
i
i

“2-Fu” — 2018/1/29 — 15:39 — page 85 — #1 i
i

i
i

i
i

Communications in Information and Systems
Volume 17, Number 2, 85–113, 2017

Incremental reconstruction of water-tight

surface from unorganized points

Rao Fu, Cheng Wen, Riqing Chen, Yifan Fu, and Jian Wu∗

Most surface reconstruction algorithms require to input all sample
points during a single process to construct a surface, but this re-
quirement limits their applications in an incremental surface recon-
struction under a consecutive point acquisition process. In this pa-
per, we propose an incremental water-tight surface reconstruction
algorithm, which allows the surface to be updated along with the
incremental construction of the Delaunay triangulation and guar-
antee to output a water-tight surface. The core functioning struc-
tures, called regular umbrella-covered graph (RUCG) and con-
strained umbrella (CU ), are defined to represent the dynamic re-
construction process. Experiments are carried out to demonstrate
the robustness of the proposed algorithm to reconstruct surface
from sparse, dense, little noisy point clouds and point clouds of
discrete objects. Comparisons with other Delaunay-Voronoi based
algorithms are presented to support the effectiveness and superi-
ority of the proposed algorithm. The proposed algorithm is quite
simple, fast and non-parametric, and its complexity is only related
to the 3D Delaunay triangulation of the points.

1. Introduction

In recent years, 3D data-acquisition techniques, such as optics, ultrasound
and electromagnetism, have thrived following the wide spread interest of
reverse engineering, cartography, and medical imaging. Bernardimi et al. [1]
summarize the typical four steps of 3D data-acquisition, including scanning,
data registration, data integration and model conversion. In the field of com-
puter graphics and computational geometry, surface reconstruction belongs
to the data integration phase. The problem of surface reconstruction can be
stated as follows: Given a finite point set P ⊂ R3, sampled from a surface

∗Research supported in part by Knowledge Innovation Program of Basic Research
Projects of Shenzhen under Grant No. JCYJ20160428182053361 and Guangdong
Science and Technology Plan under Grant No. 2017B020210003.

85



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 86 — #2 i
i

i
i

i
i

86 R. Fu, et al.

S ⊂ R3, the aim of surface reconstruction is to recover a surface fitting the
original one [2, 3].

Surface reconstruction is similar to signal reconstruction, and a theory
resembling Nyquist sampling condition should be presented in the field of
surface reconstruction. Amenta et al. [4, 5] first give a “provably correct”
surface reconstruction algorithm based on the notion of ε-sample. However,
ε-sample is a little restrictive, since a sample may be too sparse, too non-
uniform or too noisy to capture the features of the original surface. Al-
gorithms based on ε-sample such as [4, 6–8] fail to construct not “well-
sampled” parts of the original surface. Dey [9] proposes the (ε, κ)-sample
that takes noise into consideration, and gives a theoretical guarantee on his
surface reconstruction algorithm. However, his algorithm will get into diffi-
culty when the point set contains sparse sampling regions. Ohrhallinger et
al. [10] present a heuristic algorithm to connect sparsely sampled points,
but have trouble when encountering dense point sets. It seems that a uni-
versal sampling condition integrating with sparsity, density and noise is still
challenging.

In this paper, we propose an incremental surface reconstruction algo-
rithm to construct a genus zero water-tight surface in spite of different sam-
pling conditions. Here, “water-tight” means that a surface bounds a solid.
A water-tight surface is a 2-manifold without boundary. Especially in the
discrete case, every triangle in the surface mesh has three neighboring trian-
gles, and every edge in the surface mesh is incident to two triangles. Specific
details about our algorithm is introduced in the following sections.

2. Related work

Surface reconstruction can be categorized into two major types. One is ap-
proximation and the other is interpolation [11, 12]. Approximation methods
such as [13, 14] aim at finding an implicit function that best fits the input
data, and use Marching Cubes (MC) [15] to extract the ultimate trian-
gulated surface. Zhao et al. [16] describe another type of implicit surface
reconstruction based on the level set method. In their opinion, the surface
reconstruction problem can be solved by minimizing an energy function that
measures the distance between the surface and points.

(1) E(Γ) =

[∫
Γ
dp(x)ds

] 1

p

, 1 ≤ p ≤ ∞



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 87 — #3 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 87

where Γ is an arbitrary surface, ds is the surface area, and d(x) is the
distance from a point x ∈ Γ to the closest point in the point set.

Interpolation methods build upon Delaunay-Voronoi concepts, and can
directly output a surface mesh. These types of algorithms only require to in-
put point clouds without any additional information such as normal vectors
or scanner information, but are extremely useful in areas such CAD appli-
cations where sample points must be exactly on the reconstructed surface.
The proposed algorithm in this paper falls into these type.

Delaunay triangulation and Voronoi diagram are usually utilized mu-
tually in reconstruction. The pivotal point is that the medial axis can be
approximated by the Voronoi diagram. Amenta et al. [5] propose the crust
algorithm. They define poles as the two Voronoi vertices that are farthest
from the cell’s sample point on the two side of the surface and use them
to filter triangles in the Delaunay triangulation. Later, they introduce the
power crust algorithm [7], which assigns a weight valued by the radius of the
corresponding polar ball to each pole to compute a power diagram, and use
the power diagram to extract a surface. Amenta et al. [6] also propose an-
other algorithm derived from the crust, the cocone algorithm, which selects
surface triangles dual to the Voronoi edges intersected by the cocones. Dey
et al. [17] develop the cocone algorithm into the tight cocone algorithm to
obtain a water-tight surface, which functions as peeling off all tetrahedrons
marked out. In a later study, they [18] propose a localized version of the
cocone algorithm to reconstruct very large but of good quality point sets.

Only Delaunay complexes can be performed for reconstruction relying
on certain topological selecting criteria. Boissonnat [19] develops a sculp-
ture algorithm according to heuristic information, but sometimes the algo-
rithm may quickly end up in local minima and miss interpolating many of
the given points. Edelsbrunner and Mücke [20] propose the α-shapes algo-
rithm, which requires the user to input a globally uniform parameter. It
may fail in processing some details due to the globally uniform parame-
ter. Later, Dey et al. [21] peel tetrahedrons from the α-complex greedily to
construct a surface with provable guarantees. Adamy et al. [22, 23] intro-
duce the notion of λ-interval, and choose umbrellas locally at the vertices
from the Gabriel complex to minimize the maximum of the lower λ-interval
bounds. But post-processing is inescapable for guaranteeing a water-tight
surface. Chaine [24] unifies Zhao’s convection model [16] to a geometric field,
i.e., using Gabriel property to evolve an enclosing surface embedded in the
3D Delaunay triangulation is equal to minimizing the energy function (1).
Ohrhallinger et al. [10] transfer the surface reconstruction problem to find
the triangle mesh minimizing the sum of all triangles’ longest edges, and



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 88 — #4 i
i

i
i

i
i

88 R. Fu, et al.

they introduce the techniques of inflating and sculpturing to enhance the
mesh quality. Peethambaran et al. [8] introduce a topological correct sculp-
ture algorithm, whose output is a proximity graph to capture the proximity
of sample points.

However, all aforementioned algorithms are designed to input all sam-
ple points during a single process to construct a surface. Thus, efficiency
is reduced when encountering consecutive point acquisitions where a sur-
face locally updates with inserting sample points dynamically. For example,
a heart mapping procedure requires a subsequent reconstruction of an en-
docardial surface. Allgre et al. [25] extend Chanie’s geometric convection
approach [24] to a dynamic one, but a pseudo-surface initialization is still
inevitable. Yu et al. [26] propose an incremental ray tracing algorithm to
construct a 2-manifold surface from the image-based-modeling process. But
the rays between cameras and sample points are prerequisite for estimating
the triangular surface mesh.

In this paper, we propose an incremental surface reconstruction algo-
rithm that selects surface triangles during updating Delaunay triangulation
process, rather than after the triangulation is completed. The reconstructed
surface is locally updated along with inserting new sample points one by one,
and can be guaranteed as water-tight without any post-processing. Figure 1
presents how our algorithm updates the surface.

3. Preliminaries

Let P denote the point set in the three dimensional Euclidean space R3, ∂
denote the boundary, and Del(P ) denote the Delaunay triangulation of P .

Definition 1 (Simplicial complex). A simplicial complex K [8, 27] is a
finite set of simplices satisfying the following two conditions:

(a): Any face of any simplex in K is also included in K.

(b): For any two simplices, σ, τ ⊂ K, the intersection σ ∩ τ is either
empty or a face of both σ and τ .

A simplicial k-complex K is a simplicial complex where the largest di-
mension of any simplex is equal to k.

Definition 2 (Regular simplicial 2-complex). A regular simplicial 2-
complex <K2 [8] is a simplicial 2-complex K2 satisfying the following two
restrictions:



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 89 — #5 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 89

Figure 1: Point-by-point reconstruction of an icosahedron. The red line parts
represent the regular umbrella-covered graph (RUCG) and the constrained
umbrella (CU). (a) The initial four points constitute a tetrahedron. (b)
When inserting point 5, we substitute the CU(5) for the RUCG(5). (c) Re-
construction of 11 points, and the insertion of some points is neglected.
(d) The ultimate result is acquired by substituting the CU(12) for the
RUCG(12).

(a): All points in K2 are connected in pairs.

(b): There are no bridges, junction points and dangling edges in K2.

Definition 3 (Umbrella). For a vertex v, an umbrella Uv [17] is the union
of the surface triangles incident to v, which is homeomorphic to a disk.

An umbrella is a closed triangle fan [10], which is also a <K2.

Definition 4 (Circle). A circle [28] is a cyclic sequence of edges such as
AB, BC, CD, DE, EA, where m successive edges are incident to m distinct
common vertices.

∂<K2 and ∂Uv are circles.

Figure 2 gives an illumination of simplicial 2-complex K2, regular sim-
plicial 2-complex <K2, umbrella and circle.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 90 — #6 i
i

i
i

i
i

90 R. Fu, et al.

Figure 2: Illumination of the difference between the non-regular simplicial
2-complex K2 (consisting of two components C1&C2), the regular simplicial
2-complex <K2 and the umbrella. The boundaries of the regular simplicial
2-complex and the umbrella are marked with red. As we can see, both ∂<K2

and ∂Uv are a circle

Definition 5 (Delaunay triangulation). For a point set P , a Delaunay
triangulation (Del for short) is a subdivision of the space into simplices such
that the circum-hypersphere of any simplex in the triangulation contains no
other point in P (Empty-ball property).

Integration of Bowyer-Watson’s incremental algorithm [29, 30] with in-
finite point [27, 31] can help to avoid special care of the points outside the
convex hull. Simplex incident to infinite point is named as ghost otherwise
as solid. In this paper, we use f̂ to denote an oriented facet (with a normal),
use mirror(f̂) to denote the one that shares common vertices but has an
opposite normal regarding f̂ , and use Incident(f̂) to denote the incident
cell of f̂ . Robust geometric predicates [32] and the remembering stochastic
walk [33, 34] for point location are implemented in operation of computing
Delaunay triangulation. Figure 3 gives a brief introduction of the process.

Definition 6 (Gabriel simplex). A simplex is called Gabriel [35] if it
meets Gabriel property, which means the smallest circumscribing ball of the
simplex is empty.

The Gabriel graph (more generally the least squares adjacency graph) is
a subgraph of the Delaunay triangulation excluding the obtuse triangles [28].
The edges both belonging to the Delaunay triangulation and the Gabriel



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 91 — #7 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 91

Figure 3: Illumination of inserting a point [27]. The white dot is a new vertex
to be inserted, and the black dot is the infinite point. The shaded triangle is
the conflict cell, and the unshaded triangle is the Delaunay cell. All shaded
triangles make up the Delaunay hole (DH).

graph must intersect the Voronoi diagram. Gabriel graph of the sample
points provides a good surface description [36]. Chaine [24] has proved that
using Gabriel property to filter triangles in the Delaunay triangulation is
equal to minimizing the energy function (1). See [24] for more details.

4. Surface reconstruction

Figure 4 provides a step-by-step description of inserting a new sample point
for reconstruction. Initialization step is to choose four affinely independent
points (no three points are collinear and no four are coplanar) to initialize a
solid tetrahedron (labeled as internal) and four ghost tetrahedrons (labeled
as external), and choose the four solid oriented triangles to be the initial
surface mesh. Then inserting another new sample point follows the sequences
of the remaining steps of Figure 4.

4.1. Searching for the regular umbrella-covered graph

Definition 7 (Regular umbrella-covered graph). A regular umbrella-
covered graph (RUCG) is a graph satisfying the following three conditions:

(a): RUCG is a <K2.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 92 — #8 i
i

i
i

i
i

92 R. Fu, et al.

Figure 4: A description of inserting one sample point. There may be ex-
ceptions in the steps of “searching for the seed facet”, “searching for the
RUCG” and “creating the CU recursively”. When encountering the excep-
tion, we temporarily store the point index and re-insert it again at the end
of the algorithm.

(b): RUCG is the union of triangles in the surface.

(c): Each triangle in the RUCG locates in the interior of the Delaunay
hole, or it locates on the boundary of the Delaunay hole and does not
satisfy the Gabriel property.

In the three dimensional space, each triangle is incident to two Delaunay
cells. Here, “the interior of the Delaunay hole” means that the triangle’s two
incident cells are both conflict cells, while “the boundary of the Delaunay
hole” means that only one cell incident to the triangle is a conflict cell and
the other is not.

Lemma 8. ∂(RUCG) is a circle.

Proof. Since RUCG is a <K2, ∂<K2 is a circle. As a result, ∂(RUCG) is a
circle. �



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 93 — #9 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 93

RUCG starts from an initial seed facet, and is grown by adding surface
triangles one by one. But the seed facet should meet condition 3 of RUCG.
In other words, the seed facet is a subset of RUCG.

Let Sk denote the current reconstructed surface, and pk+1 denote the
(k + 1)th point needed to be inserted. The seed facet is estimated by the
surface triangle which is nearest to pk+1 among others. First, locate the cell
c containing pk+1 using the remembering stochastic walk; second, choose the
knn (we choose knn = 5 based on experience) nearest points to pk+1 among
the vertices of c and the vertices of its four neighboring cells; finally search
the umbrellas in the surface incident to knn nearest points, and find the
nearest facet fnear to pk+1. Besides, we can easily predicate whether pk+1

is inside or outside the surface mesh depending on whether c is labeled as
internal or external.

The technique of inflating and sculpturing will be introduced thoroughly
in Section 4.3. Here we only summarize the inflating and sculpturing pre-
requirements used in algorithm “searching for the seed facet”. See Figure 5
for illumination.

Figure 5: Inflating is to make an external tetrahedron become internal, while
sculpturing is to make an internal tetrahedron become external. Mean-
while both inflating and sculpturing need to convert surface triangles to
non-surface triangles and convert non-surface triangles to surface triangles.
As presented, surface triangles are shaded, while non-surface triangles are
not. Type1: conversion of two surface facets to the other two surface facets.
Type2: conversion of three surface facets to the other one surface facet.

Pre-requirement of inflating used in seed facet searching (Rule1):

1) The tetrahedron only has two facets in the surface and ac is not inci-
dent to any surface facet.

Pre-requirements of sculpturing used in seed facet searching (Rule2):

1) The tetrahedron only has two facets in the surface and ac is not inci-
dent to any surface facet;



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 94 — #10 i
i

i
i

i
i

94 R. Fu, et al.

2) ac < bd.

However, our algorithm needs to use a list, named as CandidatePoints,
to store the temporarily abandoned points. Here, “abandoned points” means
that pk+1 cannot be inserted into Sk. But pk+1 may be inserted after other
points have been inserted. As a result, we re-insert points stored in Candi-
datePoints when all other points have been inserted.

If “searching for the seed facet” returns false, this means we cannot find
a seed facet when inserting pk+1. Thus, we put pk+1 in CandidatePoints.

Algorithm 1: searching for the seed facet

Input: the nearest oriented surface facet f̂near, pk+1

Output: seed facet

1 c fnear := Incident(f̂near) ;

2 c mirror := Incident(mirror(f̂near)) ;
3 if c fnear is conflict or c mirror is conflict then

4 return seed facet f̂near;

5 else
6 push umbrellas incident to knn nearest points into a list L;

7 for each surface facet t̂mpf in L do

8 c tmpf := Incident(t̂mpf);
9 if c tmpf is conflict then

10 return seed facet t̂mpf ;

11 else if pk+1 is inside and c tmpf meets Rule2 then
12 sculpture c tmpf ;
13 push new created facets into L;

14 else if pk+1 is outside and c tmpf meets Rule1 then
15 inflate c tmpf ;
16 push new created facets into L;

17 return false;

Staring from the seed facet, we use a greedy algorithm to generate a
pseudo RUCG, which may not be regular at all (Figure 6). Then, we utilize
Lemma 8 to test the regularity of the pseudo RUCG. If regularity test fails,
we still push pk+1 into CandidatePoints.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 95 — #11 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 95

Figure 6: Examples of a non-regular pseudo RUCG. The shaded triangles
are parts of the pseudo RUCG, while the white triangle is a hole in the
pseudo RUCG.

4.2. Creating the constrained umbrella recursively

The main purpose of this step is to simultaneously update a 3D Delaunay
triangulation and compute the constrained umbrella (CU) in a depth-first
manner. It labels each newly created tetrahedron as internal or external
respectively, and marks the boundary of all newly created internal tetrahe-
drons as the updated part of the reconstruction.

Let CUv (CU for short) denote the constrained umbrella incident to
vertex v.

Definition 9 (Constrained umbrella). Given a set of edges B, a con-
strained umbrella CUv is an umbrella satisfying the following condition:

For an edge e, if ∀e ∈ ∂(CUv), we have e ∈ B. We say that the boundary
of Uv is constrained by B, namely, CUv.

In our method, we generate CUv, which shares common boundary edges
concerned with RUCG, to substitute RUCG in the surface. If two adjacent
tetrahedrons have different labels (one is internal and the other is external),
the common facet shared by the two tetrahedrons must be a surface facet.
If two adjacent tetrahedrons have the same label (both are either internal
or external), the common facet cannot be a surface facet. As a result, if a
newly generated tetrahedron is adjacent to a same labeled tetrahedron and
the common facet is a surface facet, the surface facet must be deleted. On
the contrary, if two tetrahedrons have different labels and the common facet
has at least an edge e ∈ ∂(RUCG), a new surface facet f will be created,
i.e. , f ∈ CUv.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 96 — #12 i
i

i
i

i
i

96 R. Fu, et al.

Algorithm 2: searching for the RUCG

Input: seed facet ŝeed, pk+1, Delaunay hole DH;
Output: RUCG, ∂(RUCG);

1 mark ŝeed visited;

2 push ŝeed into a list L;
3 while L is not empty do
4 l := pop L;
5 for i = 0 : 2 do

6 t̂mpf := the ith neighbor facets of l in the surface;

7 if t̂mpf has not been visited then

8 if t̂mpf locates in the interior of DH then

9 mark t̂mpf visited;

10 push t̂mpf into L;

11 else if t̂mpf locates on ∂(DH) then

12 if t̂mpf is against Gabriel property then

13 mark t̂mpf visited;

14 push t̂mpf into L;

15 //regularity test;

16 if ∃f̂ ∈ DH has not been marked then
17 return false;

18 B := the boundary of all marked facets;
19 if B is not a circle then
20 return false;

21 else
22 ∂(RUCG) = B;
23 return all marked facets (RUCG);

Let c denote a Delaunay cell, and (c, i) denote an oriented facet f̂ , where
c = Incident(f̂) and i(i = 0, 1, 2, 3) is the relative index of the vertex oppo-

site to f̂ . Let neighbor(c, i) denote the ith neighboring cell of c, and
−−−→
(u, v)

denote an oriented edge, where u and v are vertices respectively.
In a single recursive step, only one tetrahedron will be created. As shown

in Figure 7, cnew is the newly created tetrahedron adjacent to c li, and



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 97 — #13 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 97

cnew has a facet (cnew, li) located on the boundary of the Delaunay hole.
c is a conflict cell, while c li is not. The recursive method starts from an
initial facet, which means that the initial facet must have at least one edge
e ∈ ∂(RUCG), and label the first created tetrahdron as internal. Then the

process searches around an oriented edge (denoted as
−−−−−−→
(vj1, vj2) in the pseu-

docode, and ii, vj1, vj2 and li are in line with the right-hand rule in cell
c) to find another pair composed of a conflict cell c′ and a non-conflict cell
c li′. Nevertheless, if the oriented edge is a subset of the boundary of the
RUCG, the label given for next created cell should be changed.

However, when inserting a point and implementing the recursive cre-
ation process, cnew and c li may have different labels. We assume that
cenw is internal and c li is external. If we generate a new surface facet
(cnew, li), then the surface facet is opposite to the new sample point v
and (cnew, li) /∈ CUv. Thus, a water-tight surface cannot be guaranteed.
We name this phenomenon as umbrella singularity, and still push the point
into CandidatePoints.

Figure 7: An illumination of creating a CU . During a single recursive step
of creating a CU , (c, li) that is shaded in the figure denotes the boundary
facet of the Delaunay hole. Moreover, if c li and cnew have different labels
and the common facet between c and c li is not a surface facet, umbrella
singularity occurs.

The algorithm “recursive creation CU” is shown in Algorithm 3. The
variable “prev ind2 ” is used to prevent creating redundant tetrahedrons at
the same location. Furthermore, all newly created surface facets make up
the constrained umbrella.

Theorem 10. When inserting a new sample point p, substituting the CU(p)
for the RUCG(p) can always guarantee a water-tight surface mesh.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 98 — #14 i
i

i
i

i
i

98 R. Fu, et al.

Algorithm 3: recusive creation CU(c, li, label, change, prev ind2)

Initialization: initial facet (c, li), RUCG, ∂(RUCG),
label := internal, change := true, prev ind2 :=

−1;
1 create a new tetrahedron cnew, and give cnew a label;
2 if change is true and cnew is internal then
3 //(cnew, prev ind2) ∈ CU ;
4 create a surface facet (cnew, prev ind2);

5 c li := neighbor(c, li);
6 if cnew and c li have the same label then
7 delete surface facet; //delete RUCG;

8 else if umbrella singularity then
9 recover all states before inserting pk+1;

10 exit recursive process;

11 mark (c, li) processed; //(c, li) ∈ ∂DH
12 for ii = 0 : 3 do
13 if ii == prev ind2 or ii == li then
14 continue;

15
−−−−−−→
(vj1, vj2) := the oriented edge opposite to

−−−→
(ii, li) in cell c;

16 search cells around
−−−−−−→
(vj1, vj2) to find cell c′ (conflict) and c li′

(not conflict) satisfying c li′ == neighbor(c′, li′);
17 prev ind2′ := the vertex index in c′ (prev ind2′, vj2, vj1 and li′

are line with right-hand rule);
18 label′ := label; change′ := false;

19 if
−−−−−−→
(vj1, vj2) ∈ ∂(RUCG) then

20 label′ := !label; change′ := true;
21 if cnew is internal then
22 create surface facet (cnew, ii); //(cnew, ii) ∈ CU

23 if (c′, li′) has not been processed then
24 recusive creation CU(c′, li′, label′, change′, prev ind2′);

25 return;

Proof. We use mathematical induction to prove this theorem. Let Sk denote
the current reconstructed surface, pk denote the kth point that has been
inserted, and pk+1 denote the (k + 1)th point needed to be inserted.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 99 — #15 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 99

In the beginning, we choose four affinely independent points to initial-
ize a tetrahedron surface mesh, and the initial tetrahedron surface mesh is
water-tight.

After inserting pk, we assume Sk is water-tight, thus every edge in Sk
is incident to two surface triangles. When inserting pk+1, RUCG(pk+1) is
first computed (Algorithm 1 and Algorithm 2). According to Definition 7
and Lemma 8, RUCG(pk+1) is a 2-manifold with boundary. According to
the Definition 9, CU(pk+1) is also a 2-manifold with boundary. Moreover,
CU(pk+1) and RUCG(pk+1) share the same boundary. When we substitute
the CU(pk+1) for the RUCG(pk+1) to obtain Sk+1 (Algorithm 3), every
edge in Sk+1 is still incident to two surface triangles because CU(pk+1)
and RUCG(pk+1) share the same boundary. On the other hand, the surface
triangles incident to pk+1 form a closed fan because CU(pk+1) is an umbrella.
Thus, Sk+1 is still water-tight.

Since both the initialization step and inserting points step have been
performed, by mathematical induction, we can guarantee theorem 10 is true.

�

4.3. Inflating and sculpturing locally

Our recursive method can guarantee to extract a water-tight mesh directly.
However, substituting the CU for the RUCG may lead to surface facets
violating Gabriel property. In order to let the surface mesh smoother, we
develop the technique of inflating and sculpturing to filter non-Gabriel tri-
angles locally. According to [37], six types of tetrahedrons can be added to
a 2-manifold and the result is still a manifold. Similar to [37], our method
only focuses on two types to guarantee a water-tight surface, as previously
presented in Figure 5. However, when Type1 (Figure 5) is implemented in a
water-tight surface, the edge (ac) opposite to the common edge (bd) shared
by two surface facets should not be incident to any surface facet. Otherwise,
a singular edge may occur.

From the perspective of energy function (1), substituting the CU for
the RUCG may fall into a local minimum because there would be exist-
ing facets of CU against the Gabriel property. Ohrhallinger et al. [10] use
the method of minimizing edge length to overcome this difficulty, but this
method fails when encountering dense input point clouds. But we can con-
vert Ohrhallinger’s method to a local scheme that chooses the minimal edge
length between two opposing edges. As a result, if we sculpture a tetrahe-
dron, not only do we need to avoid a singular edge, but also we want the



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 100 — #16 i
i

i
i

i
i

100 R. Fu, et al.

new common edge (ac) to be shorter than the old one (bd) to avoid falling
into a local minimum.

Now, we summarize the pre-requirements of inflating and sculpturing
for every newly generated tetrahedron.

Pre-requirements of inflating a newly created tetrahedron (Rule3):

1) The tetrahedron is not a Gabriel simplex;

2) The tetrahedron only has two facets in the surface and ac is not inci-
dent to any surface facet.

Pre-requirements of sculpturing a new tetrahedron (Rule4):

1) The tetrahedron is not a Gabriel simplex;

2) The tetrahedron only has two facets in the surface and ac is not inci-
dent to any surface facet;

3) ac < bd.

4.4. Inserting isolated vertices

Isolated vertices are those vertices that are not incident to any surface facet.
Isolated vertices occur when RUCG contains umbrellas. The example in
Figure 8 shows that two isolated vertices exist after the RUCG is substituted
by the CU .

Figure 8: The black dots in the dotted red circle represent the isolated
vertices. Isolated vertices occur when RUCG contains umbrellas.

Inserting isolated vertices is the same as inserting sample points, but
isolated vertices have been in the structure of the 3D Delaunay triangulation.
As a result, there will be no new tetrahedrons created when inserting isolated
vertices. We push isolated vertices into a list isolV erList, and re-insert them
after a new sample point has been processed. For each isolated vertex isol,
the process is summarized as follows:



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 101 — #17 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 101

1) Find knn nearest points of isol.

2) Search for the umbrellas incident to knn nearest points and find the

nearest oriented surface facet f̂near to isol.

3) Search for the seed facet f̂ seed via f̂near.

4) Search for the RUCG and confirm the ∂(RUCG).

5) According to the ∂(RUCG), create surface facets incident to isol in
the 3D Delaunay triangulation, and all these facets make up the CU .

However, inserting a vertex v (whether it is a sample point or an iso-
lated vertex) may cause new isolated vertices, depending on whether the
RUCG(v) contains umbrellas. As a result, processing isolV erList may fall
into an endless loop. For example, inserting an isolated vertex isol1 causes
an isolated vertex isol2, and then inserting isol2 causes isol1. As a conse-
quence, we should limit the iterative times to avoid an endless loop. Insert-
ing isolated vertices after a new sample point insertion consumes much time.
However, for extremely dense point sets, there is no need to process isolated
vertices, and thus a similar result can be acquired using much less time.

Figure 9 shows a comparison of two reconstructions of a sparse point
set: one neglects isolated vertices insertion, while the other does not. Note
that isolated vertices stored in isolV erList have been in the structure of the
3D Delaunay triangulation. However, the points stored in CandidatePoints
are not in the structure of the Delaunay triangulation.

Figure 9: Reconstruction of a Pear (235 points): (a) Isolated vertices inser-
tion is ignored. (b) Isolated vertices insertion is taken into consideration.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 102 — #18 i
i

i
i

i
i

102 R. Fu, et al.

4.5. An overview of the proposed algorithm

Now, we summarize our algorithm (Algorithm 4).

Algorithm 4: The whole algorithm

1 Initialize 4 affinely independent points;
2 for the remaining point p in P do
3 Search for the seed facet, and if the process returns false, push p

into the CandidatePoints; //Algorithm 1
4 Search for the RUCG(p), and if the process returns false, push

p into the CandidatePoints; //Algorithm 2
5 Create the CU recursively, and if singularity occurs, push p into

the CandidatePoints; //Algorithm 3
6 for every new created surface facet f̂ do

7 ctemp := Incident(f̂);
8 if ctemp obeys Rules3 then
9 inflate ctemp;

10 if ctemp obeys Rules4 then
11 sculpture ctemp;

12 //This can be ignored for large point sets;
13 Insert points stored in isolV erList;

14 Re-insert points stored in CandidatePoints;

Re-inserting points stored in CandidatePoints is to insert these points
again when all other points have been processed, and the permutation of
the insertion order should be randomized for the benefits of acceleration.
However, some points cannot be inserted in any case, and therefore, an
upper bound of iterative times needs to be set to prevent an endless loop.

5. Results and discussion

Our algorithm initializes the solid tetrahedron as the initial surface mesh,
and updating the surface mesh by substituting the constrained umbrella for
the regular umbrella-covered graph does not change the genus. As a result,
our algorithm is designed to reconstruct this type of surface that is genus zero
and has no boundary. In practical applications, sample conditions and noises
have a great impact on the quality of the reconstructed surface, as well as the
smoothness. In this section, we give some experiments on different sample



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 103 — #19 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 103

conditions, and compare the reconstruction results with some well-known
Delaunay-Voronoi algorithms. The proposed algorithm is implemented on
an Intel 3.70GHz i3 CPU and 16GB RAM PC, and Visual Studio 2012
is used to compile the source code in the release model. Other algorithms
prepared for comparison are implemented in the same environment.

Uniform and dense point clouds are relatively easy to reconstruct a de-
sirable surface mesh. Figure 10 presents some reconstruction results of the
proposed algorithm from uniform point sets in different sizes. The algorithm
is able to reconstruct very fine details of the models, for example, the furs
of the Bunny, the wrinkles of Caesar and the curled hair of Bimba.

Figure 10: (a) Bunny (35,947 points, 4.149s), (b) Caesar (387,900 points,
67.626s), and (c) Bimba (502,693 points, 77.913s).

Figures 9 and 11 present the robustness of our algorithm on the non-
uniform point sets, and compare the results with Peethambaran’s algorithm
[8]. The point cloud of the Pear (Figure 9) is highly non-uniformed. The
presented point cloud in Figure 11 has a higher point density in the ears,
nose and eye regions, and the distribution is also non-uniform. Due to the
non-uniformness, it is likely for most algorithms to create undesired surface
facets that may hardly match the original one. As we can see, uncorrected
surface facets are generated in Peethambaran’s algorithm, while the output
of our algorithm yields a better result. Furthermore, our algorithm uses
0.234s to reconstruct this non-uniform Mannequin, while Peethambaran’s
algorithm uses 2.062s to reconstruct an undesired Mannequin.

Noise that is inevitable in practical use is another challenge for surface
reconstruction. Delaunay-Voronoi based surface reconstruction algorithms
are sensitive to noise. However, the robust cocone [9] proposed by Dey is a
prior Delaunay-Voronoi based algorithm in the presence of noise. Figure 12
shows the test of our algorithm and the robust cocone on little noisy point
sets. Although the output of the robust cocone is smoother, it looses many



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 104 — #20 i
i

i
i

i
i

104 R. Fu, et al.

Figure 11: Reconstruction of a non-uniform Mannequin (2,527 points). The
above is the point set, and the below is the comparison.

details, such as the eyes and the mouth, due to dropping many points. On
the contrary, though our algorithm also drops some points, it preserves the
fine features well.

Most Delaunay-Voronoi based surface reconstruction algorithms need
to compute a Delaunay triangulation or a Voronoi diagram first (some need
both of them), and then extract a surface graph. Unlike them, our algorithm
simultaneously updates a spatial Delaunay triangulation and outputs a sur-
face graph. Thus, the time complexity is mainly dominated by computing
the Delaunay triangulation. As a result, it is faster than most algorithms.
Except the running time of the male face in Figure 12 (dropping too many
sample points of this model reduces the running time of the robust cocone),
our algorithm is faster than others.

For off-line reconstruction, we strongly recommend inserting points ran-
domly. Randomization not only helps to support fast point location, but also



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 105 — #21 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 105

Figure 12: Reconstruction of two human faces with little noise (left: 24,859
points, right: 16,599 points). (a) Robust cocone (left: 10.156s, right: 6.225s),
and (b) Ours (left: 10.343s, right: 3.869s).

can optimize the running time of the Bowyer-Watson’s algorithm. If we ex-
clude the point location step, the time complexity of the three-dimensional
Bowyer-Watson algorithm is O(n2), where n is the size of the point set. In
fact, most global Delaunay-Voronoi based surface reconstruction algorithms
use the quick hull algorithm [38] to compute a Delaunay triangulation. The
quick hull algorithm is a variation of the randomized incremental algorithms
for computing a Delaunay triangulation. In our program, we only use the
array to store geometric and topological information, such as the vertices of
each Delaunay cell, the vertices of each surface facet, and the adjacent rela-
tionships. Thus, a quick access to this information can be acquired in a short
time. We do not use the conflict graph [38] to store the information related
to the uninserted points, which may be unreliable for online reconstruction.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 106 — #22 i
i

i
i

i
i

106 R. Fu, et al.

Figure 13: Reconstruction of different models. From the left to the right are
Rhombicuboctahedron, Apple, Buddha, Laurna and Manequin (dense and
uniform) respectively. Hole regions in the surface are marked with red.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 107 — #23 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 107

Another advantage of our algorithm is that no parameters are needed,
and it can reconstruct a surface from only points. Some algorithms, such
as poisson surface reconstruction [14] and ball pivoting [1], require the user
to input parameters, which have a strong effect on the ultimate results.
Especially reconstructing point clouds lack of normals challenges the task of
normal estimation when the input data have imperfections [39].

Though our algorithm is heuristic, experiments show that it can be
adapted to point sets of discrete objects, highly uniform point sets, sparse
unorganized point sets and dense point sets. Figure 13 and table 1 testify the
superiority of our algorithm over others. It can achieve a balance between
different requirements such as fine feature preservation, robustness to little
noise, and less reconstruction time.

As presented in Figure 13 and table 1, Ohrhallinger’s algorithm [10]
works well for sparse point sets, but performs poorly for dense point sets.
Especially when reconstructing large point sets, their algorithm produces
many undesired surface facets. Furthermore, the running time of their al-
gorithm is a little longer than others. Peethambaran’s algorithm [8] fails to
reconstruct the Rhombicuboctahedron, which is a discrete object. When re-
constructing the Laurana, the pedestal has been separated into many pieces.
The power crust [7] also fails to reconstruct the Rhombicuboctahedron. On
the other hand, the output of the power crust is not a triangular mesh and
introduces extra points. Thus, some vertices of the output surface mesh are
not the sample points at all. Especially when reconstructing the Apple, the
texture of the output surface mesh is not as good as others. Moreover, there
is no result output when reconstructing the dense and uniform Mannequin,
due to an adjacent error. The cocone [6], the robust cocone [9] and the tight
cocone [17] fail to reconstruct sparse sampled points. For reconstruction of
the Buddha, both the cocone and the tight cocone leave holes on the surface
mesh, while the robust cocone fails to interpolate many points.

Though our algorithm may also produce some unwanted surface facets, it
can achieve a balance in those requirements. The advantages of our algorithm
are summarized as follows:

1) It is non-parametric and only takes points as input;

2) It can reconstruct discrete objects and be robust to little noise;

3) It can reconstruct smooth objects from both sparse and dense points;

4) It simultaneously outputs a triangular water-tight surface mesh with
a spatial Delaunay triangulation;



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 108 — #24 i
i

i
i

i
i

108 R. Fu, et al.

Table 1: Running time of different algorithms

Methods
Running Time (s)

Buddha Laurana Manequin

Ohrhallinger’s 3.4 48.94 183.8

Peethambaran’s 2.047 2.748 4.184

Power Crust 0.446 7.222 /

Cocone 0.78 13.31 /

Robust cocone 0.687 14.7 38.673

Tight cocone 0.733 11.398 26.457

Ours 0.261 6.708 8.239

5) Its complexity is only related to the 3D Delaunay triangulation of the
points, and thus it can reconstruct a surface graph in a shorter time.

6. Conclusion and future work

In this paper, an incremental and dynamic surface reconstruction algorithm
is proposed to output a water-tight surface graph that can be guaranteed.
The main novelty of this algorithm is that the surface graph updates with a
spatial Delaunay triangulation of the points processed up to now. Another
contribution of our work is to implement the technique of local inflating and
sculpturing to smooth the reconstructed surface and take isolated vertices
into consideration to avoid dropping too many points. We have done some
experiments on different sampling conditions to prove the robustness of our
algorithm. Meanwhile the running time of our algorithm is faster than others.

However, our algorithm still has some drawbacks. Most Delaunay-Voronoi
based algorithms fail when encountering degenerate cases. Figure 14 illus-
trates an example of inserting points in a badly arranged order. The draw-
back can be avoided by randomizing the insertion order. Guibas et al. [40]
give a randomized incremental algorithm of constructing Delaunay trian-
gulation. They give provable guarantees for randomization. Though we do
not give any provable guarantees, randomization not only accelerates the
process of surface reconstruction, but also enhances the reconstruction re-
sults. However, a global randomization is a little restrictive for incremental
algorithms. In recent years, a biased increment construction of the Delau-
nay triangulation [41, 42] has been studied by researchers. Derived from this
idea, we recommend using a buffer to store a biased randomized insertion
order to avoid degeneracy, and we wish to combine a biased randomized



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 109 — #25 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 109

insertion order with other theoretically proved techniques to overcome the
degenerate cases in the future work.

Figure 14: Reconstruction of Apple in a badly arranged point insertion or-
der: (a) the permutation of the point insertion order; (b) reconstruction
results.

Acknowledgement

All models are rendered by VTK [43]. Furthermore, the models are avail-
able online, including Standford 3D scanning repository, VRML models, and
Aim@shape. Especially, we appreciate that Dey and Jiju Peethambaran offer
their compiled programs.

References

[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
The Ball-Pivoting Algorithm for Surface Reconstruction, IEEE Transac-
tions on Visualization and Computer Graphics 5 (200), no. 4, 349–359.

[2] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, A
benchmark for surface reconstruction, Acm Transactions on Graphics
32 (2013), no. 2, 20.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 110 — #26 i
i

i
i

i
i

110 R. Fu, et al.

[3] H. W. Lin, C. L. Tai, and G. J. Wang, A mesh reconstruction algorithm
driven by an intrinsic property of a point cloud, Computer-Aided Design
36 (2004), no. 1, 1–9.

[4] N. Amenta and M. Bern, Surface reconstruction by Voronoi filtering,
Discrete and Computational Geometry 22 (1999), no. 4, 481–504.

[5] N. Amenta, M. Bern, and D. Eppstein, The Crust and the β-Skeleton:
Combinatorial curve reconstruction, Graphical Models and Image Pro-
cessing 60 (1998), no. 2, 125–135.

[6] N. Amenta, S. Choi, T. K. Dey, and N. Leekha, A simple algorithm for
homeomorphic surface reconstruction, International Journal of Compu-
tational Geometry and Applications 12 (2000), 213–222.

[7] N. Amenta, S. Choi, and R. K. Kolluri, The power crust, unions of balls,
and the medial axis transform, Computational Geometry 19 (2000),
no. 2-3, 127–153.

[8] J. Peethambaran and R. Muthuganapathy, Reconstruction of water-
tight surfaces through Delaunay sculpting, Computer-Aided Design 58
(2015), 62–72.

[9] T. K. Dey and S. Goswami, Provable surface reconstruction from noisy
samples, Computational Geometry 58 (2006), 124–141.

[10] S. Ohrhallinger, S. Mudur, and M. Wimmer, SMI 2013: Minimizing
edge length to connect sparsely sampled unstructured point sets, Com-
puters and Graphics 37 (2013), no. 6, 645–658.

[11] D. Boltcheva and B. Lévy, Surface reconstruction by computing re-
stricted Voronoi cells in parallel I, Computer-Aided Design (2017).

[12] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva, A survey of surface reconstruc-
tion from point clouds, Computer Graphics Forum 36 (2017).

[13] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle,
Surface reconstruction from unorganized points, ACM, 1992.

[14] M. Kazhdan, M. Bolitho, and H. Hoppe, Poisson surface reconstruction,
Eurographics Symposium on Geometry Processing (2006), 61–70.

[15] W. E. Lorensen and H. E. Cline, Marching cubes: a high resolution
3D surface construction algorithm, ACM siggraph computer graphics
(1987), 163–169.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 111 — #27 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 111

[16] H. K. Zhao, S. Osher, and R. Fedkiw, Fast surface reconstruction using
the level set method, Variational and level set methods in computer
vision (2001), Proceedings. IEEE Workshop on, 194–201, 2001.

[17] T. K. Dey and S. Goswami, Tight cocone: a water-tight surface recon-
structor, Proceedings of the eighth ACM symposium on Solid modeling
and applications, ACM (2003), 127–134.

[18] T. K. Dey R. Dyer, and L. Wang, Localized Cocone surface reconstruc-
tion, Computers and Graphics 35 (2011), no. 3, 483–491.

[19] J. D. Boissonnat, Geometric structures for three-dimensional shape
representation, ACM Transactions on Graphics 3 (1984), no. 4, 266–
286.

[20] H. Edelsbrunner and E. P. Mücke, Three-dimensional alpha shapes,
ACM Transactions on Graphics 13 (1994), 43–72.

[21] T. K. Dey, K. Li, E. A. Ramos, and W. Rephael, Isotopic reconstruc-
tion of surfaces with boundaries, Symposium on Geometry Processing
(2009), 1371–1382.

[22] U. Adamy, J. Giesen, and M. John, Surface reconstruction using um-
brella filters, Computational Geometry Theory 21 (2002), 63–86.

[23] U. Adamy, J. Giesen, and M. John, New techniques for topologically
correct surface reconstruction, Conference on Visualization, IEEE Com-
puter Society Press, 373–380, 2000.

[24] R. Chaine, A geometric convection approach of 3-D reconstruction,
Eurographics Symposium on Geometry Processing (2003), 218–229.

[25] R. Allgre, R. Chaine, and S. Akkouche, Convection-driven dynamic
surface reconstruction, International Conference on Shape Modeling
and Applications (2005), 33–42.

[26] S. Yu and M. Lhuillier, Incremental reconstruction of manifold surface
from sparse visual mapping, International Conference on 3d Imaging
(2012), 293–300.

[27] S. W. Cheng, T. K. Dey, and J. Shewchuk, Delaunay mesh gen-
eration, Computational Mathematics and Mathematical Physics 50
(2013), no. 1, 38–53.

[28] D. W. Matula and R. R. Sokal, Properties of gabriel graphs relevant to
geographic variation research and the clustering of points in the plane,
Geographical Analysis 12 (1980), no. 3, 205–222.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 112 — #28 i
i

i
i

i
i

112 R. Fu, et al.

[29] A. Bowyer, Computing Dirichlet tessellations, Computer Journal 24
(1981), no. 2, 162–166.

[30] D. F. Watson, Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes, Computer Journal, 24 (1981), no. 2,
167–172.

[31] R. Chen and C. Gotsman, Localizing the Delaunay triangulation and
its parallel implementation, Ninth International Symposium on Voronoi
Diagrams in Science and Engineering (2012), 24–31.

[32] J. R. Shewchuk, Robust adaptive floating-point geometric predicates,
Scg Proceedings of the Twelfth Annual Symposium on Computational
Geometry (1996), 141–150.

[33] CGAL, Computational Geometry Algorithms Library.

[34] O. Devillers, S. Pion, and M. Teillaud, Walking in a triangulation
(2001), 106–114.

[35] F. Cazals and J. Giesen, Delaunay triangulation based surface recon-
struction, 2006.

[36] J. Giesen and M. John, Surface reconstruction based on a dynamical
system †, Computer Graphics Forum 21 (2002), 363–371.

[37] V. Litvinov and M. Lhuillier, Incremental solid modeling from sparse
and omnidirectional structure-from-motion data, British Machine Vi-
sion Conference (2013), 61.1–61.11.

[38] C. B. Barber and D. P. Dobkin, The quickhull algorithm for convex
hulls, ACM Transactions on Mathematical Software 22 (1998), no. 4,
469–483.

[39] S. Xiong, J. Zhang, J. Zheng, J. Cai, and L. Liu, Robust surface recon-
struction via dictionary learning, ACM Transactions on Graphics 33
(2014), no. 6, 201.

[40] L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental
construction of Delaunay and Voronoi diagrams, Algorithmica 7 (1992),
no. 1, 381–413.

[41] N. Amenta, S. Choi, and G. Rote, Incremental constructions con BRIO,
Nineteenth Symposium on Computational Geometry (2003), 211–219.

[42] O. Devillers, Delaunay triangulation and randomized constructions,
Springer New York, 2014.



i
i

“2-Fu” — 2018/1/29 — 15:39 — page 113 — #29 i
i

i
i

i
i

Incremental reconstruction of water-tight surface 113

[43] Kitware, The VTK user’s guide, 2010.

Research Center of Biomedical Engineering

Graduate School at Shenzhen, Tsinghua University

Shenzhen, 518055, China

Department of Biomedical Engineering, Tsinghua University

Beijing, 100084, China

E-mail address: fur15@mails.tsinghua.edu.cn

Research Center of Biomedical Engineering

Graduate School at Shenzhen, Tsinghua University

Shenzhen, 518055, China

Department of Biomedical Engineering, Tsinghua University

Beijing, 100084, China

E-mail address: wc984145602@126.com

Research Center of Biomedical Engineering

Graduate School at Shenzhen, Tsinghua University

Shenzhen, 518055, China

Department of Biomedical Engineering, Tsinghua University

Beijing, 100084, China

E-mail address: chenrq12@mails.tsinghua.edu.cn

Research Center of Biomedical Engineering

Graduate School at Shenzhen, Tsinghua University

Shenzhen, 518055, China

Department of Biomedical Engineering, Tsinghua University

Beijing, 100084, China

E-mail address: fuyf14@mails.tsinghua.edu.cn

Research Center of Biomedical Engineering

Graduate School at Shenzhen, Tsinghua University

Shenzhen, 518055, China

E-mail address: wuj@sz.tsinghua.edu.cn


	Introduction
	Related work
	Preliminaries
	Surface reconstruction
	Results and discussion
	Conclusion and future work
	Acknowledgement
	References

