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Efficient rational quadratic clipping

method for computing roots

of a polynomial
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Yigang Wang, and Weiyin Ma

The root-finding problem is one of key issues for visualizing implicit
curves and surfaces, and has wide applications in computer-aided
design, computer graphics and geometric computing for image and
video. This paper presents a rational quadratic clipping method for
computing a simple root of a polynomial f(t) of degree n within an
interval, which preserves the optimal computation stability of the
Bernstein-Bézier representation. Different from previous clipping
methods based on interpolation, it optimizes the selection of the
inner point, which can achieve the convergence rate 12 by using
rational quadratic polynomials. Difference from previous clipping
methods by computing bounding polynomials, it provides a simple
method of linear complexity to directly bound the root; at the same
time, it needs to compute the roots of quadratic polynomials and
avoids solving cubic equations, and leads to a higher computational
efficiency. In principle, it also works well for a non-polynomial case.
Numerical examples show higher convergence rate and better com-
putation efficiency of the new method.

1. Introduction

In various geometric problems, such as curve/surface intersection [3, 13, 22],
point projection [6], bisectors/medial axes computation [14], collision detec-
tion [10], and geometric optimization for image and video, it is often needed
to solve systems of non-linear equations [23]. The root-finding problem is
also one of the key issues in computer-aided design, computer graphics and
geometric computing for image and video. There are many references dis-
cussing how to solve a polynomial equation or equation system [1, 12, 20, 24]
(see also the references therein).

By using the optimal computation stability of the Bernstein-Bézier rep-
resentation with respect to perturbations of the coefficients [15], several

115



i
i

“3-Chen” — 2018/2/1 — 10:49 — page 116 — #2 i
i

i
i

i
i

116 X.-D. Chen, et al.

clipping methods are developed to find the roots of polynomials [2, 7–9, 19].
Given a polynomial f(t) of degree n, and an interval [a, b], the basic idea of
the above clipping methods is to clip the parts of the interval containing no
root of f(t) by using the roots of its bounding polynomials, and iteratively
do the clipping processes for the remaining subintervals (if any), until either
there remains no subinterval or the length of the subinterval is within a given
tolerance. The bounding polynomials of f(t) within [a, b] can be computed
either by using the degree reduction technique [2, 19], which needs to turn
f(t) into a Bézier form corresponding to the given interval with the time cost
O(n2); or by using interpolation technique [7, 8], the error bounds between
f(t) and its interpolation polynomials can be estimated within O(n2) time.
Suppose that there is a unique root of f(t) within [a, b], where h = b− a
tends to be very small, and after a clipping step, one obtains a subinterval
[a1, b1] whose length is O(hd); the convergence rate is defined as d. For a
simple root case, the convergence rate is the same as the approximation or-
der. The approximation order between f(t) and its bounding polynomials
can be improved by using planar interpolation technique or rational poly-
nomial interpolation technique, e.g., 4 by using planar quadratics [7], 7 by
using rational cubics [8]. In [9], a rational cubic clipping method whose
bounding polynomials are constructed within O(n) time is presented, while
its convergence rate is 5 for a single root case, which is lower than that 7 of
[8].

In principle, one only needs to bound f(t) within local subintervals con-
taining the roots instead of the whole given interval, the roots of the bound-
ing polynomials can also be used for clipping; furthermore, one can directly
bound the roots of f(t), which can lead to a much higher approximation
order and computational efficiency. Based on this observation, this paper
presents an efficient rational quadratic clipping method of convergence rate
12, which directly bounds the roots instead of bounding f(t). Note that the
roots of f(t) can be separated by using previous methods such as the ones in
[8, 9, 19]. In this paper, we assume that there is one simple root within the
given interval. It mainly has two steps. Firstly, a rational quadratic polyno-
mial q(t) interpolates three point of f(t), i.e., two end points and one inner
point, and two of their three derivatives. In principle, different selections of
the inner point lead to the same approximation order 5 between f(t) and
q(t) in the whole interval, but the approximation order between the roots
of f(t) and q(t) can reach 12 by optimizing the selection of the inner point.
Secondly, based on the roots of q(t), it presents a simple method of lin-
ear complexity to directly bound the roots of f(t) without computing the
bounding polynomials. Numerical examples show that the new method can
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achieve much higher convergence rate 12 and much higher computational
efficiency.

The remainder of this paper is organized as follows. Section 2 explains
the rational quadratic clipping method and analyzes the corresponding con-
vergence rate. Section 3 provides more numerical examples and related dis-
cussions. Conclusions are drawn at the end of this paper.

2. The rational quadratic clipping method

In principle, the roots of a given polynomial f(t) within an interval [a, b] can
be isolated by using previous methods such as the ones in [9, 19, 21]. In
this paper, we assume that there is one simple root t? ∈ [a, b] of f(t), and we
have that f(a) · f(b) < 0. The basic idea of the clipping method is to find
a sequence of subintervals [ai, bi], i = 0, 1, . . . , by iteratively executing the
clipping processes, such that [ai, bi] contains t?, and bi+1 − ai+1 tends to be
O((bi − ai)d), where d denotes the convergence rate.

For the sake of convenience, let h = b− a, and we introduce Theo-
rem 3.5.1 in Page 67, Chapter 3.5 of [11] as follows.

Theorem 1. Let w0, w1, . . . , wr be r + 1 distinct points in [a, b], and n0, . . . ,
nr be r + 1 positive integers. Let N = n0 + n1 + · · ·+ nr. Suppose that g(t)
is a polynomial of degree N − 1 such that

g(i)(wj) = f (i)(wj), i = 0, 1, . . . , nj − 1, j = 0, . . . , r.

Then there exists ξ1(t) ∈ [a, b] such that

|f(t)− g(t)| =

∣∣∣∣∣f (N)(ξ1(t))

N !

r∏
i=0

(t− wi)ni

∣∣∣∣∣ = O(

r∏
i=0

|(t− wi)ni |).

2.1. One clipping process

One clipping process of the rational quadratic clipping method (RQCM)
mainly has four steps: (1) Optimize the value of t1, which is a root of q(t)
determined by Eq. (1); (2) Compute the value of t2, which is a root of r(t)
determined by Eq. (4); (3) Compute the value of t3, which is a root of p(t)
determined by Eq. (8); and (4) Bound the root t? by using either t2 and t3,
or t3 and t4, where t4 = 2t3 − t2.

Let h = b− a, l(t) = f(a)(b−t)+f(b)(t−a)
h , t0 = a·f(b)−b·f(a)

f(b)−f(a) . It can be ver-

ified that l(t0) = 0, l(a) = f(a) and l(b) = f(b). Combining with Theorem 1,
we have that |f(t)− l(t)| = O(|(t− a)(t− b)|), and |t? − t0| = O(h2). Firstly,
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let q(t) = q0 + q1t+ q2t
2, where

q0 =
b · t0 · f(a)

(a− b)(a− t0)
+

a · t0 · f(b)

(b− a)(−t0 + b)
+

a · b · f(t0)

(−t0 + b)(a− t0)
,

q1 =
−(b+ t0) · f(a)

(a− b)(a− t0)
+

(a+ t0) · f(b)

(a− b)(−t0 + b)
+
−(a+ b) · f(t0)

(−t0 + b)(a− t0)
,

q2 =
f(a)

(a− b) ∗ (a− t0)
+

−f(b)

(a− b)(−t0 + b)
+

f(t0)

(−t0 + b)(a− t0)
,

which satisfies

(1) f(a) = q(a), f(t0) = q(t0), f(b) = q(b).

From q(a) · q(b) = f(a) · f(b) < 0, there is a root t1 ∈ [a, b] of q(t).

Theorem 2. We claim that |t1 − t?| = O(h4).

Proof. Combining Eq. (1) with Theorem 1, there exists ξ2(t) such that

(2) |f(t)− q(t)| =
∣∣∣∣f (3)(ξ2(t))3!

(t− a)(t− t0)(t− b)
∣∣∣∣ = O(h4).

From Eq. (2),

(3) |f(t?)− f(t1)| = |f(t1)| = |f(t1)− q(t1)| = O(h4).

On the other hand, note that there exists α such that |f(t?)− f(t1)| =
|f ′(α)(t? − t1)|, combining with Eq. (3), we have that |t1 − t?| = O(h4). �

Secondly, we find a rational polynomial r(t) = r0+r1t+r2t2

1+r3t+r4t2
, X(t)

Y (t) inter-

polating f(t) such that

(4) f(a) = r(a), f(t1) = r(t1), f(b) = r(b), f(t0) = r(t0), f
′(t1) = r′(t1).

Let E(t) = f(t) · Y (t)−X(t). From Eq. (4), it can be verified that E(a) =
E(b) = E(t0) = E(t1) = E′(t1) = 0. Combining with Theorem 1, we have
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that

|E(t)| = |Y (t) · f(t)−X(t)|(5)

= O((t− a)(t− t0)(t− t1)2(t− b)) = O(h12).

Suppose that m1 = min
t∈[a,b]

Y (t) > 0. Combining with Eq. (5), we have that

|f(t)− r(t)| =
∣∣∣∣E(t)

Y (t)

∣∣∣∣ ≤ ∣∣∣∣E(t)

m1

∣∣∣∣(6)

= O(|(t− a)(t− t0)(t− t1)2(t− b)|) = O(h12).

Note that r(a) · r(b) = f(a) · f(b) < 0, suppose that 1 + r3t+ r4t
2 6= 0, ∀t ∈

[a, b], we can compute the root t2 ∈ [a, b] of r(t). Similarly, combining Eq. (6),
we have that

(7) |t2 − t?| = O(|f(t2)− f(t?)|) = O(|f(t2)− r(t2)|) = O(h12).

Thirdly, let p(t) = p0 + p1t+ p2t
2, where

p0 =
b · t2 · f(a)

(a− b)(a− t2)
+

a · t2 · f(b)

(b− a)(−t2 + b)
+

a · b · f(t2)

(−t2 + b)(a− t2)
,

p1 =
−(b+ t2) · f(a)

(a− b)(a− t2)
+

(a+ t2) · f(b)

(a− b)(−t2 + b)
+
−(a+ b) · f(t2)

(−t2 + b)(a− t2)
,

p2 =
f(a)

(a− b) ∗ (a− t2)
+

−f(b)

(a− b)(−t2 + b)
+

f(t2)

(−t2 + b)(a− t2)
,

which satisfies

(8) f(a) = p(a), f(t2) = p(t2), f(b) = p(b).

Similarly, there exists a root t3 ∈ [a, b] of p(t) such that |t3 − t?| = O(|(t−
a)(t− b)(t− t2)|) = O(h14).

Finally, in the fourth step, note that |t2 − t?| = O(h12) and |t3 − t?| =
O(h14), we assume that |t2 − t?| > 2|t3 − t?| and directly bound t? based on
t2 and t3 as follows. Without loss of generality, suppose that t2 < t?, and t? −
t2 = β|t3 − t?|, where β > 2. Let t4 = 2t3 − t2. Note that t4 − t? = 2t3 − t2 −
t? = 2(t3 − t?)− (t2 − t?) = β|t3 − t?|+ 2(t3 − t?) ≥ (β − 2)|t3 − t?| ≥ 0. So
we have that t2 and t4 bound t?, and |t4 − t2| = |2(t3 − t?)− (t2 − t?)| =
O(h12).

Remark 1. If 1 + r3t+ r4t
2 has one or more roots within [a, b], one com-

putes R(t) = r0 + r1t+ r2t
2 such that R(t1) = f(t1), R

′(t1) = f(t1) and
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R(τ) = f(τ), where τ ∈ {a, b} such that f(τ) · f(t1) < 0; and we have that
|t2 − t?| = O(h9) instead.

Remark 2. Note that four of the five equations in Eq. (4) are linear in
the unknown ri, while one is quadratic in ri. There are two solutions of
r(t) from Eq. (4) which can be explicitly expressed [4], and the one where

r4 = −((t0−b)f(a)+f(t0)(b−a)+(a−t0)f(b))
t1((a−b)t0f(t0)+b(t0−a)f(b)+(b−t0)af(a)) is removed.

Remark 3. For a multiple root case, i.e., t? is a multiple root of f(t), if
f ′(t) has a unique root t? within the given interval [a, b], one can compute
F (t) = f(t)/f ′(t) instead, which has a simple root t?.

2.2. Illustrations of one clipping process of the RQCM method

We show two examples to illustrate one clipping process of the RQCM
method.

(a) (b)

Figure 1: Example 1: (a) Plots of f1(t) and its corresponding q(t), r(t) and
p(t); and (b) Magnified plots of framed area.

Example 1. Let f1(t) = (t− 1/3)(2− t)3(t+ 5)4, which has a simple root
t? = 1/3 within [0, 1], as shown in Fig. 1(a). Firstly, from Eq. (1), we ob-
tain q(t) = −1666.6667 + 6110.3926t− 3579.7259t2 and its root t1 = t? +
0.0074 as well. Secondly, from Eq. (4), we compute r(t) = (−1666.6667 +
6097.6523t− 3292.9691t2)/(1 + 0.02909t+ 0.2881t2) and its root t2 = t? −
3.4 · 10−7 as well. Thirdly, from Eq. (8), we have p(t) = −1666.6667 +
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6234.6666t− 3703.9999t2 and its root t3 = t? − 1.7 · 10−9. Finally, we com-
pute t4 = 2t3 − t2 = t? + 1.9 · 10−8, and the resulting subinterval is [t3, t4]
containing t? = 1/3, whose length is 6.7 · 10−7.

(a) (b)

Figure 2: Example 2: (a) Plots of f2(t) and its control polygon; and (b)
Plots of F (t), q(t), r(t) and p(t).

Example 2. Let f2(t) = (t− 1/3)2(4− t)3(t+ 7)(t+ 5)2, which has a dou-
ble root t? = 1/3 within [0, 1], as shown in Fig. 2(a). We compute the root
of F (t) = f(t)/f ′(t) instead, which has the simple root t? within [0, 1].
Similarly, from Eq. (1), Eq. (4) and Eq. (8), we obtain q(t) = −0.1611 +
0.4466t+ 0.1212t2, r(t) = (−0.1611 + 0.5073t− 0.0721t2)/(1− 0.2035t−
0.1226t2) and p(t) = −0.1611 + 0.4410t+ 0.1268t2, and their roots t1 = t? −
0.0023, t2 = t? − 3.9 · 10−10 and t3 = t? − 1.9 · 10−11, respectively. Finally,
we compute t4 = 2t3 − t2 = t? + 7.8 · 10−10. And the resulting subinterval is
[t2, t4], which contains t? = 1/3, and the corresponding length is 7.4 · 10−10.

Remark 4. In principle, the new method can work for solving a simple root
of f(t) within an interval [a, b], and it doesn’t matter whether or not f(t) is
a polynomial. However, F (t) = f(t)/f ′(t) may introduce trouble in the cases
that f ′(t) has one or more roots within [a, b] which are not roots of f(t),
and the method may fail. For computing a multiple root of a polynomial
function f(t), other methods such as the one which computes the greatest
common divisor of f(t) and f ′(t) may be used instead.
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3. Numerical examples and discussions

For the sake of convenience, let M0, M1, M2, M3, M4, and M5 be the classical
Newton’s method, the quadratic clipping method in [2], the cubic clipping
method in [19], the rational cubic clipping method in [8], the rational cubic
clipping method in [9], and the RQCM method in this paper, respectively.

The classical Newton’s method M0 is known to be very efficient for inter-
vals which are known to have a single root of the function. So we firstly com-
pare M5 with M0, by measuring the efficiency index (EI), which is defined as
d1/γ , where d is the convergence rate and γ is the number of functional eval-
uations (FE). There are six FEs in each clipping step of M5 which achieves
convergence rate 12, while there are two FEs in that of M0 which achieves
convergence rate 2, the efficiency indexes of M5 is 121/6 ≈ 1.51, which is
better than that

√
2 ≈ 1.41 of M0. In this paper, we compare the results be-

tween one clipping step of M5 and three clipping steps of Newton’s method
M0, both of which cost six FEs, and the corresponding convergence rates
of M5 and M0 are 12 and 8, respectively. More details of the comparison
results are shown in Table 1.

Method M0 (Newton’s method) M5(New)
CR 8 12
EI 1.41 1.51

Table 1: Comparisons on convergence rate and EI between M0 and M5.

Secondly, we compare M5 with Mi, i = 1, 2, 3, 4. At the beginning, we
use the zeroes of the control polygon of f(t) to divide the given interval into
several subintervals, and consider the subintervals containing one root in-
stead, see also the assumption. Table 2 shows the comparison results between
different methods, where CR and Time denote convergence rate and the
computational complexity. As shown in Table 2, M5 achieves the best con-
vergence rate 12 for both simple and multiple root cases, while M3 achieves
convergence rate 7/k which is much higher than those of other remaining
methods, where k is the corresponding multiplicity. Comparing with M2,
M3 and M4, both M4 and M5 are of O(n) complexity, while the method M5

needs to solve quadratic equations, which can be efficiently done than that
of cubic equations in M2, M3 and M4.

We have tested several examples for comparing the different methods, on
a PC with CPU 2.2GHz and Memory 16GB. The average computation time
of a clipping step is tested and obtained by setting the number of digits after
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Method M1[2] M2[19] M3[8] M4[9] M5(New)
Time O(n2) O(n2) O(n2) O(n) O(n)
CR 3/k 4/k 7/k 5/k 12

Table 2: Comparisons on computation time and convergence rate.

decimal point as 16. The corresponding unit is millisecond, see also Tables 3
and 4. Note that, when setting the number of digits after decimal point, the
larger the number, the higher the accuracy of the resulting root, and also the
closer between the theoretical convergence rate and the resulting numerical
convergence rate. In this paper, the number of digits after decimal point is
set up to 5000 in the computation, and “/” in the following tables denotes
that the corresponding number is beyond 5000 and is unavailable from the
computation.

(a) (b) (c)

Figure 3: Example 3: Plots of (a) f3(t); (b) f4(t) and (c) f5(t), t ∈ [0, 1].

Example 3. We have tested f3(t) = (t− 1/5)(t+ 2)3(t+ 5)4, t ∈ [0, 1], f4 =
(t− 1/5)(t+ 6)3(t− 2/3)(t− 0.8)(t− 3)2, t ∈ [0.128, 0.584] and f5(t) = (t−
1/5)(t+ 6)3(t− 4/5)2(t− 3)2, t ∈ [0.137, 0.653], which have a simple root
within the subintervals obtained by using the zeros of their control polygons
mapping to [0, 1], see also Fig. 3 for their plots within [0, 1]. The compari-
son results are given in Table 3, including the error results of the first five
clipping steps. The convergence rates of M1, M2, M3, M4 and M5 tend to
be 2, 3, 4, 7, 5 and 12, respectively. In Table 3, Time denotes the compu-
tational time with the unit millisecond. It shows that M5 achieves the best
computational efficiency of per clipping step, among these five methods.

Example 4. We have tested f6(t) = (t− 0.20001)2(t+ 1/2)5(t− 0.7)(t−
1.1)6, t ∈ [0.126, 0.310] and f7 = (t− 1/5)3(t− 5)7(2 + t)2(t+ 7)4, t ∈ [0, 1],
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Exam Method 1 2 3 4 5 CR Time

f3(t)

M1[2] 5.0e-1 2.5e-2 3.0e-6 5.0e-18 2.3e-53 3 10.2
M2[19] 5.9e-2 4.5e-7 1.4e-27 1.6e-109 2.1e-437 4 18.5
M3[8] 8.7e-5 8.5e-34 6.9e-237 1.7e-1658 / 7 15.6
M4[9] 1.1e-2 7.8e-14 7.9e-71 5.9e-357 1.0e-1788 5 4.8
M5(New) 3.4e-7 2.1e-82 9.6e-982 / / 12 1.9

f4(t)

M1[2] 4.7e-2 4.5e-5 3.8e-14 2.4e-41 5.7e-123 3 9.5
M2[19] 1.3e-3 3.1e-14 1.0e-56 1.1e-226 1.7e-906 4 19.1
M3[8] 6.9e-7 8.3e-48 3.2e-334 3.5e-2339 / 7 18.2
M4[9] 2.0e-4 3.1e-21 2.4e-105 6.3e-526 8.4e-2629 5 6.1
M5(New) 3.9e-5 7.5e-45 9.4e-526 / / 12 2.1

f5(t)

M1[2] 5.6e-2 6.1e-5 7.6e-14 1.5e-40 1.2e-120 3 9.7
M2[19] 1.7e-3 5.9e-14 8.1e-56 2.8e-223 3.8e-893 4 18.8
M3[8] 1.3e-6 5.7e-46 1.6e-321 2.6e-2250 / 7 18.5
M4[9] 3.0e-4 1.5e-20 5.0e-102 2.0e-509 2.0e-2546 5 5.5
M5(New) 2.3e-5 2.1e-47 4.5e-557 / / 12 2.0

Table 3: Comparison results of Example 4 for simple root cases.

(a) (b)

Figure 4: Example 4: Plots of (a) f6(t); and (b) f7(t), t ∈ [0, 1].

which have a double root and a triple root within the subintervals, see also
Fig. 4 for their plots within the original interval [0, 1]. The comparison results
are given in Table 4, including the error results of the first five clipping steps.
The convergence rates of M1, M2, M3, M4 and M5 tend to be 3/k, 4/k, 7/k,
5/k and 12, respectively, where k is the corresponding multiplicity of the
multiple root. The result of M1 for the triple root is omitted, where the
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convergence rate of M1 tends to be 1. Table 4 shows that M5 achieves the
best computational efficiency of per clipping step, among these five methods.

Exam Method 1 2 3 4 5 CR Time

f6(t)
(k=2)

M1[2] 5.1e-2 6.1e-3 2.5e-4 2.1e-6 1.7e-9 1.5 14.2
M2[19] 2.1e-2 2.7e-4 4.3e-8 1.1e-15 6.9e-31 2 24.3
M3[8] 3.4e-3 2.9e-9 1.6e-30 6.3e-105 2.5e-365 3.5 21.6
M4[9] 6.4e-3 1.6e-6 1.2e-17 9.1e-51 3.1e-150 3 6.3
M5(New) 2.3e-10 2.4e-118 2.5e-1414 / / 12 3.1

f7(t)
(k=3)

M2[19] 5.0e-1 8.9e-2 4.6e-3 6.6e-5 2.3e-7 1.6 26.4
M3[8] 9.7e-2 3.3e-4 5.4e-10 1.8e-23 5.3e-55 2.4 22.6
M4[9] 2.9e-1 2.9e-2 5.3e-4 4.2e-7 1.4e-12 1.7 6.1
M5(New) 4.7e-12 6.1e-152 3.0e-1841 / / 12 3.1

Table 4: Comparison results of Example 4 for multiple root cases

Figure 5: Plot of the Wilkinson polynomial [8].

Example 5. (also Example 6 in [8]) We have tested the Wilkinson polyno-
mial (which is frequently used for testing robustness of clipping methods)

W (t) =

20∏
i=1

(t− i),

within [0, 25], which has twenty zeros i, i = 1, 2, . . . , 20, see also Fig. 5. At the
beginning, we compute the zeros of the corresponding control polygon, i.e.,
{0.27, 1.55, 2.83, 4.11, 5.38, 6.65, 7.92, 9.19, 10.46, 11.73, 13.007, 14.27, 15.54,
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16.81, 18.07, 19.34, 20.61, 21.87, 23.14, 24.40}. Thus, the given interval [0, 25]
is divided into twenty-two sub-intervals by using the above twenty-one zeros.
There are sixteen sub-intervals containing one or two roots ofW (t). Similarly
as that of [8], we do the comparisons within the two of them [2.83, 4.11](,
Λ1) and [16.81, 18.07](, Λ2), which contain two and two roots of W (t),
respectively. In this example, at the beginning, note that there is no root
of the line determined by the two end points, we simply set t0 as the mid
point of the corresponding interval; after one clipping step, the two roots are
separated and M5 is strictly executed. The comparison results are shown in
Table 5. Again, M5 achieves much better performance than those of other
four methods.

Case Method 1 2 3 4 5 CR Time

Λ1

M1[2] 3.3e-1 2.6e-3 7.9e-10 2.3e-29 5.7e-88 3 16.8
M2[19] 2.3e-2 1.0e-8 4.1e-34 1.0e-135 4.2e-542 4 28.2
M3[8] 5.6e-3 5.7e-18 1.1e-122 1.5e-855 / 7 26.5
M4[9] 3.1e-2 3.9e-9 8.7e-44 5.0e-217 3.1e-1083 5 9.3
M5(New) 5.6e-4 2.0e-36 9.2e-342 1.5e-3219 / 9 5.3

Λ2

M1[2] 3.8e-1 3.6e-3 1.3e-9 6.3e-29 6.8e-87 3 15.3
M2[19] 2.8e-1 2.2e-4 1.0e-16 4.1e-66 1.1e-263 4 27.5
M3[8] 2.8e-2 3.0e-14 4.3e-98 5.2e-685 / 7 23.6
M4[9] 5.9e-2 8.2e-8 4.0e-37 9.4e-184 4.4e-917 5 8.4
M5(New) 4.3e-2 5.8e-18 1.3e-167 7.5e-1578 / 9 5.6

Table 5: Comparison results of Example 5 between different methods

Example 6. In principle, the RQCM method can also work for non-
polynomial function cases. We have compared M5 with the Newton’s
methods M6 in [18] and M7 in [28], by testing f8(t) = 10(150−5t

2) − 1, t ∈
[5.464, 5.494] and f9(t) = esin(20t)−t

3+3 − 1, t ∈ [1, 2], which have simple roots
5.4772 and 1.4204, respectively, as shown in Fig. 6. The comparison results
are shown in Table 6. It shows that M5 converges to correct results while
the other two methods diverge (denoted by —).

4. Conclusions

This paper presents a rational quadratic clipping method (denoted by M5)
for finding a simple root of a polynomial within an interval. By optimizing
the position of an inner interpolation point, it achieves convergence rate
12 to the root t?. By directly bounding t?, it is of linear complexity for per
clipping process. In principle, it can also work for a non-polynomial function
case. Numerical examples show that M5 can achieve a better performance
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(a) (b)

Figure 6: Example 4: Plots of (a) f8(t), t ∈ [5.464, 5.494]; and (b) f9(t), t ∈
[1, 2].

Exam Method 1 2 3 4 CR

f8(t)
M6[18] 1.6e+147 —
M7[28] 41.5 —
M5(New) 5.0e-6 2.2e-52 6.3e-605 / 12

f9(t)
M6[18] 0.5515 —
M7[28] 1.0178 1.5120 5.4108 —
M5(New) 9.0e-2 6.5e-8 2.6e-81 2.4e-957 12

Table 6: Comparison results of Example 6 for non-polynomial cases

than those of other four clipping methods, and can converge to correct result
in some cases where Newton’s methods fail.

At the moment, we assume that the roots of f(t) are isolated by using
previous methods and there is a simple root within the given interval. As for
future work, one may discuss how to isolate the roots of a non-polynomial
function within an interval, and how to deal with a multiple root case for a
non-polynomial function of complicated shape. Moreover, methods similar to
the one presented here can be applied to other system of B-spline functions,
where the given curve is approximated by a rational B-spline curve of degree
two or three. Another topic for future research is to extend our method to
the cases for computing the zero sets of tensor product spline surfaces.
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