
i
i

“1-Du” — 2017/12/28 — 0:01 — page 203 — #1 i
i

i
i

i
i

Communications in Information and Systems
Volume 16, Number 4, 203–227, 2016

A texture feature preserving image

interpolation algorithm

via gradient constraint

Hongwei Du, Yunfeng Zhang∗, Fangxun Bao, Ping Wang,
and Caiming Zhang

In this paper, a type of bivariate rational interpolation function
is constructed for preserving image texture structure, which inte-
grates polynomial function with rational function. On the basis of
this model, an image interpolation algorithm for texture feature
preserving is proposed. Firstly, isolines method is employed to di-
vide image into smooth region and non-smooth region. Secondly,
the smooth region and the non-smooth region are interpolated by
polynomial model and rational model respectively. Finally, in order
to preserve image texture direction, the pixel value of the interpo-
lation point is determined by objective function that is constructed
based on the gradient. Experimental results show that the proposed
algorithm achieves good competitive performance compared with
the state-of-the-art interpolation algorithms, especially in preserv-
ing image details and structure of edge.

1. Introduction

Image interpolation, which is the art of upscaling a low-resolution (LR) im-
age to the high resolution (HR) version, has become a very active research
field in image processing. It can be easily extended to diverse applications
ranging from medical imaging, remote sensing, aviation, animation produc-
tion and multimedia entertainment industries. Because of the relatively low
computational complexity, traditional image interpolation methods such as
bilinear, cubic spline and cubic convolution interpolations[1–3] are widely

∗Research supported by the National Natural Science Foundation of China (Nos.
61373080, 61672018, U1609218, 61772309 and 61332015) and by the Nature Science
Foundation of the Shandong Province of China (No. ZR2015AM007) and by the
Fostering Project of Dominant Discipline and Talent Team of Shandong Province
Higher Education Institutions.

203



i
i

“1-Du” — 2017/12/28 — 0:01 — page 204 — #2 i
i

i
i

i
i

204 H. Du, et al.

used. But they often suffer from various forms of artifacts, such as blurring,
ringing, jaggy edges and so on.

In general, the interpolation algorithm can be divided into discrete
method and continuous method. The discrete method obtains the pixel value
of the interpolated point by transforming the gray value of the known pixel.
Carrato et al.[4] use the priori edge model to optimize the parameters of the
interpolation operator, and then obtain the high quality interpolation image
by interpolating the edge information on the basis of the original image. New
edge-directed interpolation (NEDI)[5]makes use of geometric duality prop-
erty to estimate HR covariance by LR covariance and interpolates the HR
pixels using the estimated covariance. The method can effectively preserve
the image edge structure. However, the interpolation window is fixed and
can not be adjusted adaptively, which leads to distortion and deformation
of the image texture details. Directional filtering and data fusion (DFDF)[6]
is a new edge-guided non-linear interpolation algorithm. For each pixel to
be interpolated, its neighborhood is divided into two observation subsets,
and then the missing pixels are estimated from the two orthogonal direc-
tions. The algorithm can preserve the sharp edges of the image and reduce
ring artifacts effectively. Soft-decision adaptive interpolation (SAI)[7] learns
and adapts to varying scene structures by using a 2-D piecewise autoregres-
sive model which interpolates the missing pixels in groups rather than one.
This method maintains the spatial coherence of the interpolated images and
achieves better subjective and objective effects in a wide range of scenarios.
On the basis of SAI, robust soft-decision adaptive interpolation (RSAI)[8]
improves the robustness of SAI by using weighted least squares estimation.
Most of the adaptive interpolation methods based on discrete method cannot
achieve the function that the image is magnified at any multiple. And these
algorithms can not preserve the texture details of the image effectively, prone
to some interpolation artifacts (blur, ringing, etc.). Further, combining with
the machine learning method, Dong et al. [9] develop an image interpolation
method in which nonlocal autoregressive modeling (NARM) is embedded in
the sparse representation model. The method achieves outstanding results
compared to the conventional edge-directed algorithms, however, it result in
a significant cost of time.

Deep learning is an important branch of artificial intelligence research
that has been given broad attention in recent years. Wang et al. combine
the domain expertise of sparse coding and the merits of deep learning to
propose a cascade of multiple SCNs (CSCN)[10]. This approach, motivated
by the self-similarity based SR, uses a cascaded network for better flexibil-
ity in scaling factors and reduces artifacts for large scaling factors. However,
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if the LR image does not contain sufficient repetitive patterns, then the
algorithm tends to produce sharp edges rather than fine details. Dong et
al. present a fully convolutional neural network for image super-resolution
(SRCNN)[11]. This method can learn an end-to-end mapping between low-
and high-resolution images and improve the image quality significantly. But
these types of method that rely on an external data set have a consider-
able drawback: such methods are fixed and thus not adapted to the input
image[12].

Compared with the discrete method, the continuous method can con-
struct a continuous surface with the image sampling data. The method can
scale the reconstructed image indefinitely. Because the natural image has
nonlinear properties and the rational functions is a typical nonlinear model,
the image interpolation algorithm based on the rational function has caused
wide attention of scholars. Some image interpolation algorithms based on ra-
tional functions have been proposed in recent years[13–18]. These algorithms
are applied to the image enlargement and enhancement. Liu et al.[19] pro-
pose a mixed weighted rational function image interpolation model whose
weight coefficients are determined by the edge information of the sampling
points. Zhao et al.[20] extend the 1-dimensional multi-node spline inter-
polation method to 2-dimensional, and then propose a multi-node spline
image interpolation algorithm with compact support. It is superior to the
traditional cubic convolution interpolation algorithm. In general, the image
reconstructed by general rational function interpolation model has better
visual effect and preserves the detail information of the image effectively.
However, the general rational function interpolation model has been less
than satisfactory in preserving structure of image edge.

In order to maintain the texture details and the structure of image edge,
an image interpolation algorithm based on the C2 continuous rational func-
tion is proposed. We first construct a novel type of bivariate rational interpo-
lation function. With shape parameters varying, the function has different
forms of expression. It combines the rational model and the polynomial
model organically. Based on the constructed interpolation model, a method
of region adaptive image interpolation is presented, which not only can adapt
to image’s local characters, but also reduce the time complexity. Further, we
construct an objective function based on the gradient for preserving image
texture direction.

The major contributions of this paper can be summarized in the follow-
ing items: (1) A novel C2 continuous bivariate rational interpolation model
is constructed. (2) The image is divided into smooth region and non-smooth
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region according to the regional feature. The smooth region and the non-
smooth region are interpolated by polynomial model and rational model re-
spectively. (3) An objective function based on image gradient is constructed
to constrain the pixel values of interpolation points.

The remainder of this paper is organized as follows. In §2, we constructs
a bivariate rational function interpolation model. In §3, the details of the
proposed interpolation algorithm are described. The experimental results
and analysis are presented to evaluate the effectiveness of the algorithm
in §4.

2. Bivariate rational interpolation function

Based on our previous research work [13–16], we construct a novel C2 con-
tinuous rational interpolation model. This section describes the construction
process of the model.

Let Ω : [a, b; c, d] be the plane region, and {(xi, yj , fi,j), i = 1, 2, . . . , n;
j = 1, 2, . . . ,m} be a given set of data points, where a = x1 < x2 < · · · <
xn = b and c = y1 < y2 < · · · < ym = d be the knot spacings, fi,j = f(xi, yj).

di,j and ei,j are chosen partial derivative value ∂f(x,y)
∂x and ∂f(x,y)

∂y at the
knots (xi, yj), respectively. Let hi = xi+1 − xi, and lj = yj+1 − yj , and for
any point (x, y) ∈ [xi, xi+1; yj , yj+1] in the (x, y)−plane. Let θ = x−xi

hi
and

η = y−yj

lj
. Denoting

4(x)
i,j =

fi+1,j − fi,j
hi

, 4(y)
i,j =

fi,j+1 − fi,j
lj

.

For each y = yj , j = 1, 2, . . . ,m, construct the x−direction interpolation
curve P ∗

i,j(x) in [xi, xi+1], it is given by

(1) P ∗
i,j =

p∗i,j(x)

q∗i,j(x)
, i = 1, 2, . . . , n− 1.

Where

p∗i,j(x) = (1− θ3)fi,j + θ(1− θ)2V ∗
i,j(x) + θ3fi+1,j + θ2(1− θ)W ∗

i,j(x),

q∗i,j(x) = (1− θ)2 + θ(1− θ)αi,j + θ2,

V ∗
i,j(x) = θ(1− (1− θ)αi,j)(fi+1,j − fi,j − hidi,j) + hidi,j + (αi,j + 1)fi,j ,

W ∗
i,j(x) = −(1− θ)(1− θαi.j)(fi+1,j − fi,jhidi+1,j) + (αi,j + 1)fi+1,j − hidi,j ,

with αi,j > 0. Let P ∗
i,j(x) = fi,j , P

∗
i,j(xi+1) = fi+1,j , P

∗′
i,j = di,j , P

∗′
i,j(xi+1) =

di+1,j .
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When

(2) di,j =
hi−1∆

(x)
i,j + hi∆

(x)
i−1,j

hi−1 + hi
, i = 2, 3, . . . , n− 1.

The interpolation function defined by (1) is C2 continuous in the interval
[a, b], and which satisfies

P
′′
(xi) =

2

hi−1 + hi
(4(x)

i,j −4
(x)
i−1,j), i = 2, 3, . . . , n− 1.

The partial derivative of the node x1 and xn are defined as follows:

d1,j = ∆
(x)
1,j −

h1

h1+h2
(∆

(x)
2,j −∆

(x)
1,j ),

dn,j = ∆
(x)
n−1,j −

hn−1

hn−1+hn−2
(∆

(x)
n−1,j −∆

(x)
n−2,j).

(3)

For each pair (i, j), i = 1, 2, . . . , n− 1 and j = 1, 2, . . . ,m− 1, using the x−
direction interpolation function P ∗

x,y(x) define the rational interpolation sur-
face on [xi, xi+1; yj , yj+1] as follows

(4) Pi,j(x, y) =
pi,j(x, y)

qi,j(y)
,

where

pi,j(x, y) = (1− η)3P ∗
i,j(x) + η(1− η)2Vi,j + η2(1− η)Wi,j + η3P ∗

i,j+1(x),

qi,j(y) = (1− η)2 + η(1− η)βi,j + η2,

Vi,j = (βi,j + 1)P ∗
i,j(x) + ljφi,j(x) + ϕi,j(x, y),

Wi,j = (βi,j + 1)P ∗
i,j+1(x)− ljφi,j+1(x) + ψi,j(x, y),

φi,s(x) = (1− θ)3(1 + 4θ + 9θ2)ei,s + θ3(6− 8θ + 3θ2)ei+1,s, s = j, j + 1,

ϕi,j(x) = (η − η(1− η)(βi,j + 1))× (P ∗
i,j+1(x)− P ∗

i,j(x)− ljφi,j(x)),

ψi,j(x) = (1− η − η(1− η)(βi,j + 1))× (P ∗
i,j(x)− P ∗

i,j+1(x) + ljφi,j(x)),

with βi,j > 0. The interpolation function Pi,j(x, y) defined by (4) is called
the bivariate rational interpolation function and which satisfies

Pi,j(xr, ys) = f(xr, ys),
∂Pi,j(xr, ys)

∂x
= dr,s,

∂Pi,j(xr, ys)

∂y
= er,s, r = i, i+ 1; s = j, j + 1.



i
i

“1-Du” — 2017/12/28 — 0:01 — page 208 — #6 i
i

i
i

i
i

208 H. Du, et al.

Figure 1: Rational interpolation model.

Fig. 1 shows the schematic diagram of the rational function interpolation
model. The region surrounded by four black spots is the interpolation region.
Based on this model, a surface patch is constructed by 12 points around the
interpolation unit. Further, all interpolation surface patches of the whole
image are connected to form an interpolated surface.

The interpolation model defined by (4) is determined by interpolation
data and shape parameters. With shape parameters varying, the model has
different forms of expression. In particular, when αi,j = βi,j = 1, the inter-
polation model reduces a polynomial model.

3. Proposed algorithm

In this section, based on the constructed rational interpolation model above,
a texture feature preserving image interpolation algorithm is proposed. First
of all, the image is divided into the smooth region and the non-smooth
region by using isolines method. Then, according to the regional features of
the image, the rational model and the polynomial model are employed in
image interpolation respectively. In final, a technique of interpolation point
constraint in the non-smooth region is presented.

3.1. Adaptive region division

Regional division is a key step in image interpolation. The accuracy of re-
gional division will directly affect the quality of interpolated images.

Isolines are the lines at the map that pass through the points with the
same meanings of some quantitative indexes [21]. It has a wider range of
applications in meteorology, geology, and so on. In this section, the isolines
method is applied to the adaptive region division of the image.
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Figure 2: Schematic diagram of image region detection.

Isolines can describe the regional features of the image. In Fig. 1, a
rectangle enclosed by [i : i+ 1; j : j + 1] (a rectangle surrounded by black
spots) is defined as an interpolation unit. If there is at least an isoline in an
interpolation unit, the region is defined as the non-smooth region, otherwise
as the smooth region. The threshold of the image regional division is the
mean value of the 12-pixels gray values in Fig. 1. So the threshold of the
region detection varies with the movement of the interpolation unit. The
adaptive detection threshold λ for each patch is defined as

λ =

2∑
r=−1

2∑
s=−1

fi+r,j+s − (fi−1,j−1 + fi+2,j−1 + fi+2,j+2)

12
.

The difference between the four points’ pixel values of the interpolation
unit and λ are denoted by ∆xm,n,m, n = 0, 1. If ∆xm,n all be positive or
negative, the region is defined as the smooth region, otherwise as the non-
smooth region. Fig. 2 is a schematic diagram of image region detection. As
shown in Fig. 2, if the four vertices have different symbols, the interpolation
unit belongs to the non-smooth region. If the four vertices have the same
symbols, the interpolation unit belongs to the smooth region.

Fig. 3 shows the detection results of Lena, Butterfly, Airplane and Hawk.
It can be seen that the isolines method can effectively detect the texture and
the boundary of image.

3.2. Image interpolation

The image is divided into the smooth region and the non-smooth region
by using isolines method. The smooth region is interpolated by polynomial
model, and the non-smooth region is interpolated by rational model.

Given a m× n image Im,n, the pixel value of i rows and j columns in Im,n

is denoted by fi,j(0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1), and the pixel coordinates
are (i, j). In Fig. 4, the region surrounded by the four black dots is the
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(a) (b) (c) (d)

Figure 3: (a)Texture region detection result of Lena. (b)Texture region de-
tection result of Butterfly. (c)Texture region detection result of Airplane.
(d)Texture region detection result of Hawk.

Figure 4: Image interpolation schematic diagram.

region to be interpolated. An interpolation surface patch of four black dots
is constructed based on 12 pixels around the interpolation unit. Thus the
pixel values of red pots can be obtained. The red dots are the interpolated
pixels.

Due to the general rational function is C1 continuous, the image in-
terpolation models based on the rational function have higher fidelity in
the smooth region and non-smooth region, however jaggy artifact are often
present in the edges of the image. The reason is that the smoothness of
the rational function model has an important influence on the quality of
image interpolation. We construct the C2 continuous rational interpolation
model, which inherits the advantages of the general rational function in the
non-smooth region, and reduces the appearance of the jagged edge of the
interpolated image to some extent.
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Figure 5: Schematic diagram of image texture orientation division.

3.3. Interpolation point constraints based on image gradient

In order to restore the texture details of the image better, we propose an
objective function that constrains the interpolation point based on the image
gradient. The gradient of the interpolation unit is obtained according to the
isotropic sobel operator, and the texture direction is determined. Then, we
construct an objective function that is used to calculate the weight coefficient
of interpolation unit. Finally, we calculate the weight of the correlation point,
and determine the pixel value of the interpolation point by convolution.

3.3.1. Texture direction determine. As shown in Fig. 5, the texture
of the image interpolation unit is divided into four directions: horizontal,
vertical and diagonal. The image gradient is calculated by the isotropic
sobel operator, and the texture direction is determined according to the
image gradient.

The isotropic sobel operator is used to detect the horizontal and verti-
cal textures of the image [22]. On the basis of the isotropic sobel operator,
the horizontal and vertical texture detection templates are rotated by 45
degrees to obtain the diagonal texture detection template. The 3× 3 tex-
ture detection templates of the isotropic sobel operator is represented by
M1,M2,M3,M4. Let M1, M2 be the isotropic sobel operator template of
vertical, horizontal texture. Let M3, M4 be the isotropic sobel operator
template of diagonal texture. If we define A as the source image of the inter-
polation unit, Gx1 and Gy1 are two images which at each point contain the
horizontal and vertical derivative approximations respectively, and Gx2 and
Gy2 are two images which at each point contain the horizontal and vertical
derivative approximations respectively, the computations are as follows:
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Gx1 = M1 ∗A, Gy1 = M2 ∗A,
Gx2 = M3 ∗A, Gy2 = M4 ∗A.

where ∗ here denotes the 2-dimensional signal processing convolution oper-
ation.

Let G1 be the gradient magnitude of vertical, horizontal texture. Let G2

be the gradient magnitude of diagonal texture. θ1, θ2 is the corresponding
image gradient’s direction respectively. Based on the above analysis, the
gradient of each image patch can be obtained. The calculation formulas of
image gradient are as follows:

G1 =
√
G2

x1 +G2
y1, G2 =

√
G2

x2 +G2
y2,

θ1 = arctan(Gy1

Gx1
), θ2 = arctan(Gy2

Gx2
).

For each interpolation unit of the image, the texture direction is de-
termined by comparing the image gradients in four directions. G1 >= G2

indicates that the texture is in the vertical or horizontal direction, otherwise
the texture is in the diagonal direction. Fig. 6 is a schematic diagram for
judging the direction of image texture. Fig. 6(a) is a schematic diagram for
judging the horizontal or vertical direction texture. If the image gradient di-
rection θ1 is between −45 degrees and 45 degrees(Fig. 6(a), θ1 is in the red
area), it is a vertical texture, otherwise it is a horizontal texture. Fig. 6(b)
is a schematic diagram of the image diagonal direction texture. If the image
gradient direction θ2 is between 0 degrees and 90 degrees(Fig. 6(b), θ2 is in
the blue area), the texture is in the 135 degrees-direction, otherwise it is the
diagonal texture.

3.3.2. Interpolation point conditional constraint. In order to pre-
serve the texture features of the image well, an objective function that con-
straints the interpolation pixels based on image gradient is constructed. The
objective function maintains the texture direction of the reconstructed image
consistent with the sampled image by constraining the interpolation pixels.

An image gradient is a directional change in the intensity or color in an
image. In an interpolation unit, the change of the pixel values may affect
the change of texture direction. In order to keep the texture direction of the
sampled image consistent with the reconstructed image, we construct the
objective function which is used to constrain the pixel values of interpolation
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(a) (b)

Figure 6: (a)Horizontal, vertical direction texture judgment. (b)Diagonal
direction texture judgment.

Figure 7: Schematic diagram of interpolation pixels constraint based on the
gradient.

points. The objective function is given by

F = min(||αGmax − βGmax||).
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Figure 8: Schematic diagram of interpolated pixel mixed weighted.

Fig. 7 shows the schematic diagram of interpolation pixels constraint
based on the image gradient. αGmax is the direction of the maximum gradi-
ent of the sampling pixel in an interpolation unit, it is fixed. βGmax is the
direction of the maximum gradient of the interpolated pixel in an interpo-
lation unit. When the values of αGmax and βGmax remain in the same, we
leave the pixel values of interpolation points unchanged, otherwise we con-
strain the pixel values of the interpolation points. Based on the proposed
objective function, in the next section, we give the approximate method for
calculating the weight coefficient.

3.3.3. Weight calculation. The texture direction of the interpolated
patch is determined according to the image gradient. We calculate the weight
of the correlation point for the interpolation unit of the different texture di-
rection, and determine the definitive pixel value of the interpolation point.

Fig. 8 is schematic diagram of interpolated pixel mixed weighted. Black
dot is the sampling pixel, the red dot is the pre-interpolated pixels, and the
green dot is the interpolated pixels.

In the [i, j] interpolation unit, let lr,s be the connection between the
pixel[i+ r, j + s](r, s = 0, 1, 2) and the center pixel[i+ 1, j + 1]. let θi+r,j+s,
(θi+r,j+s ∈ [0, π/2]) be the angle between lr,s and the texture direction. Let
$i+r,j+s, (r, s = 0, 1, 2) be the weighting factor of [i+ r, j + s]pixel; this is
given by

(5) $i+r,j+s =
π

2× θi+r,j+s
.

In (5), the range of $i+r,j+s is [1,+∞]. When θi+r,j+s is 0, the value of
$i+r,j+s is +∞, it can not be calculated. A large number of experiments
have shown that when the range of $i+r,j+s is mapped to [0, 2], the results
are satisfactory. The mapping function is defined as

g : $i+r,j+s → wi+r,j+s, wi+r,j+s ∈ [0, 2].
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According to the weighting factor, we can obtain the weight coefficient ma-
trix of each interpolation unit by convolution. The weight coefficient matrix
on the interpolation unit [i, j] is defined as wi,j wi,j+1 wi,j+2

wi+1,j wi+1,j+1 wi+1,j+2

wi+2,j wi+2,j+1 wi+2,j+2


Let wi+r,j+s be the weight coefficient at the pixel[i+ r, j + s] on the

interpolation unit[i, j], and let fi+r,j+s be the pixel value at the point[i+
r, j + s] on the interpolating unit [i, j]. The interpolation unit is convoluted
with the weight coefficient matrix to obtain the interpolated pixel value.
The term fi+1,j+1 on the interpolation unit[i, j] is defined as

fi+1,j+1 =

2∑
r=0

2∑
s=0

fi+r,j+s × wi+r,j+s

2∑
r=0

2∑
s=0

wi+r,j+s

(r, s = 0, 1, 2).

4. Experimental results

Experiments are conducted to evaluate the effectiveness of the interpola-
tion algorithm. The proposed algorithm is compared with linear interpola-
tor Bicubic, as well as recent state-of-the-art methods including directional
filtering and data fusion (DFDF) [6], robust soft decision adaptive interpo-
lation (RSAI) [8], nonlocal autoregressive model (NARM) [9], the cascade of
SCNs (CSCN) [10], Super-Resolution Convolutional Neural Network model
(SRCNN)[11], image interpolation based on weighted and blended rational
function (Liu’s)[17], an edge−guided image interpolation method using Tay-
lor series approximation (Lee’s) [23].

In our experiments, Bicubic interpolation is performed with the MAT-
LAB built-in function, and the source codes of other compared methods are
kindly provided by their authors. The LR source image is obtained through
down-sampling the original HR image by a factor of 2 (both horizontally
and vertically, no pre-filtering).

Peak signal to noise ratio(PSNR) is an average quality measurement over
the whole image. Structural similarity index(SSIM) is a visual assessment of
the quality of the image. So we use PSNR and SSIM as metrics to measure
the performance of these interpolation algorithms. Tables 1 and 2 present
the PSNR and SSIM of various methods, respectively. The average PSNR
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of the proposed method is 1.77, 0.3, 1.26, 0.31, 0.58, 0.92, 4.26 and 3.53 dB
higher than that of the Bicubic, RSAI, DFDF, NARM, Liu’s, Lee’s, CSCN
and SRCNN, respectively. The average SSIM of the proposed method is
0.0711, 0.007, 0.0096, 0.0058, 0.009, 0.0197, 0.1247 and 0.1053 higher than
that of the Bicubic, RSAI, DFDF, NARM, Liu’s, Lee’s, CSCN and SRCNN,
respectively.

Table 1: PSNR comparison of different metods

BICUBIC RSAI DFDF NARM Liu’s Lee’s¡¡ CSCN SRCNN Proposed

Baboon 21.60 22.93 22.25 22.56 22.46 22.03 18.56 19.87 23.04
Barbara 23.19 22.99 24.07 23.37 23.68 22.72 20.14 20.70 24.55

Brick 32.57 35.05 32.22 35.05 34.24 34.93 30.29 30.60 35.30
Dollar 18.08 18.96 18.67 18.77 18.70 18.30 15.91 16.50 19.06
Fence 19.38 20.59 20.96 21.39 21.19 20.60 17.64 17.69 21.40
Metal 13.68 14.47 14.35 13.72 14.17 13.30 11.13 12.27 14.69

ParrotsRGB 28.46 32.41 27.05 32.58 31.15 30.95 26.11 26.83 32.46
Rail 21.85 22.88 22.51 22.81 22.61 22.31 20.10 20.42 23.18
Sky 28.43 29.75 29.19 29.88 29.46 29.21 25.84 26.60 29.85

LionRGB 26.16 27.98 27.75 27.94 27.78 27.55 23.00 24.15 28.01
Wall 23.30 24.89 24.09 24.90 24.60 24.05 20.50 21.67 24.91
Girl 29.27 30.72 29.05 30.62 30.27 30.30 26.82 27.48 30.75

Average 23.83 25.30 24.34 25.29 25.02 24.68 21.34 22.07 25.60

Table 2: SSIM comparison of different metods

BICUBIC RSAI DFDF NARM Liu’s Lee’s CSCN SRCNN Proposed

Baboon 0.7684 0.8671 0.8556 0.8626 0.8575 0.8483 0.7107 0.7345 0.8697
Barbara 0.7956 0.8548 0.8714 0.8590 0.8621 0.8444 0.7492 0.7511 0.8754

Brick 0.9143 0.9600 0.9562 0.9550 0.9540 0.9614 0.8729 0.8781 0.9634
Dollar 0.7170 0.8022 0.8022 0.7971 0.7915 0.7786 0.6843 0.6925 0.8053
Fence 0.6223 0.7014 0.7140 0.7265 0.7116 0.6960 0.5657 0.5824 0.7188
Metal 0.4369 0.5129 0.4989 0.5102 0.5242 0.4653 0.3700 0.4101 0.5374

ParrotsRGB 0.8968 0.9312 0.9194 0.9306 0.9210 0.9225 0.8535 0.8836 0.9312
Rail 0.7358 0.7818 0.7779 0.7800 0.7696 0.7656 0.6594 0.6847 0.7831
Sky 0.8455 0.9093 0.9082 0.9105 0.9051 0.9012 0.7992 0.8141 0.9115

LionRGB 0.7762 0.8358 0.8267 0.8383 0.8376 0.8335 0.6819 0.7147 0.8389
Wall 0.7932 0.8833 0.8798 0.8863 0.8805 0.8715 0.7449 0.7746 0.8877
Girl 0.9337 0.9657 0.9629 0.9630 0.9658 0.9641 0.9002 0.9042 0.9667

Average 0.7696 0.8337 0.8311 0.8349 0.8317 0.8210 0.7160 0.7354 0.8407

It is well known that objective metric is not completely in accordance
with subjective tests, the evaluation of the visual appearance of the inter-
polated images is required for different methods. In Figs. 9–22, we demon-
strate the visual effect of the proposed method and other methods. From
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the subjective quality comparisons shown in these figures, we can find that
the proposed algorithm is superior to other algorithms in preserving image
texture detail and edge structure.

Figs. 9–18 compare the visual effect of the texture detail of the recon-
structing images. As shown in Figs. 10 and 12, compared with the other
state-of-the-art methods, the proposed method is more appealing in pre-
serving texture direction. BICUBIC suffers from blurry artifacts. The im-
ages generated by DFDF and Lee’s produce noise. The results achieved by
NARM, Liu’s and DFDF are distorted. The images obtained by RSAI ob-
serve jagged edges. The texture details are not efficiently preserved in CSCN
and SRCNN. From Figs. 16 and Fig. 18, we can see that NARM, DFDF,
Liu’s, CSCN lost detail information, RSAI, SRCNN and Lee’s produce tex-
ture distortion and deformation. When the image have complex texture, it
is not satisfactory with image restoration using Bicubic. Our approach is
able to obtain vivid texture regions. Overall, our method has outstanding
advantages in preserving image texture direction and detail.

Figs. 19–22 compare the visual effect of the edge structure of the re-
constructing images. In Figs. 20 and 22, it can be clearly observed that the
images reconstructed by Bicubic, RSAI, Liu’s, Lee’s, CSCN and SRCNN in-
terpolator suffer from jaggy. The DFDF, RSAI and the proposed method are
stable for most edge structure, while the results achieved by the proposed
method seem more sharp and natural. Obviously, our proposed image in-
terpolation algorithm delivers the best subjective results with clear texture
detail, sharp edges and least amount of artifacts incurred.

Table 3: The run time comparison of different methods (unit: second).

BICUBIC DFDF RSAI NARM Liu’s Lee’s CSCN SRCNN Proposed

Baboon 0.49 12 197 1547 6.6 21 5.0 9.6 4.8
Barbara 0.35 12 202 1411 5.2 26 4.2 9.8 3.7

Brick 0.47 12 207 1550 6.4 11 4.2 9.9 3.7
Dollar 0.63 12 205 1526 5.1 20 4.0 10.0 3.7
Fence 0.27 2 26 139 0.8 3 2.3 1.4 0.5
Metal 0.74 12 191 1702 8.7 21 4.2 9.7 3.8

ParrotsRGB 0.65 9 176 1453 3.2 19 2.6 2.9 2.6
Rail 0.46 3 43 246 3.7 4 2.5 2.7 0.9
Sky 1.17 19 310 2408 12.8 24 5.4 15.7 5.5

LionRGB 0.57 10 206 1579 4.8 22 3.3 5.6 3.4
Wall 0.78 18 312 2496 10.5 24 5.2 15.4 5.5
Girl 0.44 19 201 1628 5.1 21 5.3 15.4 3.0

Average 0.585 11.6 189.7 1473.8 6.08 18 4.02 9.01 3.43

The computational time is fairly low which is another very attractive ad-
vantage of our proposed method. Let’s analyze the reason why our proposed
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: ZebrasRGB: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Portions of image “ZebrasRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.

algorithm has such a low time cost. For a m× n image, it has (m− 2)×
(n− 2) interpolation units. From the construction of interpolation function,
the region division of image and the constraint of interpolation pixels, we
can know that these calculation processes are mostly of simple algebraic
operations. The time complexity of the proposed method is O(1) for an in-
terpolation unit. So the total additional computational complexity is only
O((m− 2)× (n− 2)). Thus the computational complexity of the proposed
method, Bicubic and the Liu’s method are in the same order.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: ParrotsRGB: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: Portions of image “ParrotsRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.

In table 3, we demonstrate the runtime of the proposed method and
other methods. All the experiments are executed on a PC with an Intel
Core i3-2328 2.20 GHz CPU and 2 GB of RAM. All these methods are im-
plemented in Matlab. From the average run time, the speed of the proposed
method is about 3.5, 55, 429, 5, 2.6 times faster than that of the DFDF,
RSAI, NARM, Lee’s, SRCNN method. The computational complexity of
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13: SoccerRGB: (a) NARM; (b) SRCNN;(c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14: Portions of image “SoccerRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.

the proposed method, Liu’s and Bicubic are in the same order. Our ap-
proach achieved the best interpolation performance at expense of relative
low computational complexity.

The proposed algorithm is tested from three aspects: objective data, vi-
sual effect and time complexity. Compared with the other methods, the pro-
posed method can effectively maintain the texture detail and edge structure
of the image, provides higher objective data and has lower time complexity.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15: BaboonRGB: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16: Portions of image “BaboonRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.

5. Conclusion

We propose a texture feature preserving image interpolation algorithm via
gradient constraint. Firstly, based on the proposed rational interpolation
model, the isolines method is applied to image regional division. The image
is divided into smooth regions and non-smooth regions. Secondly, the smooth
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17: WallRGB: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18: Portions of image “WallRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.

region is interpolated by polynomial model, and the non-smooth region is in-
terpolated by rational model. Finally, the texture direction is determined ac-
cording to the image gradient. The pixel values of the interpolated points are
calculated by convolving the matrix of the weight coefficients of the different
texture direction interpolation units, and the objective function minimiza-
tion problem based on the texture direction is solved. Experimental results
show that the proposed algorithm achieves good competitive performance
compared with the state-of-the-art interpolation algorithms, especially in
preserving image details and structure of edge.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 19: GirlRGB: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 20: Portions of image “GirlRGB”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.



i
i

“1-Du” — 2017/12/28 — 0:01 — page 224 — #22 i
i

i
i

i
i

224 H. Du, et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 21: Airplane: (a) NARM; (b) SRCNN; (c) CSCN; (d) DFDF; (e)
RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our approach; (j) ground-truth
image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 22: Portions of image “Airplane”: (a) NARM; (b) SRCNN; (c)
CSCN; (d) DFDF; (e) RSAI; (f) BICUBIC; (g) Liu’s; (h) Lee’s; (i) our
approach; (j) ground-truth image.
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