supervised discrete hashing (SDH) [14]. Representative methods based on
pair-wise labels contain minimal loss hashing (MLH) [7], fast supervised
hashing (FastH) [9], supervised hashing with kernels (KSH) [10], and con-
volutional neural networks hashing (CNNH) [15]. Representative methods
based on ranking labels contain ranking-based supervised hashing (RSH)
[16], ranking preserving hashing (RPH) [17], order preserving hashing (OPH)
[18], and column generation hashing (CGH) [19].

Although many hashing methods have been proposed, most existing
hashing methods utilize hand-crafted features. These hashing methods can-
not well extract the nonlinear manifold structure of data points, the result-
ing features might not be optimally compatible with hash function. Hence,
these hashing methods based on hand-crafted features might not obtain sat-
isfactory performance in practice. Although some hashing methods based on
kernel have been presented, they suffer from huge computational complex
problem [10].

To solve the shortcoming of hashing methods based on the hand-crafted
features, researchers have recently proposed some feature learning based
deep hashing methods [20–24]. These deep hashing methods execute feature
learning and hash function learning with deep neural networks, which can
well learn the nonlinear manifold structure of data and have achieved better
results than existing hashing methods using hand-crafted features. How-
ever, deep learning needs huge and deep neural networks, a large number
of model parameters need to be trained. Hence, although stochastic gradi-
ent descent algorithm and backward propagation algorithm can be used in
network model training, learning speed of deep neural networks is the main
drawback of deep learning, which will affect its practical application.

Recently, extreme learning machine (ELM) has been paid more atten-
tion in computer vision community duo to its fast training speed and good
generalization [25–27]. The parameters of hidden nodes of the ELM are ran-
domly generated and need not to be trained. Hence, the structure of network
of the ELM could be constructed before the samples are gained. However,
the ELM will face some problems in natural scene applications because orig-
inal ELM or its variants mainly focus on classification. In an ELM, feature
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learning need first to be conducted before classification is carried out in var-
ious applications. Hence, it is feasible to design multilayer solutions to finish
above tasks. ELM-based autoencoder is a good multilayer learning archi-
tecture [26]. However, the framework has not well utilized the advantages
of ELM duo to without random feature mapping. ELM-based Deep belief
network (DBN) is another good multilayer architecture [27], which can un-
dertake pattern classification and attain better results than state-of-the-art
methods.

Seen from the above analysis, the existing hashing methods cannot at-
tain good generalization performance with fast learning velocity. Inspired by
CNN and ELM theory, we propose a deep ELM framework for hash learning.
The contributions of this paper are mainly as follows:

1) A deep ELM hash learning framework contains three key components.
The first component is deep convolutional network to learn hierarchical im-
age abstraction. The second component is ELM to fasten feature learning
and attain good generalization. The third component is hash functions to
map the learned image feature into binary codes. All components are seam-
lessly combined into the deep framework to map each image into hash codes.
Unlike existing hash learning methods which try to find a linear projection
to map each image into hash codes, we study a deep ELM network to seek
multilayer nonlinear transformation to learn these binary vectors.

2) Experiments on large scale image datasets demonstrate that the pro-
posed method can achieve better image retrieval results than state-of-the-art
methods.

2. ELM-based learning algorithm

ELM was developed as a single-hidden layer feedforward neural network
(SLFN) [28]. If only the activation functions of the neurons are piecewise
continuous, the weights of hidden nodes in the ELM may be produced and
need not to be changed. An ELM includes two stages, data projection and
feature learning.

In ELM data projection stage, given input data x ∈ Rd, the output of
ELM for generalized SLFN with L hidden neurons and activation function
g(x) is:

(1) f(x) =

L∑
i=1

βig(wixj + bi) = Hβ, j = 1, 2, . . . , N
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where wi = [wi1, wi2, . . . , win] represents the weight vector between the
ith hidden neuron and all input neurons, βi = [βi1, βi2, . . . , βim] is the weight
vector between the ith hidden neuron and all output neurons, and bi repre-
sents the bias of the ith hidden neuron. In an ELM, wi and bi are randomly
generated based on a continuous probability function. H is the hidden layer
output matrix of neural network; the ith column of H is the ith neuron’s
output vector in regard to inputs x1, x2, . . . , xN .

(2) H =

 g(w1x1 + b1) · · · g(wLx1 + bL)
... · · ·

...
g(w1xN + b1) · · · g(wLxN + bL)

 , β =

β
T
1
...
βTL


L×m

H represents the ELM feature projection which maps the input data in
Rd to feature space RL.

In an ELM learning stage, denote Y ∈ RN×M as the target matrix pro-
vided by N training data. H = [g(x1), g(x2), . . . , g(xN )] ∈ RR×L contains N
random feature projections produced in the ELM mapping stage. The ob-
jective function is the minimization of the weighted sum of the training error
and the norm of output weights:

(3) arg min(λ ‖ Hβ − Y ‖22 + ‖ β ‖22)

β can be optimized in a closed solution:

(4) β =

{(
HTH + 1

λI
)−1

HTY , L ≤ K
HT

(
HTH + 1

λI
)−1

Y , L > K

where I is identity matrix with respective dimension.

3. Feature learning with ELM

Fig.1 shows the architecture of a deep ELM-based hashing learning. For the
input image f(x, y) of size d× d, let the local receptive field be r × r. Hence,
the size of the feature maps is (d− r + 1)× (d− r + 1). If the deep ELM
includes L layers of convolution and pooling, the lth layer takes the feature
map of the (l − 1)th layer as input, the convolution between the randomly
generated normalized convolutional kernels and input image at this layer
will generates K feature maps. Each of random convolutional kernels is
normalized so that their weights sum to 1. For a given layer l, its matrix of
the normalized random convolution kernels is defined as:
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Wl = [wl,k]
K
k=1 ⊂ Rr×r×K , l = 1, 2, . . . , L(5)

wl,k(i, j) = rand(0, 1), i, j = 1, 2, . . . , r(6)

wl,k(i, j) = wl,k(i, j)/Σi,jwl,k(i, j)(7)

where Wl consists of K normalized random convolutional kernels wl,k of
size r × r, rand(0, 1) produces a random number in [0, 1].

Convolution calculation is executed over the feature maps of the previous
layer. Specifically, the kth feature map at layer l can be attained as follows:

(8) Fl,k = Fl−1,k(i, j) ∗ wl,k

where ∗ is convolution operating, Fl,k is the feature map of layer l, Fl−1,k

is the feature map of layer l − 1. For the input layer, Fl,k = x. To generate
input for the next layer, then we use pooling operation to down-sample the
feature map. For the lth layer, let sl denote pooling size, the size of pooling
map is dl/sl × dl/sl. We attain the kth pooling map using average pooling
operation over the kth feature map.

(9) Pl,k(p, q) =
1

s2l
Σp∗sl
i=(p−1)∗sl+1Σ

p∗sl
j=(p−1)∗sl+1Fl,k(i, j), p, q = 1, 2, . . . , sl

where Pl,k represents the input feature map of the next layer: Fl+1,k =
Pl,k.

Figure 1: The architecture of a deep ELM hashing learning.

In the deep ELM feature learning phase, the feature maps of the last
layer are next used to train the output weights. The last layer is in full
connection with the output layer, as shown in Fig. 1. Then we concatenate
the feature maps of all N training samples into N row vectors together,
the full connection layer matrix H is attained, H ∈ RN×M , where M =
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KL ∗ (dL/sL)2. KL, dL and sL are the number of feature maps of each image,
the size of feature map, and pooling size, respectively, all for the last layer.
Finally, the output weights β can be calculated as:

(10) β =

{(
HTH + 1

λI
)−1

HTY , N ≤M
HT

(
HTH + 1

λI
)−1

Y , N > M

In the testing phase, each test image goes through the whole network so
that the feature map H of each test image can be attained. The weighted
feature map of each test image can be calculated as follows:

(11) Hweighted = βH

4. Binary code learning

After we obtain the weighted feature map of each image, we first use PCA
projection to reduce the dimensionality of feature map, then we use iterative
quantization strategy [4] to preserve the local structure of projected feature
map so as to minimize the quantization error.

Suppose we have n images X = {xi}ni=1, xi ∈ IRd, where xi is the fea-
ture vector of image i. We assume that these images are zero-centered, i.e.,
Σn
i=1xi = 0. The goal of hashing learning is to learn a binary code matrix

B = {−1, 1}n×c for all images, where c is the code length. For each bit

bi = h(xi) = [h1(xi), h2(xi), . . . , hc(xi)]
T

, where h(xi) is a binary function to learn and

(12) h(xi) = sgn(v) =

{
1, if v ≥ 0

−1, otherwise

To obtain an efficient binary code, we should maximize the variance of
learned binary code and decorrelate the code bits of pairwise. We can adopt
the following continuous objective function to finish the task.

L(W ) =
∑
k

IE(‖ xwk ‖22)(13)

=
1

n

∑
k

wTkX
TXwk

=
1

n
tr(W TXTXW ), W TW = I
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where the constraint W TW = I means that the hashing hyperplanes
have to be orthogonal each other, which meets the requirement that the
code bits is pairwise uncorrelated. The objective function is completely the
same as that of PCA. Hence, we can take the top c eigenvectors of the data
covariance matrix XTX to calculate W for a hash code of c bits.

Denote v ∈ IRc be a vector in PCA projected space, sgn(v) is the vertex
of the hypercube {−1, 1}c closest to v on the basis of euclidean distance. If
W is an optimal solution of equation (13), then for any orthogonal c× c
matrix R, there is W̃ = WR. Hence, we can rotate projected data V = XW
to minimize the following quantization loss:

Q(B,R) =‖ B − V R ‖2F(14)

=‖ B ‖2F + ‖ V ‖2F −2tr(BRTV T )

= nc+ ‖ V ‖2F −2tr(BRTV T )

where ‖ • ‖F is the Frobenius norm. Because the projected matrix V is
constant, minimizing quantization loss is same as maxizing tr(BRTV T ) =∑n

i=1

∑c
j=1Bij Ṽij , where Ṽij is the elements of Ṽ = V R, To maximize the

expression with respect to B, we need to make B = 1 whenever Ṽij ≥ 0 and
B = −1 otherwise. For a fixed B, to minimize the expression (14), we need
to try to find a rotation transform to align two point sets. In our project,
the two point sets are provided by the projected matrix V and target binary
code matrix B. For a fixed B, minimize the expression as follows: we first

calculate the SVD of the c× c matrix BTV as BTV = SΩŜT and then let
R = ŜST .

5. Experiments

We evaluate deep ELM on two datasets which are from the Tiny image
dataset. The first one is CIFAR-10 dataset, it contains 60k color images
from 10 classes. The size of each image is 32×32 . We randomly select 1000
images to serve as query data, 100 per class. The remaining 59000 images
form the train set as well as the image database against which the queries
are carried out. Each image is represented as 320 bins GIST feature vector.
All experimental results reported in CIFAR-10 dataset are averaged over five
random partitioned training/test datasets. The second dataset is MNIST, it
contains 70k handwritten digit images from 10 object classes (labeled from 0
to 9). The size of each image is 28×28 . We randomly select 1000 images, 100
per class, to serve as query data. The remaining 69000 images are used as the
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Table 1: Parameters of the proposed network.

param Layer1 Layer2 Layer3 Layer4

FM 16×16 12×12 8×8 4×4

KL 8 16 32 64

cl 4 4 4 4

sl 2 2 2 1

train set as well as the database against which the queries are carried out.
Each image is represented as 784 bins feature vector by using its intensity.
All experimental results reported in MNIST dataset are averaged over five
random partitioned training/test datasets.

In our proposed method, we train our deep ELM network with 4 layers,
where the parameters used in our implementation are described in Table 1,
where FM , Kl, cl and sl represent feature map size, the number of con-
volutional kernel, normalized convolutional kernel size and pooling size of
different layers used in our implementation, respectively. The regularization
parameter λ are set as 0.001. We compare our proposed hashing methods
against five state-of-the-art methods. The five methods include LSH [1],
SKLSH [3], PCA-ITQ [4], SH [28] and PCAH [8]. For all of these compared
methods, we use the code implementations of the corresponding methods
provided by the original authors and use the default parameters adopted
by these papers. To evaluate the performance of different hashing methods,
we use the following three evaluation metrics: 1) mean average precision
(mAP): which computes the area under the precision-recall curve; 2) preci-
sion curves at N samples which is the percentage of true neighbors among
top N retrieved samples; and 3) recall curves at N samples which is the
percentage of true neighbors among top N retrieved samples.

For CIFAR dataset, Figure 2 shows the precision vs. recall curves for
different methods at 64 bits. Figure 3 is the recall vs. N retrieved sam-
ples curves for different methods at 64 bits. Figure 4 is the precision vs. N
retrieved samples curves for different methods at 64 bits. Figure 5 is the com-
parison results of different methods at 16, 32, 48 and 64 bits, respectively.
As can be seen, our method outperforms the other compared hashing meth-
ods. This is because on CIFAR dataset, the above five state-of-the-art hash
methods use GIST feature, while the proposed method uses deep feature
which has better discriminant power. Hence, higher semantic relevance can
be obtained in the top retrieved samples. In addition, we also compare the
proposed model with the CNNH [15] which applies a deep model. Our model
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Figure 2: precision vs. recall curves
on CIFAR dataset.

Figure 3: recall vs. N retrieved sam-
ples curves on CIFAR dataset.

Figure 4: precision vs. N retrieved
samples curves on CIFAR dataset.

Figure 5: comparison of different
hash functions on CIFAR dataset
at 16, 32, 48 and 64 bits.

performs much better than the CNNH, the proposed method improves in
average 2.6% image precision contrast to CNNH. Because our method not
only minimize the reconstruction cost but also ensures balanced bits and
independence of each transformation.

We compare the computational time of our proposed D-ELM with those
state-of-the-art hashing methods. Our machine is configured with a 4.0GHz
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Table 2: Computational cost of different hashing methods on CIFAR
dataset.

Method Training(seconds) Test(microseconds)

ITQ 4.8 2.1

PCAH 0.5 0.05

LSH 0.09 0.07

SH 0.5 6.2

SKLSH 1.4 2.5

CNNH 354.6 3.8

D-ELM 23.7 3.0

Table 3: Comparison of different depth D-ELM on CIFAR dataset.

Dataset one layer two layer four layer

CIFAR
41.5% 42.3% 43.6%
13.4sec 16.3sec 23.7sec

CPU and 32.0 GB RAM. Table 2 demonstrates the training and test cost
of different hashing algorithms over the CIFAR dataset when we evaluate
the computational cost using 16-bit binary codes, where the test time is
calculated for each query image. We see that the training time of deep
learning methods are higher than state-of-the-art hashing methods, but our
method is lower than CNNH because our method uses ELM to speed up
feature learning process. Meanwhile, the test time of deep learning methods
are comparable to the existing methods.

We also compare the performance of different layer versions of D-ELM
over CIFAR dataset when 64-bits are used for evaluation. For all these struc-
tures of D-ELM, the number of filters for convolution takes 8 while the size
of feature maps in the output layer is set to 8×8. From Table 3, we can
see that multilayer D-ELM achieves better retrieval performance on CIFAR
dataset. Because of multiple layer feature mapping, deep ELM usually takes
more time to train.

For MNIST dataset, Figure 6 shows the precision vs. recall curves for
different methods at 64 bits. Figure 7 is the recall vs. N retrieved sam-
ples curves for different methods at 64 bits. Figure 8 is the precision vs. N
retrieved samples curves for different methods at 64 bits. Figure 9 is the
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Figure 6: precision vs. recall curves
on MNIST dataset.

Figure 7: recall vs. N retrieved
samples curves on MNIST dataset.

Figure 8: precision vs. N retrieved
samples curves on MNIST dataset.

Figure 9: comparison of different
hash functions on MNIST dataset
at 16, 32, 48 and 64 bits.

comparison results of different methods at 16, 32, 48 and 64 bits, respec-
tively. As can be seen, our method outperforms the other compared hashing
methods.
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6. Conclusion

In this paper, we have proposed a hashing method called deep ELM hashing
(D-ELM) for compact binary codes learning. Experimental results on two
widely used datasets showed the effectiveness of the proposed methods. How
to apply our proposed methods to other vision applications such as object
recognition and visual tracking seems an interesting future work.
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