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Counting of congested crowds has been widely applied in surveil-
lance event detection, public safety control, and traffic monitor-
ing. Early studies mainly focus on designing hand-crafted features.
However, counting performance based on hand-crafted features
maybe easily influenced by issues such as partial occlusion, scale
variation, and illumination change. Convolutional neural network
(CNN) has shown great success in visual crowd counting. In this
work, a multi-task Inception network is proposed for crowd count-
ing in congested crowds. Crowd count is predicted through sum-
ming up a density map estimated by the proposed network. Three
Inception blocks are employed to automatically extract multi-scale
features from different patches cropped from the crowd image.
The network can jointly estimate the density map, crowd density
level, and background / foreground separation. Counting perfor-
mance obtained through multi-task learning is superior to that
obtained through only estimating density map. Contrastive evalu-
ations based on three benchmarking datasets are implemented with
several state-of-the-art CNN-based crowd counting approaches. Re-
sults indicate the accuracy and robustness of our network in count-
ing congested crowds. The multi-task Inception network almost
outperforms the state-of-the-art counting approaches in terms of
mean absolute error and mean squared error.
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China under Grant No. 61501060 and No. 61703381, the Natural Science Foun-
dation of Jiangsu Province under Grant No. BK20150271, Key Laboratory for
New Technology Application of Road Conveyance of Jiangsu Province under Grant
BM20082061708.
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1. Introduction

Crowd counting plays a key role in many applications, e.g. crowd control,
pedestrian behavior profiling, and crowd anomaly detection which is useful
for safety control. Crowd disasters can be nipped in the bud by giving an
alarm when the number of people flocking to certain areas exceeds a certain
crowd level. Meanwhile, crowd counting can be extended to other areas, such
as counting cells from microscopic images. However, it is difficult for people
to quickly count the crowds, especially those congested ones. Therefore,
vision based crowd counting approaches have elicited increased attention
from researchers in recent years.

Vision based crowd counting approaches mainly fall into three categories,
namely, counting by detection, clustering, and regression. In counting by de-
tection, crowd counting is achieved through detecting instances of pedestri-
ans in a scene [1]. However, detecting entire body is always time consuming
due to the exhaustive scanning of an image space and the result is always
inaccurate due to partial occlusions. To reduce computational consumption,
some researchers tried to detect only noteworthy parts. For example,Gao et
al. detected heads using a water filling algorithm and achieved crowd count-
ing through computing the number of detected heads [2]. Luo et al. built
a head-shoulder model for depicting moving and stationary crowds [3]. The
number of people was estimated through clustering the head-shoulder in-
stances. Compared with methods that detect entire bodies, crowd counting
based on detecting local parts are more robust to partial occlusions. How-
ever, detecting local parts are still time consuming and will be easily affected
by a cluttered background.

In counting by clustering [4], a crowd is assumed to be composed of indi-
vidual entities, each of which possessing unique yet coherent motion patterns
can be clustered to estimate the number of pedestrians in a scene. For ex-
ample, Rao et al. proposed an approach to estimate crowd density using
motion cues and hierarchical clustering [5]. Counting by clustering is easy
to implement because it needs little priori information, such as object detec-
tors or hand-crafted features. However, motion cues are generally extracted
using dense optical flow, which is time consuming to calculate.

Unlike counting by detection and clustering, counting by regression aims
to achieve direct mapping between specific features and crowd counting
without detecting individuals or clustering motion patterns in the crowd [6].
Thus, it is suitable to count the crowds under cluttered background with rea-
sonable time consumption. Many works focused on extracting hand-crafted
features and feature editing. They first extracted foreground areas, shapes,
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Counting congested crowds under wild conditions 3

edges, and other features from detected crowds [7]. Then, support vector
machine [8], random forest [9], extreme learning machine [10], and Gaus-
sian process regression [11] were used to predict crowd counts. For instance,
Fradi et al. used foreground pixel counts and corner density for crowd anal-
ysis [11], while number of people was estimated through Gaussian process
regression. Mahdi et al. utilized a combination of key point (corners) and
segment-based features to to estimate crowd count [12]. Liang et al. also
employed key points (speeded up robust feature points) as cues for crowd
counting [13]. Aside from commonly used features, novel features which are
highly suitable for crowd counting have been proposed. Shafiee et al. pro-
posed a novel low-complexity, scale-normalized feature called histogram of
moving gradients (HoMG) [14]. HoMG is a highly effective spatiotempo-
ral representation of individuals and crowds within a video. Zhang et al.
proposed a flow field texture representation approach to depict segmented
crowds [15]. Chen et al. introduced a novel cumulative attribute concept
for learning a regression model when only sparse and imbalanced data were
available [16]. These features can achieve a satisfactory performance when
the crowds are simple and sparse. However, they may fail if the crowds are
heavily occluded or very dense. Mousse et al. extracted the convex hull from
detected foreground pixels, and crowd counting was realized by fusing the
obtained polygons with geometric properties [17]. This method is robust to
partial occlusion, however, it can only be used in multi-camera networks
with overlapping views.

Moreover, in spite of the rapid development of crowd counting ap-
proaches, many longstanding challenges are not well solved, e.g. partial
occlusion, perspective distortion, background clutter, illumination change,
scale and appearance variations. As illustrated in Fig.1, all crowd images (se-
lected from benchmarking datasets, e.g. UCF CC 50 [18], WorldExpo’10
[19] and Shanghai Tech [20] datasets) suffer from severe occlusion, scale
variation, non-uniform density distribution and so on. Furthermore, scale
variations in crowds with relatively low or medium density levels (the 2nd

and 3rd examples) are more drastic than that in crowds with high density
levels (the 1st and 4th examples), which are always captured in a bird’s-eye
view. That is to say, drastic scale variations are always observed in crowds
that are not extremely dense. Recently, deep learning based crowd count-
ing approaches have achieved great success while counting the crowds that
encountered with cluttered background, non-uniform illumination, and vary-
ing appearances [19]–[31]. However, scale variation and non-uniform density
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Figure 1: Examples of crowd images extracted from three benchmarking
datasets. These crowd images suffer from severe occlusion, scale variations,
non-uniform density distribution, perspective distortion, and so on.

distribution still prevent the state-of-the-art counting approaches from pre-
dicting precise crowd counts. Thus, in this work, we mainly focus on the
abovementioned two issues.

The pipeline of the proposed counting approach is shown in Fig.2. The
entire process can be divided into the training and the evaluation stages.
In the training stage, the input image is uniformly segmented into 16 non-
overlapped patches. For each patch, its ground truths of density map, crowd
density level, and background/foreground (BG/FG) separation are calcu-
lated. Then, all the patches are delivered to the Inception network which
is comprised of Inception blocks, pooling layers, and deconvolutions. This
network is used to extract features of different scales which will be further
transferred to the multi-task network. Based on the automatically extracted
features and pre-computed ground truth, parameters of the network can
be learned through minimizing a joint loss function, which is comprised of
three sub-losses (losses of estimating density map, crowd density level, and
BG/FG separation) in a weighted manner.

In the evaluation stage, the input image is segmented into overlapped
patches using a given stride ( stride is set to be 20 pixels in this work). The
patch can be of arbitrary size. All patches are then imported to the well-
learned Inception and multi-task networks in sequence. Among the multiple
outputs of Multi-task network, only density maps of all patches are used to
reconstruct the density map of the entire crowd image. Estimating density
levels and BG/FG separations are used to refine the estimating results of
density maps. The crowd count is then predicted through summing up all
values of the reconstructed density map. Notably, several locations of the
entire density map are repeatedly accumulated. Thus, the values of these
locations should be normalized by the cumulative frequency in such loca-
tions. Extracting patches in different manners during training and evaluation
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Counting congested crowds under wild conditions 5

stages are inspired by the work of Sindagi et al. [21]. They argued that ex-
tracting non-overlapped patches in the training stage is superior to extract
overlapped patches because too much redundancy existing in the overlapped
patches. The redundancy may lead to over-fitting and a poor generalization
capability.

Figure 2: Pipeline of the proposed counting approach. Upper part is the
training stage and lower part is the evaluation stage.

This work provides two novel contributions. First, three Inception blocks
are used to extract multi-scale features from the crowd patches. Unlike ex-
isted multi-column CNN (MCNN) [20] and switching CNN [22], the Incep-
tion block is more suitable to resolve drastic scale variations. Deconvolutions
are applied to compensate for the loss in detail caused by early pooling lay-
ers. Second, our model can jointly estimate the density map, crowd density
level, and BG/FG separation. The multi-task learning strategy can improve
the accuracy of the reconstructed density map.

The rest of this work is organized as follows. Section 2 provides a review
of related work on crowd counting. Section 3 gives the details of the proposed
approach. Section 4 gives the experimental evaluations and analysis. The
conclusions are presented in Section 5.

2. Related work

Serious limitations exist in crowd counting using hand-crafted features, es-
pecially in dense crowds with heavy occlusions. CNN has achieved great
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success in pattern recognition fields, such as object detection [23] and se-
mantic segmentation [24]. According to a recent review on crowd count-
ing [25], CNN-based counting approaches are superior to traditional ones
which mainly based on hand-crafted features. Thus, we mainly reviewed re-
lated work on CNN-based counting approaches. For crowd counting, CNNs
have been trained alternatively with two related learning objectives, namely,
crowd density and crowd count [19]. Wang et al. proposed an end-to-end
CNN regression model based on the AlexNet network for counting people in
highly dense crowds [26]. Inspired by their success, Walach et al. performed
layered boosting and selective sampling [27]. To remove fully connected lay-
ers and make the model highly compact, Marsden et al. proposed a fully
convolutional crowd counting approach to predict the number of people in
highly congested scenes by estimating the density map [28]. Fu et al. classi-
fied a crowd image into five density levels, which are very high, high, medium,
low, and very low density, instead of directly estimating density maps [29].

Despite significant improvements in CNN-based crowd counting, other
challenges, such as scale variations and non-uniform density distribution,
remain. Zhang et al. aimed to resolve scale variations and built a simple but
effective MCNN to estimate crowd count from a crowd image [20]. Inspired
by their work, Onoro et al. developed a scale-aware counting approach called
Hydra-CNN that can estimate the density map in different scenarios without
any explicit geometric information on the scene [30]. Sam et al. argued that
improved performance can be obtained by choosing a given CNN column
with the aid of a pre-trained switch classifier [22].But these approaches are
more suitable for counting crowds with mild scale variation. Aside from scale
variations, non-uniform density distribution is another problem that affects
counting performance. A multi-task strategy can be used to handle this issue.
Zhang et al. simultaneously estimated the density map and crowd count
[19]. Sindagi et al. proposed a cascaded multi-task CNN (Cascaded-MTL)
that jointly estimates the density level and density map [21]. The counting
performance was improved by replacing the crowd count with the density
level. Other tasks can also be performed during crowd counting by employing
a multi-task strategy. For instance, Marsden et al. proposed a Resnet Crowd
model for crowd counting [31]. The model can simultaneously predict the
crowd count, density map, count class, and even abnormal events. Initializing
network parameters with a well-trained Resnet model leads to enhanced
counting performance when the training instances are insufficient.However,
all these methods cannot effectively resolve non-uniform density distribution.

Despite the state-of-the-art CNN-based counting approaches can re-
solve problems such as partial occlusion, perspective distortion, illumination
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change, they still encounter with two challenges, namely, drastic scale vari-
ation and non-uniform density distribution. Therefore, some efforts will be
made to handle these two challenges through improving existed CNN-based
counting approaches.

3. Proposed method

3.1. Generating ground truths for input patches

The main objective of the proposed neural network is to learn mapping F:
X→D, where X is a set of features automatically extracted from training
patches and D is a set of density maps of these patches. For each patch,
the density map is generated based on the labeled locations of people in
the crowds, as well as the perspective images of different scenes. Notably,
perspective images are pre-calculated using the approach proposed by Chan
et al. [7].

Many studies followed [32] and defined the density map as a sum of
Gaussian kernels (Fig.3(a)) centered on object locations. This type of density
map is proposed to characterize the density distribution of circle-like objects,
such as cells and bacteria. Later, Zhang et al. found that a human-shaped
kernel (Fig.3(b)) maybe more suitable for characterizing pedestrians in the
crowds [19]. They argued that the shapes of pedestrians are more similar
to ellipses than to circles. However, in real applications, only head parts
can be reliably observed in congested crowds. Thus, the density map used
in this work was generated using the Gaussian kernel. After obtaining the
head position of pedestrian Pa in the patch, its density map is generated as

Di(p) =
∑
p∈Pi

1

‖Zi‖
Ng(p|Pa, σa)(1)

where p is an aribitary position in the ith patch Pi and Ng is a normalized
2D Gaussian kernel with variance σa (setting of σa can refer to [19]). To
ensure that the integration of all values in the density map equals the total
number of pedestrians in that patch, the entire distribution is normalized
by Zi, which is the actual count of the crowd in that patch.

Notably, the generated density map is used as one of the ground truths
for training the multi-task Inception network. The generated density map
is used as one of the ground truths for training the multi-task Inception
network. The BG/FG separation was calculated by thresholding the density
map with a given threshold (in this paper, a small threshold of 0.0001 is used



i
i

“1-Yang” — 2018/1/30 — 0:19 — page 8 — #8 i
i

i
i

i
i
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Figure 3: Two commonly used kernels for generating density maps: (a)
Gaussian kernel and (b) human-shaped kernel. The red regions indicate
strong activations, and the blue regions indicate weak activations (best
viewed in color).

to guarantee that all foreground information is covered). The crowd density
level is determined by the actual number of people in a particular patch
according to the rule proposed by Fu et al. [29]. Both BG/FG separation
and crowd density level are used as ground truths and applied in the training
stage.

3.2. Multi-task Inception network

Partial occlusion, perspective distortion, illumination change can be well
handled by state-of-the-art CNN-based crowd counting approaches. The
purpose of this work is to study another two challenging problems, namely,
non-uniform density distribution and drastic scale variations.

Inspired by the success of MCNN proposed by Zhang et al. [20], many
researchers tried to extract features of different scales using multiple CNN
columns. However, only high level features of different scales can be fused,
whereas some useful low level features of different scales cannot be effectively
fused in MCNN. In order to make full use of both low and high level features
of different scales, an Inception network (containing three Inception blocks
[33]) are used to automatically extract features. Compared with MCNN, the
Inception network can fuse features of different scales at different depths.
Thus, it is more likely to extract multi-scale features which are useful for
crowd counting.
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Another contribution of this work is the employment of multi-task learn-
ing, especially the introduction of BG / FG separation. Existed CNN-based
crowd counting approaches are always shallow network and cannot estimate
the density map that is totally consistent with the ground truth. Local op-
tima is always obtained when training the neural network. Meanwhile, it
is hard to converge when estimating density map with a very deep neural
network. Multi-task learning strategy is beneficial to estimate a more ac-
curate density map with a shallow CNN through jointly estimating other
correlated objectives. Precisely, we follow the definition proposed by Fu et
al. [29] that classifies crowds into five density levels: very high density, high
density, medium density, low density, and very low density.

Jointly estimating the density map and the density level can make the
intensity of density map more close to the ground truth. However, a portion
of the background in density map is always recognized as the foreground or
vice versa. To resolve this problem, a BG/FG separation is added into the
multi-task learning strategy particularly. The BG/FG separation is similar
to the density map. However, it only focuses on the distribution of crowds,
whereas the density map concentrates on both distribution and intensity
information. Thus, the BG/FG separation owns stronger distribution infor-
mation than the density map.

On the basis of the abovementioned discussions, a multi-task Inception
network was proposed for crowd counting (Fig.4). The legend on the bottom-
left corner of Fig.4 illustrates the colors of different convolutional filters and
their corresponding kernel sizes. The whole network is divided into an In-
ception network and a multi-task network. Inception network, which is used
to extract features, is comprised of three Inception blocks, two max pool-
ing layers and two deconvolution layers. Max pooling is used to reduce the
feature dimension, thus reduce the numbers of convolutions. Deconvolutions
are used after Inception block3 to compensate for the loss of detail due to
early pooling layers. Inner structure of Inception block is illustrated in the
top-right corner, represented by a blue rectangle. Take Inception block2 as
an example, four convolutional layers (Conv2 1, 2 5, 2 6 and 2 7) of dif-
ferent kernel sizes (1×1, 3×3, 5×5, 7×7) are used to extract features of
different scales. Three 1×1 convolutional layers (Conv2 2, 2 3, and 2 4)
are used to reduce features because filters with large kernel sizes need more
time for convolutions. Finally, outputs of Conv2 1, 2 5, 2 6, and 2 7 are
concatenated as output block2. Features of different scales can be fused at
different depths through introducing Inception blocks, leading to capture
more effective features for crowd counting than MCNN. Different from orig-
inal Inception structure, we replaced the 3×3 max pooling layer with a 7×7
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Figure 4: Structure of the multi-task Inception network that contains an
Inception network and a multi-task network. Dropout, PReLU, and LRN
are not listed for simplification (best viewed in color).

convolutional layer. The reason is that each Inception block is used to ex-
tract features of different scales, while keeping the feature size (max pooling
may shrink the feature size).

The multi-task network is inspired by Sindagi et al. except for the em-
ployment of BG / FG separation. To estimate crowd density level that is
more abstract than other two objectives, three convolutional layers (Conv7,
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8, 9) are utilized to further process the output features of Inception net-
work. Then, a spatial pyramid pooling (SPP) [34] of height three is used
to eliminate the fixed size constraint of deep networks which contain fully
connected layers. Fixed size outputs of SPP are fed to four fully connected
layers, namely, FC1 (512 neurons), FC2 (256 neurons), FC3 (32 neurons),
and FC4 (5 neurons) to estimate the density level. At the same time, features
obtained by Inception network are directly fed to a 1×1 convolutional layer
(Conv4) for estimating BG/FG separation. To estimate the density map
that contains more information than BG/FG separation, a deeper neural
network is wanted. Thus, a 3×3 convolutional layer (Conv5) is used to pro-
cess the features before they are imported into Conv6. Each convolutional
layer (except for conv4 and 6) is followed by a dropout layer (with parame-
ter 0.3), a parametric rectified linear unit (PReLU) activation function, and
a local response normalization (LRN) layer. Details of network parameters
are given in Table 1. Strides of all convolutional filters are set to 1.

Number of
filters

Padding
Number of

filters
Padding

Conv1 1 36 0 Conv3 1 64 0
Conv1 2 36 0 Conv3 2 64 0
Conv1 3 36 0 Conv3 3 64 0
Conv1 4 36 0 Conv3 4 64 0
Conv1 5 28 1 Conv3 5 48 1
Conv1 6 22 2 Conv3 6 44 2
Conv1 7 16 3 Conv3 7 40 3
Conv2 1 48 0 Conv4 1 0
Conv2 2 48 0 Conv5 16 1
Conv2 3 48 0 Conv6 1 0
Conv2 4 48 0 Conv7 64 0
Conv2 5 36 1 Conv8 128 0
Conv2 6 32 2 Conv9 256 0
Conv2 7 28 3 N/A N/A N/A

Table 1: Network parameters used in the multi-task Inception network. Ker-
nel sizes of different convolutional filters are illustrated in Fig.4 and we will
not list them in the table for simplification. Strides of all convolutional filters
are set to 1.
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3.3. Multi-task learning strategy

The main objective of the proposed network is to estimate the density maps
of different patches, which are further used to reconstruct the density map
of the crowd image. The loss between the estimated density map and its
ground truth is defined as Ldensity, which can be calculated using Euclidean
loss. Ldensity is defined as follows:

Ldensity =
1

2N

N∑
i=1

‖Fd(Pi, O)−D(Pi)‖2(2)

where N is the number of patches, O is a set of network parameters, Pi is
the ith patch, Fd(Pi, O) is the estimated density map of Pi, and D(Pi) is the
ground truth of Fd(Pi, O).

The crowd density level and BG/FG separation were simultaneously
estimated to resolve the non-uniform density distribution. The loss between
the estimated density level and its ground truth is defined as Llevel, which
can be calculated using the cross-entropy loss. Llevel is defined as follows:

Llevel = − 1

N

N∑
i=1

M∑
j=1

[(Y (Pi) = j)Fc(Pi, O)](3)

where M is the number of density levels (5 in our work), Fc(Pi, O) is the
estimated density level of Pi, and Y (Pi) is its ground truth.

The BG/FG separation was used to prevent the network from mistaking
the background as the foreground. The loss between the estimated BG/FG
separation and its ground truth is defined as Lmask. Lmask can be also
calculated using Euclidean loss as follows:

Lmask =
1

2N

N∑
i=1

‖Fm(Pi, O)−M(Pi)‖2(4)

where Fm(Pi, O) is the estimated BG/FG separation of Pi and M(Pi) is its
ground truth.

The above mentioned three losses are jointly minimized in a weighted
manner. The total loss function can then be defined as

Ltotal = λ1Ldensity + λ2Llevel + λ3Lmask(5)

where λ1, λ2, and λ3 are the weights of different loss functions. Through
estimating different objectives respectively, we found that Llevel is almost
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two order greater in magnitude than Ldensity, while Lmask is the same order
of magnitude as Ldensity.Thus,to highlight our main purpose (estimating
density map), we set λ1=1, λ2=0.001, and λ3=0.1. Effectiveness of three
weights are verified through cross validation.

4. Experimental analysis

4.1. Implementing details and evaluation metrics

Training and evaluation of the multi-task Inception network are performed
on NVIDIA GTX 1080 GPU (8G). Table 2 lists the parameters used to
train the network. Batch size is set to 16 during training due to memory
limitations. MSRA [35] is used to initialize each convolutional layer.

Parameters Value

Base Learning rate 0.001
Learning policy “inv”
Power 0.75
Gamma 0.001
Max iterations 60000
Momentum 0.9
Weight decay 0.005
Optimization Type Adam

Table 2: Parameters used to train the multi-task Inception network.

Mean absolute error (MAE) and mean squared error (MSE) are used to
evaluate different counting approaches. These two indicators are defined as
follows:

MAE =
1

W

W∑
i=1

|E(i)−G(i)|(6)

MSE =

√√√√ 1

W

W∑
i=1

(E(i)−G(i))2(7)

where W is the total number of test frames, G(i) is the actual crowd count
in the ith frame, and E(i) is the predicted count in the ith frame. In gen-
eral, MAE and MSE indicate the accuracy and robustness of the model,
respectively.
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4.2. Datasets and evaluation settings

1) UCF CC 50: UCF CC 50 is a challenging dataset because it con-
tains a wide range of densities and diverse scenes with non-uniform illumi-
nation conditions and perspective distortion. Totally 63,075 individuals are
labeled in the entire dataset, with an average of 1,280 individuals per image.
The number of individuals varies from 94 to 4,543, indicating a large varia-
tion across the crowd images. In this dataset, we employ five-cross validation
to evaluate different crowd counting approaches.

2) WorldExpo’10: This large-scale dataset contains 1,132 annotated video
sequences captured by 108 cameras from the Shanghai 2010 World Expo
event. It consists of 3,980 frames, with 199,923 labeled pedestrians. The
number of people varies from 1 to 253, with an average of 50 people per
image. The dataset is split into training and testing sets. Training set con-
tains 1,126 one-minute video sequences from 103 scenes, while testing set
contains five one-hour video sequences from five scenes. Each test scene com-
prises 120 labeled frames, with the number of people varying from 1 to 220.
The training-evaluation process is repeated five times and mean values of
MAE / MSE are used for fairness.

3) Shanghai Tech: This dataset consists of 1,198 images with 330,165
annotated heads. This dataset is split into Part A and B. Part A contains
482 images randomly selected from the Internet, whereas Part B contains
images captured from the streets of Shanghai. Training and testing sets of
Part A involved 300 and 182 images, respectively, and the number of people
varied from 33 to 3,139, with an average of 501 people per image. For Part B,
400 and 316 images were used in the training and testing sets, respectively,
and the number of people varied from 9 to 578, with an average of 123
people per image. For each part, the procedure of training-evaluation is also
repeated five times and mean values of MAE / MSE are used for fairness.

4.3. Evaluations of the multi-task Inception network

The multi-task strategy is a key contribution of this work. The density map,
BG/FG separation, and crowd density level are jointly estimated, whereas
most similar works only focus on the first one. To evaluate the proposed
multi-task strategy, different combinations of objectives, including estimat-
ing density map, estimating density map and density level, estimating den-
sity map and BG/FG separation, as well as our approach are tested using
benchmarking datasets. MAE and MSE are used to evaluate different ap-
proaches, and the results are presented in Table 3.
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Estimating
density map

Estimating
density map

and
density level

Estimating
density map
and BG/FG
separation

Our
multi-task
strategy

MAE MSE MAE MSE MAE MSE MAE MSE
UCF CC 50 383.1 502.9 377.5 511.6 379.5 492.6 322.1 333.6
World Expo ’10 11.1 22.5 9.8 20.6 10.1 19.7 8.9 19.5

Shanghai
Tech Part A

113.7 186.2 103.6 154.1 105.3 161.3 91.6 133.2

Shanghai
Tech Part B

26.3 41.5 21.3 31.7 21.4 30.9 18.2 28.7

Table 3: Evaluations of the multi-task strategy in benchmarking datasets.

As shown in Table 3, counting performance through estimating multiple
objectives obviously outperform counting performance through estimating
density map. The reason has been discussed in section 3.2. Among different
combinations, our approach is superior to others in both MAE and MSE.
The reason of the superiority is that our approach focus on both distribu-
tion and intensity information, whereas others only focus on one kind of
information. Aside from our multi-task strategy, the employment of density
level achieves weak advantage over the employment of BG/FG separation
in refining the estimated density maps. It reveals that intensity information
maybe more important to distribution information in improving counting
performance.

Several examples selected from the UCF CC 50 dataset are shown in
Fig.5. The first row represents original crowd images, the second row rep-
resents the ground truths of density maps, and the third row represents
the estimated density maps. Ground truth (G) of crowd counts and corre-
sponding estimated counts (E) are listed as follows: (a) G: 1046 E: 1085 (b)
G: 3406 E: 1977 (c) G: 581 E: 437 (d) G: 440 E: 521. In general, the esti-
mated density maps are approximately close to their ground truth, in both
distribution and intensity. This indicates the proposed method could pre-
dict the counts of congested crowds, even under drastic scale variation and
non-uniform density distribution. However, there are obvious large biases in
Fig.5 (b) and (c). Through comparing the estimated density maps and their
ground truths, we can find that people in some particular regions are really
hard to capture by the network. Yellow rectangles on the 2nd and 3rd origi-
nal images highlight such regions where people appeared blurry and hard to
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observe. Other technologies, such as super-resolution [36], may handle such
a problem. But we not include such algorithms in the present work.

Figure 5: Some estimated density maps selected from the UCF CC 50
dataset. The first row represents original crowd images, the second row rep-
resents the ground truths of density maps, and the third row represents the
estimated density maps. In each density map, red regions indicate the ex-
istence of dense crowds while blue regions indicate that few people existed.
Yellow rectangles on the original images of (b) and (c) indicate the regions
where people appeared blurry and hard to observe (best viewed in color).

4.4. Comparisons with state-of-the-art approaches

Comparisons with state-of-the-art counting approaches are performed in
three benchmarking datasets. Both MAE and MSE are used for evaluation.
Table 4 illustrates the comparison results in UCF CC 50 dataset, which
owns an extremely high density level. This dataset is commonly used for
evaluating different counting approaches, and we only selected some recent
studies, e.g. cross-scene counting approach proposed by Zhang et al. [19],
MCNN proposed by Zhang et al. [20], Hydra-CNN proposed by Onoro et al.
[30], CNN-pixel counting proposed by Kang et al. [37], cascaded-MTL pro-
posed by Sindagi et al. [21], and switching CNN proposed by Sam et al. [22],
for comparison. Both MAE and MSE of these approaches are mentioned
in their original works. Among the abovementioned approaches, cross-scene
counting approach is the earliest approach that tried to count crowds using
CNN. However, it focuses on how to select suitable scenes for fine-tuning
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an existing counting model and pays less attention on how to improve
the counting performance on congested crowds. Thus, it has the highest
MAE and the next-highest MSE. CNN-pixel counting utilizes CNN-pixel
and FCNN-skip networks to directly estimate the entire density map of the
crowd image. Thus, it could capture better detailed information than other
approaches that employed max-pooling to reduce feature dimension. In this
aspect, deconvolutions used in our approach could achieve similar perfor-
mance as CNN-pixel counting in capturing detailed information. Further-
more, our approach tries to handle drastic scale variation and non-uniform
density distribution through introducing Inception blocks and multi-task
strategy. As a result, both MAE and MSE of our approach are much lower
than those of CNN-pixel counting. Other approaches used for comparison
focus on either scale or distribution variations. For instance, MCNN extracts
features from the crowd image at different scales. Hydra-CNN is similar to
MCNN, but the former also down-sample the input into different scales to
better resolve scale variation. Different from them, switching CNN utilizes
a pre-calculated classifier to indicate which CNN column should be used
for estimating the density map. Thus, it could choose the best CNN col-
umn to extract features from crowds with certain density levels. However,
using only one CNN column cannot cope with drastic scale variation. As
a result, switching CNN can accurately estimate the counts of several ex-
tremely dense patches that take a large portion of the total counts, but it
may perform unsatisfactory on patches with scale variation, thus resulting in
an unreliable counting performance. As shown in the table, switching CNN
has the lowest MAE but its MSE is much higher than our MSE. Aside from
counting approaches designed for addressing scale variation, cascaded-MTL
predicts the crowd counts in a multi-task manner, which jointly estimates
the density map and the crowd density level. These two objectives are com-
plementary and the final counting performance is improved. As shown in the
table, MAE of cascaded-MTL is similar to our MAE. But MSE of cascaded-
MTL is a little higher than our MSE. In general, our approach performs
well in both MAE and MSE while comparing with several state-of-the-art
CNN based approaches. This finding reveals the robustness of our approach
when counting extremely dense crowds, such as the crowds in UCF CC 50
dataset.

Table 5 illustrates the comparison results in World Expo ’10 dataset,
which contains crowds of a medium density level. Cross-scene counting ap-
proach, MCNN, CNN-pixel counting, and switching CNN are used for com-
parison based on their reported results. Notably, only MAEs are reported in
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MAE MSE

Cross-scene counting [19] 467.0 498.5
MCNN [20] 377.6 509.1
Hydra-CNN [30] 333.7 425.2
CNN-pixel counting [37] 406.2 404.0
Cascade-MTL [21] 322.8 341.4
Switching CNN [22] 318.1 439.2
Our approach 322.1 333.6

Table 4: Comparisons with the state-of-the-arts in UCF CC 50 dataset.

original works, therefore, only MAEs are reported in original works, there-
fore, only MAEs are listed in Table 5. As shown in the table, cross-scene
counting and CNN-pixel counting approaches perform the worst due to the
same reasons as we discussed in analyzing Table 4. MCNN performs better
than the abovementioned two approaches due to its focus on handling scale
variation. Both switching CNN and our approach achieved satisfactory per-
formance. Our approach is a little better than switching CNN due to our
advantage in handling drastic scale variation that is commonly existed in
crowds of a medium density level.

MAE

Cross-scene counting [19] 12.9
MCNN [20] 11.6
CNN-pixel counting [37] 13.4
Switching CNN [22] 9.4
Our approach 8.9

Table 5: Comparisons with the state-of-the-arts in WorldExpo’10 dataset.

Table 6 gives the comparison results in Shanghai Tech dataset, which has
crowds of both medium (Part B) and high (Part A) density levels. The cross-
scene counting approach, MCNN, FCN proposed by Marsden et al. [28],
cascaded-MTL, and switching CNN are employed for comparison. Marsden
et al. counted the crowds with a FCN structure. It outperforms cross-scene
counting approach through replacing fully connections with fully convolu-
tions. MCNN performs better than FCN in Part A due to its ability in
extracting multi-scale features. However, FCN performs better than MCNN
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in Part B due to its deeper structure compared with MCNN. It reveals that
for crowds of medium density level, a deep neural network maybe more effec-
tive than a wide neural network. Cascaded-MTL, switching CNN, and our
approach perform much better than the abovementioned three approaches.
Similar to the results of Table 4, switching CNN outperforms our approach
slightly in terms of MAE on Part A, which has extremely dense crowds. Our
approach outperforms switching CNN in terms of MSE in the same dataset.
For Part B that has crowds of medium density level, our approach achieves
the best performance in both terms of MAE and MSE.

Part A Part B

MAE MSE MAE MSE
Cross-scene counting [19] 181.8 277.7 32.0 49.8
MCNN [20] 110.2 173.2 26.4 41.3
FCN [28] 126.5 173.5 23.76 33.12
Cascade-MTL [21] 101.3 152.4 20.0 31.1
Switching CNN [22] 90.4 135.0 21.6 33.4
Our approach 91.6 133.2 18.2 28.7

Table 6: Comparisons with the state-of-the-arts in Shanghai Tech dataset.

Comparisons with state-of-the-art CNN-based approaches in different
benchmarking datasets show that our approach almost outperforms the oth-
ers in terms of MAE and MSE when counting crowds with a low or medium
level. However, switching CNN has a slight advantage over our approach in
terms of MAE while counting extremely dense crowds (e.g.,UCF CC 50 and
Shanghai Tech Part A). The reason is that switching CNN can select a most
suitable CNN column for counting extremely dense crowds that take a large
portion of the global counts, whereas our approach focuses more on drastic
scale variation of the crowds. Notably, both counting approaches are based
on patches. Thus, switching CNN may achieve a low MAE (perform well on
some extremely dense patches) while counting congested crowds, whereas
our approach (perform slightly worse on extremely dense patches but bal-
anced on all patches) may achieve a low MSE that reveals our robustness in
counting. Meanwhile, multi-task learning used in estimating crowd counts
also contributes to the robustness of the proposed counting approach.
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5. Conclusions

A multi-task Inception network is proposed for counting congested crowds
in this work. The proposed model tries to resolve two challenging issues in
vision based crowd counting: drastic scale variation and non-uniform density
distribution. Counting is achieved through estimating the density maps of
different patches, which are further used to reconstruct the density map of
the entire image. Several Inception blocks are used to extract multi-scale fea-
tures, aiming at handling the consecutive scale variations. This multi-scale
strategy is comparable to several state-of-the-art multi-scale strategies, e.g.
MCNN and switching CNN. Meanwhile, non-uniform density distribution
of congested crowds is handled through jointly estimating three objectives,
namely, crowd density map, BG/FG separation, and crowd density level.
Evaluations in three benchmarking datasets revealed the effectiveness of our
multi-task strategy in improving counting performance. Comparisons with
several state-of-the-art CNN-based crowd counting approaches indicate our
superiority in both accuracy and robustness. Our future work will focus on
counting crowds with blurry appearance using other technologies, such as
super-resolution.
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