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The Chebyshev accelerating method for

progressive iterative approximation

Chengzhi Liu, Xuli Han, and Juncheng Li∗

This paper proposes a new accelerating method for the progressive
iterative approximation by using normalized totally positive bases.
We prove that the method achieves an order-of-magnitude im-
provement compared to the weighted progressive iterative approx-
imation. Moreover, we have shown that the well-known weighted
progressive iterative approximation is a special application of the
proposed method. The convergence is also analysed for all normal-
ized totally positive bases. At the end, some numerical examples
are given to illustrate the efficiency of the proposed method.

1. Introduction

The progressive iterative approximation(PIA) is used to find a curve or sur-
face to approximate to a given set of data points. It has been extensively
applied in various fields of science, such as Computer Aid Geometry De-
sign(CAGD), inverse engineering, huge data fitting etcs. The PIA was firstly
proposed by Qi et al.[1] in 1975, and de Boor[2] proved the convergence of
PIA for the uniform cubic B-spline basis in 1979. In 2005, Lin et al.[3] showed
that the PIA property holds for any normalized totally positive (NTP) basis.
While in practise, large number of experiments have shown that the spec-
tral radius of PIA is close to unity, which means that the convergence rate
is usually very slow. Marco et al.[4] indicated that the collocation matrix is
exponentially ill-conditioned as the polynomial degree increases. Deng and
Wang[5] also pointed out that the main reason of slow convergence was the
ill-conditioned matrix.

In recent years, researchers have been working on finding fast and ac-
curate algorithms to accelerate the convergence rate of PIA. In 2010, Lu[6]
proposed the weighted progressive iterative approximation, which speeded
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up the convergence rate by inserting a parameter. Lin[7] pointed out the local
property of the PIA and proposed the local progressive-iterative approxima-
tion format. The generalized minimal residual(GMRES) method was used
as an alternative iterative method by Carnicer et al.[8]. By introducing the
idea of precondition, Carnicer et al.[9] proposed several variants of the PIA
iterations . In 2011, Lin and Zhang[10] developed the extended PIA (EPIA)
format, in which the number of the control points were less than that of
the given data points. In 2012, Deng and Wang[5] presented a method to
accelerate the convergence rate by QR decomposition. In 2014, Deng and
Lin[11] obtained the progressive iterative approximation for least square fit-
ting (LSPIA). In [11], only a part of the data points were selected as the
control points for iteration. In 2015, Liu and Deng[12] proposed the progres-
sive iterative approximation for interpolating a set of points by non-uniform
cubic B-spline curves based on the Jacobi iterative method.

Carnicer et al.[8] showed that the interpretation of the PIA iterations
can be regarded as the classic Richardson iteration for linear system. Deng et
al.[5] also deduced the equivalence of the progressive iterative approximation
method and the algebraic interpolation method. It is well known that the
Chebyshev semi-iterative method is useful when we know even more about
spectrum of the iterative matrix. The main purpose of this paper is to use
the Chebyshev semi-iterative method in constructing an effective approach
to accelerate the convergence rate of PIA.

This paper is organized as follows: In Section 1, the progressive itera-
tive approximation and the weighted progressive iterative approximation is
introduced. In Section 2, the Chebyshev semi-iterative method is used to
speed up the convergence rate of PIA. In Section 3, the convergence of the
algorithm is discussed. At the end, some numerical examples are given to
illustrate the efficiency of our methods.

2. Preliminary

2.1. Brief introduction of PIA

Given a sequence of control points {pi} in R2 or R3, whose ith point is
assigned to a parameter value ti, i = 0, 1, . . . , n. Let {ui(t)}ni=0 be a blending
basis, which is known as the normalized total positive (NTP) basis if they

are nonnegative and satisfy
n∑
i=0

ui(t) = 1. Then we can construct the initial
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The Chebyshev accelerating method for PIA 27

curve

r(0)(t) =

n∑
j=0

p
(0)
j uj(t),

where p
(0)
i = pi for all i = 0, 1, . . . , n. Then the (k + 1)th curve can be gen-

erated by

(1) r(k+1)(t) =

n∑
j=0

p
(k+1)
j uj(t), (k = 0, 1, 2, . . . ).

where p
(k+1)
i = p

(k)
i + ∆

(k)
i , ∆

(k)
i = pi − r(k)(ti).

Therefore,we get a sequence of curves r(k)(t), and the initial curve has
the progressive iterative approximation property if lim

k→∞
r(k)(ti) = pi.

The iterative progress can be written in the matrix form as follows

(2) ∆(k+1) = (I −B)∆(k) = (I −B)k+1∆(0).

where I is the identity matrix and B is the collocation matrix of a system
(u0(t), ..., un(t)) at the parameters ti, i = 0, 1, . . . , n. From (1) and (2), we
can also define the sequence of control polygons as follows.

p
(k+1)
i = p

(k)
i + pi − r(k+1)(ti)(3)

= p
(k)
i + pi −

n∑
j=0

p
(k)
j uj(ti), i = 0, 1, . . . , n.

Similarly, (3) can be written as the matrix form

(4) P(k+1) = P + (I −B)P(k),

where P(k) = [p
(k)
0 ,p

(k)
1 , . . . ,p

(k)
n ],P = [p0,p1, . . . ,pn].

The PIA property means that the sequence of control polygons P(k) =

[p
(k)
0 ,p

(k)
1 , . . . ,p

(k)
n ] converges to the control polygon of the interpolating

curve Q = [Q0,Q1, . . . ,Qn] when k →∞, hence we have

n∑
j=0

Qjuj(ti) = pi, i = 0, 1, . . . , n.
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2.2. Alternative comprehension of PIA

Here we give an alternative comprehension of PIA. The main idea of PIA
is to find an optimal control polygon Q = [Q0,Q1, . . . ,Qn] to minimize the
distances between the curve r(t) and the points p0,p1, . . . ,pn, that is

min f(Q0,Q1, . . . ,Qn) = min

n∑
i=0

‖pi − r(ti)‖2

= min

n∑
i=0

∥∥∥∥∥∥pi −
n∑
j=0

Qjuj(ti)

∥∥∥∥∥∥
2

.

To minimize the f(Q0,Q1, . . . ,Qn), set the gradient of f equals to zero, i.e.,

∂f

∂Qj

= −2

n∑
j=0

uj(ti)

∥∥∥∥∥∥pi −
n∑
j=0

Qjuj(ti)

∥∥∥∥∥∥ = 0, i = 0, 1, . . . , n.

Hence,we have pi −
n∑
j=0

Qjuj(ti) = 0, i = 0, 1, . . . , n, which can be written as

a linear system

(5) BQ = P.

Therefore the control polygon Q can be obtained by solving the linear system
(5). It is well known that the classical Richardson iterative method (See[15].)
can be used to solve the linear system (5), hence we have the iterative process
P(k+1) = (I −B)P(k) + P.

Remark 1. The PIA can also be seem as the classical iterative method
for solving a linear system BQ = P, and I −B is the iterative matrix. As
is known to all, the iterative progress converges if and only if the spectral
radius is less than unity, i.e., ρ(I −B) < 1. Generally speaking, the smaller
the spectral radius is, the faster the rate of convergence is. This means that
we can use the other methods to construct a sequence of control polygons
which converges to the control polygon of the interpolating curve.

Here we introduce a lemma which will be used in the following section.

Lemma 2. (See [6].) Let B =
(
uj(ti)

)j=0,1,...,n

i=0,1,...,n
be a collocation matrix of

an NTP basis, and let λi(i = 0, 1, . . . , n) be its eigenvalues sorted in nonin-
creasing order. Then,
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The Chebyshev accelerating method for PIA 29

(a): λ0 = ρ(B) = 1 and 0 < λi ≤ 1 for all i = 0, 1, . . . , n;

(b): 0 ≤ ρ(I −B) = 1− λn < 1, the eigenvalues of I −B satisfy 0 ≤
λi(I −B) ≤ 1− λn, (i = 0, 1, . . . , n).

2.3. The weighted progressive iterative approximation

In order to accelerate the convergence of the PIA, Lu[6] proposed the
weighted progressive iterative approximation via multiplying by a weight
ω, i.e.,

(6) p
(k+1)
i = p

(k)
i + ω∆

(k+1)
i ,

where ω is a positive real number between 0 and 2, and it is taken to guar-
antee the convergence rate of the iterative process. Obviously, it degenerates
into the progressive iterative approximation when ω = 1.

From (2) and (6), we can obtain that the matrix form of the weighted
progressive iterative approximation is

(7) P(k+1) = (I − ωB)P(k) + ωP.

Lu[6] has obtained the optimal value of ω by the following lemma:

Lemma 3. The weighted progressive iterative approximation has the fastest
convergence rate when ω = 2

1+λn
, and in such case ρ(I − ωB) = 1−λn

1+λn
.

3. The Chebyshev accelerating technique for PIA

In this section, we give another way to accelerate the convergence rate of
the iterative process. Suppose P(0),P(1), . . . ,P(m) have been generated by
the iterative process (4), we consider the linear combinations of the vectors
P(j)(j = 0, 1, . . . ,m), that is

(8) q(m) =

m∑
j=0

am,jP
(j),
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where
m∑
j=0

am,j = 1. Both sides of (8) are subtracted by Q simultaneously

and let δm = q(m) −Q, then

(9) δm =

m∑
j=0

am,j(P
(j) −Q) =

 m∑
j=0

am,j(I −B)j

 (P(0) −Q).

By using the 2-norm, we have

‖δm‖2 =

∥∥∥∥∥∥
[

m∑
j=0

am,j(I −B)j

]
(P(0) −Q)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
[

m∑
j=0

am,j(I −B)j

]∥∥∥∥∥∥
2

∥∥(P(0) −Q)
∥∥
2
.

Let pm(t) =
m∑
j=0

am,jt
j , then we can define the matrix polynomial pm(I −

B) =
m∑
j=0

am,j(I −B)j , which follows from (9) that

(10) ‖δm‖2 ≤
∥∥pm(I −B)

∥∥
2

∥∥(P(0) −Q)
∥∥
2
.

If the norm
∥∥pm(I −B)

∥∥
2

is small enough, then ‖δm‖2 is so close to zero as
m increases. This means that we could find an optimal polynomial pm(t) to
minimize the error norm ‖δm‖2. As is known to all, the Chebyshev polynomi-
als are suitable for these whose eigenvalues of the iterative matrix distributed
at the interval (−1, 1). Fortunately, the lower and upper bounds of the eigen-
values of the iterative matrix (I −B) can be calculated accurately. Hence,
we can use the Chebyshev polynomials to speed up the rate of convergence.

Consider the Chebyshev polynomials Cm(x) generated by the recursion

(11) Cm+1(x) = 2xCm(x)− Cm−1(x),m = 1, 2, . . . ,

where C0(x) = 1 and C1(x) = x. For the minimal eigenvalue λn given in
Lemma1, then the polynomial in (10) can be chosen as follows

(12) pm(x) =
Cm(2x+λn−1

1−λn
)

Cm(µ)
.

where µ = 1+λn

1−λn
. It is easy to verify that pm(1) = 1.
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The Chebyshev accelerating method for PIA 31

Remark 4. As is mentioned in (8), given an iterative sequence, one can
construct another sequence which will converge faster than the given method.
This method is known as the semi-iterative method. Especially, it is called
Chebyshev semi-iterative method when the polynomial is constructed by us-
ing Chebyshev polynomials. Golub et al. have pointed the polynomial (12)
is the optimal polynomial which minimizes ‖δm‖2, readers can refer to [16]
for more details.

For the sake of understanding, we discuss the accelerated iterations with
the linear and quadratic polynomials separately. Since C0(x) = 1, C1(x) =
x,C2(x) = 2x2 − 1, from (12) we have

p0(x) = 1, p1(x) =
2x− 1 + λn

1 + λn
,

p2(x) =
8x2 − 8(1− λn)x+ (1− λn)2

λ2n + 6λn + 1
.

(1) If m = 1, then p1(I −B) = 2(I−B)−(1−λn)I
1+λn

= (1+λn)I−2B
1+λn

. By (9), we
have

q(1) −Q =
(1 + λn)I − 2B

1 + λn
(P(0) −Q).

Note that BQ = P and q(0) = P(0) = P, then

(13) q(1) =
(1 + λn)I − 2B

1 + λn
q(0) +

2

1 + λn
P.

Suppose q(k) is an approximation to Q, a natural way to generate a new
approximation q(k+1) is to compute

(14) q(k+1) =
(1 + λn)I − 2B

1 + λn
q(k) +

2

1 + λn
P,

which is just the weighted progressive iterative approximation with ω =
2

1+λn
. Hence we have the following theorem.

Theorem 5. The iterative process (14) can be regarded as a particular ap-
plication of the weighted progressive iterative approximation with the optimal
weight ω = 2

1+λn
.
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Proof. For the weighted progressive iterative approximation with ω = 2
1+λn

,
we have

P(k+1) = (I − ωB)P(k) + ωP

= (I − 2

1 + λn
B)P(k) +

2

1 + λn
P

=
(1 + λn)I − 2B

1 + λn
P(k) +

2

1 + λn
P,

which is the same as the process (14), then the conclusion holds. �

(2) If m = 2, then p2(I −B) = 8(I−B)2−8(1−λn)(I−B)+(1−λn)2I
λ2
n+6λn+1 . Similarly,

we have the quadratic Chebyshev polynomial accelerating iteration

(15) q(k+1) = p2(I −B)q(k) − 8B − 8(1 + λn)I

λ2n + 6λn + 1
P.

In order to obtain a more practical accelerating procedure, we take the
more generally situation into account for calculating q(k+1). By substitut-
ing pm−1(I −B), pm(I −B),pm+1(I −B)into (9) and using the recurrence
relation (11), we have the following relationship(For more details about the
deduction, refer to the semi-iterative methods in [17, 18]).

q(m+1) =
ρm+1

1 + λn
{[2(I −B)− (1− λn)I]q(m) + 2P}(16)

+ (1− ρm+1)q
(m−1)], m ≥ 1.

where ρ1 = 1, ρ2 = 2µ2

2µ2−1 and ρm+1 = (1− ρm
4µ2 )−1,m ≥ 2. From (13), we have

q(0) = P(0) and q(1) = 2(I−B)−(1−λn)I
1+λn

q(0) + 2
1+λn

P.
Thus we obtain the Chebyshev accelerating technique for the PIA(CA-m

for short), herem represents the degree of the polynomial pm(t). Particularly,
the iterative process (14) is the CA-1(also named weighted progress iteration
approximation by Theorem 5) and the iterative process (15) is the CA-2
method. The convergence analysis will be discussed in the next section.

Remark 6. Note that the iterative matrix of CA-2 is

8(I −B)2 − 8(1− λn)(I −B) + (1− λn)2I

λ2n + 6λn + 1
,

we have to calculate (I −B)2. While in the iterative process (16), CA-m
not needs to compute the multiplication of matrices. As is known to all,
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the multiplication of matrices brings large computation costs, therefore, we
are more willing to use the iterative process (16) in practise because it has
almost the same computationally demanding as the Weighted PIA.

4. Convergence analysis

Firstly, we introduce several definitions to measure the rate of convergence.

Definition 7. (See[17].) The virtual average spectral radius of iterative
process (16) is [ρ

(
pm(I −B)

)
]

1

m .

Definition 8. (See[17].) The average rate of convergence of iterative pro-
cess (16) is defined by

Rm = − 1

m
log ρ

(
pm(I −B)

)
,

and the asymptotic average rate of converge is defined by

R = lim
m→∞

Rm = − lim
m→∞

[ρ
(
pm(I −B)

)
]

1

m .

Theorem 9. For any normalized totally positive (NTP) basis, the iterative
sequence {q(k)}∞k=0 generated by CA-m method converges if m ≥ 1. More-
over, the virtual average spectral radius decreases as m increases, in other
words, the rate of convergence will be faster when the degree of the Chebyshev
polynomial is larger.

Proof. In particular case, if m = 1, then the spectral radius

ρ(p1(I −B)) =

max
0≤i≤n

∣∣∣C1

(2λi(I−B)+λn−1
1−λn

)∣∣∣
C1(µ)

=

max
0≤i≤n

∣∣∣2λi(I−B)+λn−1
1−λn

∣∣∣
1+λn

1−λn

=
1− λn
1 + λn

.

Here λi(I −B) denotes the eigenvalues of the matrix I −B. It follows from
Lemma 2 that the spectral radius of CA-1 equals to the weighted PIA and
hence the iterative sequence {q(k)}∞k=0 generated by CA-1 converges.
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If m > 1, it follows from (10) that

ρ(pm(I −B)) = max
0≤i≤n

|pm(λi(I −B))|

=

max
0≤i≤n

∣∣∣Cm(2λi(I−B)+λn−1
1−λn

)∣∣∣
Cm(µ)

, m ≥ 1.

The Chebyshev polynomials can also be expressed as

(17) Cm(x) =

{
cos(m arccosx), x ≤ 1, m ≥ 0,

cosh(m arg coshx), x ≥ 1, m ≥ 0.

From Lemma 1, it is easy to verify that max
0≤i≤n

∣∣∣Cm(2λi(I−B)+λn−1
1−λn

)∣∣∣ ≤ 1, and

hence we have

ρ(pm(I −B)) =
1

Cm(µ)
, m ≥ 1.

Recall that µ = 1+λn

1−λn
> 1, from (17), we have

Cm(µ) = cosh(m arg coshµ)

= cosh

(
m ln

(
µ2 +

√
µ2 − 1

))
=

1

2

{(
µ2 +

√
µ2 − 1

)m
+
(
µ2 +

√
µ2 − 1

)−m}
For convenience, let x =

(
µ2 +

√
µ2 − 1

)m
, it is easy to verify x > 1, and

hence

(18) ρ(pm(I −B)) =
1

Cm(µ)
=

2x

1 + x2
< 1.

Thus, we conclude that the CA-m(m ≥ 1) converges.
Moreover, since

d

dx

(
2x

1 + x2

)
=

2(1− x2)
(1 + x2)2

< 0, x > 1,

and x is a monotonically increasing function of m, then ρ(pm(I −B)) is
strictly decreasing as m increasing, which can be obtained from the mono-
tonicity of composite functions. Thus, the rate of convergence will be faster
as m increases. �
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Since the virtual average spectral radius decreases as m increases, we have
already verify that the weighted progressive iterative approximation is a spe-
cial situation of the Chebyshev acceleration. Thus, the spectral radius of the
CA-m(m > 1) is less than the weighted progressive iterative approximation,
and therefore we have the following corollary.

Corollary 10. If the degree of the Chebyshev polynomial m > 1, then the
virtual average spectral radius of the CA-m method is less than the weighted
progressive iterative approximation, that is, [ρ

(
pm(I −B)

)
]

1

m < ρ(I − ωB).

Remark 11. For one thing, the iterative process (16) converges faster then
the weighted PIA when µ = 1+λn

1−λn
in Theorem 9. While in practise, it needs

a large amount of computation to calculate the smallest eigenvalues λn, and
it is not worth doing so at the expense of computation. For another, Young
[17] have pointed out that a small overestimation of µ results in a small
decrease in the rate of convergence, but a comparable underestimation of
µ results in a much larger decrease. Since µ = 1+λn

1−λn
, hence the value of λn

may fluctuate instead of the true value in practise.

We remark that the spectral radius of I −B is small, in other words, λn
is so close to 0 and µ is so close to unity. Based on this hypothesis, we have
the following theorem.

Theorem 12. The CA-m(m > 1) method results in an order-of-magnitude
improvement in the rate of convergence compared to the weighted progressive
iterative approximation.

Proof. Firstly, for the CA-m(m > 1) method, according to (18) and Defini-
tion 2, the average rate of convergence is given by

Rm = − 1

m
log ρ

(
pm(I −B)

)
= − 1

m
log

2τm

1 + τ2m
,

where τ = µ2 +
√
µ2 − 1.

Hence the asymptotic average rate of converge is defined by

R = lim
m→∞

Rm = lim
m→∞

− 1

m
log

2τm

1 + τ2m
= − log τ.

Secondly, for the weighted progressive iterative approximation method,

R1 = − log ρ
(
p1(I −B)

)
= − log

2τ

1 + τ2
.
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Moreover, for m sufficiently large and τ sufficiently close to unity, we have

lim
τ→1

R

(R1)
1

2

= lim
τ→1

− log τ(
− log 2τ

1+τ2

) 1

2

=
√

2.

Hence the CA-m(m > 1) method results in an order-of-magnitude improve-
ment in the rate of convergence compared to the weighted PIA. �

5. Numerical examples

In this section, some numerical examples are given to show the efficiency
of our method. Firstly we introduce the error norms of the k-th curve as
follows,

εk = max
0≤i≤n

‖∆(k)
i ‖ = max

0≤i≤n
‖pi − r(k)(ti)‖,

where the norm is the Euclidean norm.

Example 13. Consider the Lemniscate of Gerono given by the parametric
equations {

x(t) = cos t,

y(t) = sin t cos t,
t ∈ [0, 2π].

A sequence of 11 points {pi}10i=0 is selected from the Lemniscate of Gerono
in the following way

pi =
(
x
(
−π

2
+ i

π

5

)
, y
(
−π

2
+ i

π

5

))
, i = 0, 1, . . . , 10.

Example 14. Consider the helix of radius 5 given by

(x(t), y(t), z(t)) = (5 cos t, 5 sin t, t), t ∈ [0, 6π].

19 points {pi}18i=0 are selected from the helix in the following way

pi =
(
x
(
i
π

3

)
, y
(
i
π

3

)
, z
(
i
π

3

))
, i = 0, 1, . . . , 18.

In order to make a comparison with the other method, the Bézier curves
[6] and the Said-Ball curves[6] are used to approximate these points in the
Example 1 and 2 separately. The parameter values corresponding to these
points are the same as the method in Lu[6], i.e.,ti = i/n, i = 0, 1, ..., n. The
virtual spectral radius of the Chebyshev acceleration as well as the others
are listed in Table 1 and 2, and the error norms are also listed in Table 3
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and 4 (The CA-2 is the iterative process (14), which is generated by the
linear polynomial p1(I −B) defined in (12); the CA-4 is generated by the
quartic polynomial p4(I −B); the CA-m is the iterative process (16), and
the others in this paper are similar). Without loss of generality, several
Chebyshev semi-iterative schemes and the weighted PIA(WPIA for short
in the tables) are used in these examples for comparison. As it could be
expected, the rate of convergence suffers from the ill-conditioned matrix
whose the spectral radius is close to unity. It is evident from Table 3 and
4 that the accelerating techniques described in this paper is faster than the
weighted PIA, i.e., with the same iterations, the accuracy of our method
is improved by roughly an order-of-magnitude. Especially, the effect will be
more obvious when the number of polynomials increases.

In addition, as we can see from Table 3 and 4, for the errors generated
by CA-4 after 10 iterations, it will be reached by CA-2 after 20 iterations,
however, it will be reached by weighted PIA after about 40 iterations. It
shows that the CA-2 is about two times faster than the weighted PIA and
the CA-4 is about four times faster than the weighted PIA, which confirms
to Corollary 1. In the view of accelerating the rate of convergence, we are
more involved with increasing the degree of polynomials pm, but that’s not
something we are inclined to do in practice, this is because it will increase
calculates quantity, e.g., in the iterative process (15), (I −B)2 will cost a
great deal of calculation. Therefore, the iterative process (16) is the best
selection for accelerating the rate of convergence.

Figure 1 shows the Bézier curves when fitting the Lemniscate of Gerono;
Figure 2 shows the Said-Ball curves when fitting the Lemniscate of Gerono.
The Bézier curves and the Said-Ball curves fitting to the helix are shown in
Figure 3 and 4 respectively. Among all the figures, the sub-figures (a)-(d)
are generated by the weighted PIA, CA-2, CA-4 and CA-m respectively, and
all the curves are generated after 20 iterations. As we can see from these
figures that the curves generated by the Chebyshev accelerating method are
closer to the points needed to be interpolated (the points with a circle in the
figures). All the figures indicate that our method make the iterative process
converge faster than the weighted PIA.
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Table 1: The (virtual) spectral radius of the Chebyshev acceleration com-
pared with the other methods when fitting the Lemniscate of Gerono.

Bézier curve Said-Ball curve

PIA WPIA CA-2 CA-4 PIA WPIA CA-2 CA-4

0.999637 0.999275 0.998551 0.997112 0.999820 0.999641 0.998565 0.994281

Table 2: The (virtual) spectral radius of the Chebyshev acceleration com-
pared with the other methods when fitting the helix.

Bézier curve Said-Ball curve

PIA WPIA CA-2 CA-4 PIA WPIA CA-2 CA-4

0.99999984 0.99999967 0.99999870 0.99999479 0.99999996 0.99999992 0.99999968 0.99999873

Table 3: The error norms of the Chebyshev acceleration compared with
WPIA after k iterations when fitting the Lemniscate of Gerono.

k
Bézier curve Said-Ball curve

WPIA CA-2 CA-4 CA-m WPIA CA-2 CA-4 CA-m

0 4.6201e-01 4.6201e-01 4.6201e-01 4.6201e-01 5.4704e-01 5.4704e-01 5.4704e-01 5.4704e-01

10 5.4465e-02 2.3400e-02 5.2019e-03 2.1528e-02 8.9794e-02 6.3642e-02 1.0186e-02 4.2300e-02

20 2.3697e-02 9.3462e-03 1.5658e-03 7.4514e-03 5.2518e-02 1.5067e-02 3.8575e-03 9.5411e-03

30 1.4613e-02 7.1746e-03 4.7112e-04 5.5941e-03 3.3296e-02 1.0199e-02 2.0563e-03 7.2201e-03

40 1.2718e-02 5.3573e-03 1.4176e-04 2.7534e-03 2.2521e-02 9.0690e-03 1.3022e-03 5.3525e-03

Table 4: The error norms of the Chebyshev acceleration compared with
WPIA after k iterations when fitting the helix.

k
Bézier curve Said-Ball curve

WPIA CA-2 CA-4 CA-m WPIA CA-2 CA-4 CA-m

0 4.6246e-00 4.6246e-00 4.6246e-00 4.6246e-00 5.6981e-00 5.6981e-00 5.6981e-00 5.6981e-00

10 9.8209e-01 2.7880e-01 2.3579e-01 2.6314e-01 1.8124e-00 7.0115e-01 1.2181e-01 4.7184e-01

20 4.6530e-01 1.1148e-01 3.7426e-02 1.0271e-01 8.3426e-01 1.7397e-01 5.1675e-02 1.2633e-01

30 2.7866e-01 7.8482e-02 2.0300e-02 5.2454e-02 4.9451e-01 1.1476e-01 3.0864e-02 7.3371e-02

40 2.0137e-01 5.9935e-02 1.5128e-02 3.4744e-02 3.3185e-01 8.2361e-02 2.2266e-02 3.8842e-02
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Figure 1: Bézier curves when fitting the Lemniscate of Gerono after 20 it-
erations.
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Figure 2: Said-Ball curves when fitting the Lemniscate of Gerono after 20
iterations.
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Figure 3: Bézier curves when fitting the helix after 20 iterations.

6. Conclusions

This paper presents an accelerating method for the progressive iterative
approximation. We deduce that the weighted progressive iterative approx-
imation method is a special situation of our method. For any normalized
totally positive (NTP) basis, we have shown that the proposed method is
convergent. What’s more, the Chebyshev accelerating method has an order-
of-magnitude improvement compared with the weighted PIA. Numerical ex-
amples show that our method make the algorithm faster than the weighted
PIA.
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