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Stochastic linear-quadratic optimal

control without time-consistency

requirement

Yuan-Hua Ni and Ji-Feng Zhang

In this paper, linear-quadratic optimal control without time-
consistency requirement is studied for a class of linear discrete-
time systems with multiplicative stochastic disturbances. Both the
open-loop and the closed-loop time-consistent solutions are inves-
tigated. Necessary and sufficient conditions on the existence of the
open-loop time-consistent equilibrium control and the closed-loop
time-consistent equilibrium strategy are obtained, respectively.
Specifically, the existence of the open-loop time-consistent equilib-
rium control for all the initial time-state pairs is equivalent to the
solvability of two coupled constrained linear difference equations
and two coupled constrained generalized difference Riccati equa-
tions; the existence of the closed-loop time-consistent equilibrium
strategy is equivalent to the solvability of another two coupled con-
strained generalized difference Riccati equations. It can be found
that Riccati equations for the open-loop formulation do not admit
symmetry structure, while the ones for the closed-loop formulation
do have symmetric solutions.

1. Introduction

By the Bellman optimality principle, we know that an optimal control for an
initial pair will stay optimal thereafter. This property is also referred as the
time-consistency of an optimal control, according to which one needs only
to solve an optimal control problem for a given initial pair and the obtained
optimal control is also optimal along the optimal trajectory. So, the time-
consistency provides a theoretical foundation of the dynamic programming
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approach. In this paper, a class of stochastic linear-quadratic (LQ) optimal
control problem is considered. Different from our recent works about mean-
field LQ problems [8][9], a new feature of the considered problem is that
the conditional expectations of the state and control appear quadratically
in the cost functional. In this case, the smoothing property of conditional
expectation cannot ensure the time-consistency of the optimal control. A
particular example of this case is the well-known mean-variance utility [2]
[3].

We may ask: How to deal with the time-inconsistent optimal control
problems? Let us take a look. Roughly speaking, finding an optimal con-
trol is a dynamical optimization problem, as time variable is involved. For
a time-inconsistent optimal control problem, we could find an optimal con-
trol for an initial pair, and this control is optimal only viewed at the initial
time or in a static sense. Alternatively, it is more reasonable for a decision
maker to commit to his policy in an infinitesimal manner. In this case, some
kinds of time-consistent equilibrium solutions are concerned with. This is
mainly motivated by practical applications such as in mathematical finance
and economics, and has attracted considerable interest and efforts. Recently,
[4] and [5] studied the non-exponential discounting problems both for sim-
ple ordinary differential equations and stochastic differential equations, and
introduced the notion of time-consistent control, while [3] started with the
problems of general Markovian time-inconsistent stochastic optimal control.
Concerned with the deterministic continuous-time LQ problems, [11] and
[12] addressed it by an essentially cooperative game approach. This line is
followed by a part of [14] to consider the stochastic LQ problem of mean-
field type, which is called the closed-loop formulation there. Different from
[11] [12], [6] studied another kind of time-consistent equilibrium control,
which is an infinitesimally open-loop optimal control. As an application,
a mean-variance portfolio selection problem is considered, and an equilib-
rium control is explicitly obtained. In [14], the author investigated both the
open-loop and the closed-loop time-consistent solutions for general mean-
field stochastic LQ problems; it is shown that the existence of the open-loop
equilibrium control and the closed-loop equilibrium strategy is ensured via
the solvability of certain Riccati-type equations.

In this paper, both the open-loop and the closed-loop time-consistent so-
lutions are investigated for a general time-inconsistent discrete-time mean-
field stochastic LQ problem. Here, we do not pose the definite constraint
on the state and the control weighting matrices. Roughly speaking, the
open-loop time-consistent solution is concerned with the time-consistency
of an open-loop control, while the closed-loop solution is focusing on the
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time-consistency of a closed-loop strategy. In Section 2, the open-loop time-
consistent equilibrium control of Problem (LQ) is introduced. It is shown
that the existence of an open-loop equilibrium control for an initial pair is
equivalent to the solvability of a set of forward-backward stochastic differ-
ence equations (FBSΔEs) with stationary condition and convexity condi-
tion. Moreover, the existence of the open-loop equilibrium control for all the
initial pairs is shown to be equivalent to the solvability of two coupled linear
difference equations (LDEs) and two coupled generalized difference Riccati
equations (GDREs). In Section 3, the closed-loop time-consistent equilib-
rium strategy is investigated, whose existence is equivalent to the solvability
of another two coupled GDREs. It is worth noticing that the GDREs for the
open-loop formulation do not have symmetric structure, i.e., their solutions
are not symmetric, although the ones for the closed-loop formulation have
symmetric structure.

A static mean-field stochastic LQ optimal control problem is investigated
in [9], where the expectations of the state and control appear quadrati-
cally in the cost functional. Deeply investigating the results of [9], we can
see that the static mean-field LQ problem is indeed time-consistent. This
is essentially different from what we are considering here. Furthermore, a
time-inconsistent stochastic LQ problem is studied in [7], where the system
equation and the cost functional are depending explicitly on the initial time.

The rest of this paper is organized as follows. Section 2 and Section 3
are considering the open-loop and closed-loop formulations, respectively. In
Section 4, an example is presented and the paper ends with the concluding
remarks in Section 5.

2. Open-loop time-consistent equilibrium control

Let us consider the following stochastic linear system with multiplicative
disturbances

{
Xt

k+1 =
(
AkX

t
k +Bkuk

)
+

(
CkX

t
k +Dkuk

)
wk,

Xt
t = x, k ∈ {t, . . . , N − 1} � Tt, t ∈ {0, 1, . . . , N − 1} � T,

(1)

where Ak, Ck,∈ R
n×n and Bk, Dk ∈ R

n×m are deterministic matrices;
{Xt

k, k ∈ T̃t} � Xt with T̃t = {t, t+ 1, . . . , N}, and {uk, k ∈ Tt} � u are the
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state process and the control process, respectively. The cost functional as-
sociated with system (1) is

J(t, x;u) =

N−1∑
k=t

Et

[
(Xt

k)
TQkX

t
k + (EtX

t
k)

T Q̄kEtX
t
k + uTkRkuk(2)

+ (Etuk)
T R̄kEtuk

]
+ Et

[
(Xt

N )TGXt
N

]
+ (EtX

t
N )T ḠEtX

t
N ,

where Qk, Q̄k, Rk, R̄k, k ∈ Tt, G, Ḡ are deterministic symmetric matrices of
appropriate dimensions.

In (2), Et is the conditional mathematical expectation E[ · |Ft] with re-
spect to Ft = {x0, wl, l = 0, 1, . . . , t− 1} and F0 being understood as {∅,Ω}.
Furthermore, in (1), x is in L2

F (t;R
n), which is a set of the random vari-

ables such that any ξ ∈ L2
F (t;R

n) is Ft-measurable and E|ξ|2 <∞. The noise
{wk, k ∈ T} is assumed to be a martingale difference sequence defined on a
probability space (Ω,F , P ) in the sense that

Ek+1[wk+1] = 0, Ek+1[(wk+1)
2] = 1, k ≥ 0.(3)

Let L2
F (Tt;R

m) be a space of Rm-valued processes such that for any ν =

{νk, k ∈ Tt} ∈ L2
F (Tt;H), νk is Fk-measurable and

∑N−1
k=t E|νk|2 <∞.

Problem (LQ). Considering (1)(2) and the initial pair (t, x), find a u∗ ∈
L2
F (Tt;R

m), such that

J(t, x;u∗) = inf
u∈L2

F (Tt;Rm)
J(t, x;u).(4)

For the feature of time-inconsistency of Problem (LQ), the notion “opti-
mality” should be defined in an appropriate way. Instead of solving Problem
(LQ) for the static pre-committed optimal control, we adopt the concept of
dynamic equilibrium control, which is optimal in an “infinitesimal” manner
and is consistent with the dynamical nature of Problem (LQ).

Definition 1. Given t ∈ T, x ∈ L2
F (t;R

n), a state-control pair (Xt,x,∗, ut,x,∗)
∈ L2

F (T̃t;R
n)× L2

F (Tt;R
m) is called an open-loop equilibrium pair of Prob-

lem (LQ) for the initial pair (t, x) if Xt,x,∗
t = x, and

J(k,Xt,x,∗
k ;ut,x,∗|Tk

) ≤ J(k,Xt,x,∗
k ; (uk, u

t,x,∗|Tk+1
))(5)
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holds for any k ∈ Tt and any uk ∈ L2
F (k;R

m). Here, ut,x,∗|Tk
and ut,x,∗|Tk+1

are the restrictions of ut,x,∗ on Tk and Tk+1, respectively, and

(6)

{
Xt,x,∗

k+1 =
(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+

(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt.

Furthermore, such a ut,x,∗ is called an open-loop equilibrium control for the
initial pair (t, x).

Note that ut,x,∗|Tk+1
appears in both sides of (5). For any given k ∈ Tt,

we denote J(k,Xt,x,∗
k ; (uk, u

t,x,∗|Tk+1
)) by J̄(k,Xt,x,∗

k ;uk), i.e.,

(7) J̄(k,Xt,x,∗
k ;uk) = J(k,Xt,x,∗

k ; (uk, u
t,x,∗|Tk+1

)).

Hence, (5) implies

J̄(k,Xt,x,∗
k ;ut,x,∗k ) ≤ J̄(k,Xt,x,∗

k ;uk), ∀uk ∈ L2
F (k;R

m), ∀k ∈ Tt.(8)

To proceed, review an inner product of L2
F (Tt;R

p) (p = n,m, t ∈ T)

〈y, z〉Tt
=

N−1∑
k=t

E(yTk zk), y, z ∈ L2
F (Tt;R

p),

and 〈y, z〉t = E(yT z), for y, z ∈ L2
F (t;R

p), denotes an inner product of
L2
F (t;R

p) (p = n,m, t ∈ T). Then J̄(k,Xt,x,∗
k ;uk) can be represented as

J̄(k,Xt,x,∗
k ;uk) = 〈QXk, Xk〉Tk

+ 〈Q̄EkX
k,EkX

k〉Tk
(9)

+ 〈Rkuk, uk〉k + 〈R̄kEkuk,Ekuk〉k
+ 〈Rut,x,∗, ut,x,∗〉Tk+1

+ 〈R̄Eku
t,x,∗,Eku

t,x,∗〉Tk+1

+ 〈GXk
N , Xk

N 〉N + 〈ḠEkX
k
N ,EkX

k
N 〉N .

In (9), Xk is the solution of the following equation⎧⎪⎨⎪⎩
Xk

�+1 =
(
A�X

k
� +B�u

t,x,∗
�

)
+

(
C�X

k
� +D�u

t,x,∗
�

)
w�, � ∈ Tk+1,

Xk
�+1 =

(
AkX

k
k +Bkuk

)
+

(
CkX

k
k +Dkuk

)
wk,

Xk
k = Xt,x,∗

k ;

〈QXk, Xk〉Tk
and 〈R̄Eku

t,x,∗,Eku
t,x,∗〉Tk+1

represent, respectively,

N−1∑
�=k

Ek

[
(Xk

� )
TQ�X

k
�

]
and

N−1∑
�=k+1

[
(Eku

t,x,∗
� )T R̄�Eku

t,x,∗
�

]
,

and similar meaning holds for other terms.
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To characterize the open-loop equilibrium control, we now calculate
the first order and second order directional derivatives of J̄(k,Xt,x,∗

k ;uk)

at ut,x,∗k (when they exist). With the initial pair (k,Xt,x,∗
k ) and the con-

trol (ut,x,∗k + λūk, u
t,x,∗|Tk+1

), the solution to (1) is denoted by Xt,λ, where
ūk ∈ L2

F (k;R
m). Then, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

Xk,λ
�+1−Xt,x,∗

�+1

λ = A�
Xk,λ

� −Xt,x,∗
�

λ + C�
Xk,λ

� −Xt,x,∗
�

λ w�, � ∈ Tk+1,

Xk,λ
k+1−Xt,x,∗

k+1

λ =
(
Ak

Xk,λ
k −Xt,x,∗

k

λ +Bkūk

)
+

(
Ck

Xk,λ
k −Xt,x,∗

k

λ +Dkūk

)
wk,

Xk,λ
k −Xt,x,∗

k

λ = 0.

Letting Y k
� =

Xk,λ
� −Xt,x,∗

�

λ , one gets⎧⎨⎩
Y k
�+1 = A�Y

k
� + C�Y

k
� w�, � ∈ Tk+1,

Y k
k+1 = Bkūk +Dkūkwk,

Y k
k = 0,

(10)

andXk,λ
� = Xt,x,∗

� + λY k
� , � ∈ T̃k. To get the first order directional derivative,

we need some calculations. Note that

lim
λ↓0

〈Rk(u
t,x,∗
k + λūk), u

t,x,∗
k + λūk〉k − 〈Rku

t,x,∗
k , ut,x,∗k 〉k

λ
(11)

= 2〈Rku
t,x,∗
k , ūk〉t + lim

λ↓0
λ〈Rkūk, ūk〉k = 2〈Rku

t,x,∗
k , ūk〉k,

and

lim
λ↓0

〈R̄k(Eku
t,x,∗
k + λEkūk),Eku

t,x,∗
k + λEkūk〉k − 〈R̄kEku

t,x,∗
k ,Eku

t,x,∗
k 〉k

λ

= 2〈R̄kEku
t,x,∗
k ,Ekūk〉k = 2〈R̄ku

t,x,∗
k , ūk〉k,

lim
λ↓0

〈QXk,λ, Xk,λ〉Tk
− 〈QXt,x,∗, Xt,x,∗〉Tk

λ

= 2〈QXt,x,∗, Y k〉Tk
,

lim
λ↓0

〈Q̄EkX
k,λ,EkX

k,λ〉Tk
− 〈Q̄EkX

t,x,∗,EkX
t,x,∗〉Tk

λ

= 2〈Q̄EkX
t,x,∗,EkY

k〉Tk
,

lim
λ↓0

〈GXk,λ
N , Xk,λ

N 〉N − 〈GXt,x,∗
N , Xt,x,∗

N 〉N
λ



Stochastic LQ optimal control without time-consistency 527

= 2〈GXt,x,∗
N , Y k

N 〉N ,

lim
λ↓0

〈ḠEkX
k,λ
N ,EkX

k,λ
N 〉N − 〈ḠEkX

t,x,∗
N ,EkX

t,x,∗
N 〉N

λ

= 2〈ḠEkX
t,x,∗
N ,EkY

k
N 〉N .

Then, we have the first order directional derivative of J̄(k,Xx,∗
k , uk) at u

x,∗
k

with the direction ūk

dJ̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk)(12)

= lim
λ↓0

J̄(k,Xt,x,∗
k ;ut,x,∗k + λūk)− J̄(k,Xt,x,∗

k ;ut,x,∗k )

λ

= 2〈QXt,x,∗, Y k〉Tk
+ 2〈Q̄EkX

t,x,∗,EkY
k〉Tk

+ 2〈(Rk + R̄k)u
t,x,∗
k , ūk〉k

+ 2〈GXt,x,∗
N , Y k

N 〉N + 2〈ḠEkX
t,x,∗
N ,EkY

k
N 〉N .

Another round of lengthy calculations yield the second order directional
derivative with the directions ūk and ûk

d2J̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk; ûk)

= lim
β↓0

dJ̄(k,Xt,x,∗
k ;ut,x,∗k + βûk; ūk)− dJ̄(k,Xt,x,∗

k ;ut,x,∗k ; ūk)

β

= 2〈QŶ k, Y k〉Tk
+ 2〈Q̄EkŶ

k,EkY
k〉Tk

+ 2〈(Rk + R̄k)ûk, ūk〉k
+ 2〈GŶ k

N , Y k
N 〉N + 2〈ḠEkŶ

k
N ,EkY

k
N 〉N ,

where ⎧⎪⎨⎪⎩
Ŷ k
�+1 = A�Ŷ

k
� + C�Ŷ

k
� w�, � ∈ Tk+1,

Ŷ k
k+1 = Bkûk +Dkûkwk,

Ŷ k
k = 0.

If ûk = ūk, then

d2J̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk; ūk) = 2〈QY k, Y k〉Tk

+ 2〈Q̄EkY
k,EkY

k〉Tk
(13)

+ 2〈(Rk + R̄k)ūk, ūk〉k
+ 2〈GY k

N , Y k
N 〉N + 2〈ḠEkY

k
N ,EkY

k
N 〉N .
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Note that the right side of (13) is independent of ut,x,∗k . Then, for any uk ∈
L2
F (k;R

m) we have

d2J̄(k,Xt,x,∗
k ;uk; ūk; ūk) = 2〈QY k, Y k〉Tk

+ 2〈Q̄EkY
k,EkY

k〉Tk
(14)

+ 2〈(Rk + R̄k)ūk, ūk〉k
+ 2〈GY k

N , Y k
N 〉N + 2〈ḠEkY

k
N ,EkY

k
N 〉N .

Furthermore, we could show that J̄(k,Xt,x,∗
k ;uk) is infinitely differentiable

in the sense that the directional derivatives of all orders exist. By classi-
cal results on convex analysis [4], we know that the convexity of the map
uk 
→ J̄(k,Xt,x,∗

k ;uk) is fully characterized via d2J̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk; ūk) ≥

0. Therefore, we have the following result.

Lemma 2. The following statements are equivalent.
(i) The map uk 
→ J̄(k,Xt,x,∗

k ;uk) is convex.
(ii) It holds that

inf
ūk∈L2

F (k;Rm)

[
〈QY k, Y k〉Tk

+ 〈Q̄EkY
k,EkY

k〉Tk
+ 〈(Rk +Rk)ūk, ūk〉k(15)

+ 〈GY k
N , Y k

N 〉N + 〈ḠEkY
k
N ,EkY

k
N 〉N

]
≥ 0.

Theorem 3. Given t ∈ T, x ∈ L2
F (t;R

n), the following statements are equiv-
alent.

(i) There exists an open-loop equilibrium pair of Problem (LQ) for the
initial pair (t, x).

(ii) There exists a ut,x,∗ ∈ L2
F (Tt;R

m) such that for any k ∈ Tt, the fol-
lowing FBSΔE admits a solution (Xk,t,x, Zk,t,x)

⎧⎪⎨⎪⎩
Xk,t,x

�+1 =
(
A�X

k,t,x
� +B�u

t,x,∗
�

)
+

(
C�X

k,t,x
� +D�u

t,x,∗
�

)
w�,

Zk,t,x
� = AT

� E�Z
k,t,x
�+1 + CT

� E�(Z
k,t,x
�+1 w�) +Q�X

k,t,x
� + Q̄�EkX

k,t,x
� ,

Xk,t,x
k = Xt,x,∗

k , Zk,t,x
N = GXk,t,x

N + ḠEkX
k,t,x
N , � ∈ Tk

(16)

with the stationary condition

0 = (Rk + R̄k)u
t,x,∗
k +BT

k EkZ
k,t,x
k+1 +DT

k Ek(Z
k,t,x
k+1 wk),(17)

and the convexity condition
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inf
ūk∈L2

F (k;Rm)

[
〈QY k, Y k〉Tk

+ 〈Q̄EkY
k,EkY

t〉Tk
+ 〈(Rk +Rk)ūk, ūk〉k(18)

+ 〈GY k
N , Y k

N 〉N + 〈ḠEkY
k
N ,EkY

k
N 〉N

]
≥ 0.

In the above, Xt,x,∗ is given by{
Xt,x,∗

k+1 =
(
AkX

t,x,∗
k +Bku

t,x,∗
k

)
+

(
CkX

t,x,∗
k +Dku

t,x,∗
k

)
wk,

Xt,x,∗
t = x, k ∈ Tt.

In this case, ut,x,∗ given in (ii) is an open-loop equilibrium control.

Proof. (i)⇒(ii). Let (Xt,x,∗, ut,x,∗) be an open-loop equilibrium pair of Prob-
lem (LQ) for the initial pair (t, x). Noting that (14) is independent of uk,
the minimizing point ut,x,∗k of J̄(k,Xt,x,∗

k ;uk) is characterized by the first and

second order derivatives: dJ̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk) = 0 and d2J̄(k,Xt,x,∗

k ;ut,x,∗k ;
ūk; ūk) ≥ 0 for any ūk in L2

F (k;R
m). Due to this and Lemma 2, (15) follows.

The forward SΔE about Xk,t,x in (16) is solvable as Zk,t,x does not appear
in this SΔE. After obtaining Xk,t,x and substituting it into the backward
SΔE in (16), we then have Zk,t,x. This implies that the FBSΔE (16) admits
an adapted solution (Xk,t,x, Zk,t,x).

Taking expectations in both sides of the backward SΔE, we have

Zk,t,x
� − EkZ

k,t,x
� = Q�(X

k,t,x
� − EkX

k,t,x
� ) +AT

� (E�Z
k,t,x
�+1 − EkZ

k,t,x
�+1 )

+ CT
�

(
E�(Z

k,t,x
�+1 w�)− Ek(Z

k,t,x
�+1 w�)

)
,

and

EkZ
k,t,x
� = (Q� + Q̄�)EkX

k,t,x
� +AT

� EkZ
k,t,x
�+1 + CT

� Ek(Z
k,t,x
�+1 w�).

Similarly, we have⎧⎨⎩
EkY

k
�+1 = A�EkY

k
� , � ∈ Tk+1,

EkY
k
k+1 = Bkūk,

EkY
k
k = 0,

and⎧⎨⎩
Y k
�+1 − EkY

k
�+1 = A�(Y

k
� − EkY

k
� ) +

[
C�(Y

k
� − EkY

k
� ) + C�EkY

k
�

]
w�,

Y k
k+1 − EkY

k
k+1 = Dkūkwk,

Y k
k − EkY

k
k = 0, � ∈ Tk+1.
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Furthermore, by (12) one can get

1

2
dJ̄(k,Xt,x,∗

k ;ut,x,∗k ; ūk)(19)

=

N−1∑
�=k

Ek

[(
Q�(X

k,t,x
� − EkX

k,t,x
� )

)T
(Y k

� − EkY
k
� )

+
(
(Q� + Q̄�)EkX

k,t,x
�

)T
EkY

k
�

]
+ Ek

[(
G(Xk,t,x

N − EkX
k,t,x
N )

)T
(Y k

N − EkY
k
N )

+
(
(G+ Ḡ)EkX

k,t,x
N

)T
EkY

k
N

]
+

[
(Rk + R̄k)u

t,x,∗
k

]T
ūk

=

N−1∑
�=k

Ek

[(
Q�(X

k,t,x
� − EkX

k,t,x
� ) +AT

� (E�Z
k,t,x
�+1 − EkZ

k,t,x
�+1 )

+ CT
�

(
E�(Z

k,t,x
�+1 w�)− Ek(Z

k,t,x
�+1 w�)

)
− (Zk,t,x

� − EkZ
k,t,x
� )

)T
(Y k

� − EkY
k
� )

+
(
(Q� + Q̄�)EkX

k,t,x
� +AT

� EkZ
k,t,x
�+1

+ CT
� Ek(Z

k,t,x
�+1 w�)− EkZ

k,t,x
�

)T
EkY

k
�

]
+

[
(Rk + R̄k)u

t,x,∗
k +BT

k EkZ
k,t,x
k+1 +DT

k Ek(Z
k,t,x
k+1 wk)

]T
ūk.

As dJ̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk) = 0 for all ūk ∈ L2

F (k;R
m), we have the stationary

condition (17).
(ii)⇒(i). Noting (19) and the solvability of (16) and (17), we have

dJ̄(k,Xt,x,∗
k ;ut,x,∗k ; ūk) = 0, ∀ūk ∈ L2

F (k;R
m).

Combining this and (15), we know that ut,x,∗k is the minimizer of J̄(k,Xt,x,∗
k ;

uk) over L
2
F (k;R

m). This means that (8), or equivalently, (5) holds for k ∈
Tt. Therefore, u

t,x,∗ is an open-loop equilibrium control of Problem (LQ) for
the initial pair (t, x). This proves the conclusion. �

By [10], for a given matrix M ∈ R
n×m, there exists a unique matrix in

R
m×n denoted by M † such that{

MM †M = M, M †MM † = M †,
(MM †)T = MM †, (M †M)T = M †M.

(20)
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This M † is called the Moore-Penrose inverse of M . The following lemma is
from [1].

Lemma 4. Let matrices L, M and N be given with appropriate sizes. Then,
LXM = N has a solution X if and only if LL†NMM † = N . Moreover, the
solution of LXM = N can be expressed as X = L†NM † + Y − L†LYMM †,
where Y is a matrix with appropriate size.

Theorem 5. The following statements are equivalent.
(i) For any initial pair (t, x), there exists an open-loop equilibrium control

of Problem (LQ).
(ii) The coupled constrained LDEs⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pk = Qk +AT
k Pk+1Ak + CT

k Pk+1Ck,

Pk = Qk +AT
kPk+1Ak + CT

k Pk+1Ck,

PN = G, PN = G,
Rk +BT

k Pk+1Bk +DT
k Pk+1Dk ≥ 0,

k ∈ T,

(21)

and the coupled constrained GDREs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk = AT
k Tk+1Ak + CT

k Tk+1Ck

−
[
AT

k

(
Pk+1 + Tk+1

)
Bk + CT

k

(
Pk+1 + Tk+1

)
Dk

]
W†

kHk,

Tk = AT
k Tk+1Ak + CTk Tk+1Ck

−
[
AT

k

(
Pk+1 + Tk+1

)
Bk + CT

k

(
Pk+1 + Tk+1

)
Dk

]
W†

kHk,

TN = 0, TN = 0,

WkW†
kHk −Hk = 0,

k ∈ T

(22)

are solvable in the sense that Rk +BT
k Pk+1Bk +DT

k Pk+1Dk ≥ 0,

WkW†
kHk −Hk = 0, k ∈ T, hold. In the above, Qk = Qk + Q̄k, Rk = Rk +

R̄k, G = G+ Ḡ, and⎧⎪⎨⎪⎩
Wk = Rk +BT

k

(
Pk+1 + Tk+1

)
Bk +DT

k

(
Pk+1 + Tk+1

)
Dk,

Hk = BT
k

(
Pk+1 + Tk+1

)
Ak +DT

k

(
Pk+1 + Tk+1

)
Ck,

k ∈ T.

(23)
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Furthermore, an open-loop equilibrium control for the initial pair (t, x)
is given by

ut,x,∗k = −W†
kHkX

t,x,∗
k , k ∈ Tt,(24)

where Xt,x,∗ is given in (6).

Proof. (i)⇒(ii). For any initial pair (t, x), let Problem (LQ) admit an open-
loop equilibrium control ut,x,∗. By Theorem 3, for each k ∈ Tt, the FBSΔE
(16) admits a solution with the stationary condition (17) and the convexity
condition (18). Furthermore, from the forward SΔE of (16) and (6), we know
that Xk,t,x

� = Xt,x,∗
� , � ∈ Tk.

Considering Problem (LQ) for the initial pair (N − 1, x) with x ∈ L2(N −
1;Rn), we have

0 =WN−1u
N−1,x,∗
N−1 +HN−1X

N−1,x,∗
N−1 .

Letting ei be a R
n-valued vector with the i-th entry being 1 and other entries

0, we have

0 =WN−1

(
uN−1,e1,∗
N−1 , . . . , uN−1,en,∗

N−1

)
+HN−1

(
e1, . . . , en

)
.

Noting that
(
e1, . . . , en

)
is the identity matrix and by Lemma 4, we have

WN−1W†
N−1HN−1 −HN−1 = 0, and

ut,x,∗N−1 = −W
†
N−1HN−1X

t,x,∗
N−1.

Considering Problem (LQ) for the initial pair (N − 2, x) with x ∈ L2
F (N −

2;Rn), we can similarly prove

WN−2W†
N−2HN−2 −HN−2 = 0,

and

ut,x,∗N−2 = −W
†
N−2HN−2X

t,x,∗
N−2.

Continuing above procedure backwardly, we then have the solvability of (22)
and (24). Furthermore, by adding and subtracting
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N−1∑
�=k

Ek

[
(Y k

�+1)
TP�+1Y

k
�+1 − (Y k

� )
TP�Y

k
�

+ (EkY
k
�+1)

T P̄�+1EkY
k
�+1 − (EkY

k
� )

T P̄�EkY
k
�

]
,

we have

〈QY k, Y k〉Tk
+ 〈Q̄EkY

k,EkY
t〉Tk

+ 〈(Rk +Rk)ūk, ūk〉k(25)

+ 〈GY k
N , Y k

N 〉N + 〈ḠEkY
k
N ,EkY

k
N 〉N

=

N−1∑
�=k

Ek

[
(Y k

� )
TQ�Y

k
� + (EkY

k
� )

T Q̄�EkY
k
�

]
+ ūTkRkūk

+ Ek

[
(Y k

N )TGY k
N

]
+ (EkY

k
N )T ḠEkY

k
N

=

N−1∑
�=k

Ek

[
(Y k

� )
TQ�Y

k
� + (EkY

k
� )

T Q̄�EkY
k
� + (Y k

�+1)
TP�+1Y

k
�+1

− (Y k
� )

TP�Y
k
� + (EkY

k
�+1)

T P̄�+1EkY
k
�+1 − (EkY

k
� )

T P̄�EkY
k
�

]
+ ūTkRkūk

=

N−1∑
�=k+1

Ek

[
(EkY

k
� )

T
(
Q� +AT

� P�+1A� + CT� P�+1C� − P�

)
EkY

k
�

+ (Y k
� − EkY

k
� )

T
(
Q� +AT

� P�+1A� + CT
� P�+1C� − P�

)
(Y k

� − EkY
k
� )

]
+ ūTk

(
Rk +BT

k Pk+1Bk +DT
k Pk+1Dk

)
ūk

= ūTk
(
Rk +BT

k Pk+1Bk +DT
k Pk+1Dk

)
ūk.

From (18) and (25), we have Rk +BT
k Pk+1Bk +DT

k Pk+1Dk ≥ 0. Thus, (21)
is solvable.

(ii)⇒(i). Letting (21) and (22) be solvable, we now prove that for any
initial pair (t, x), Problem (LQ) admits an open-loop equilibrium pair.

Introduce a dynamics{
X̃t,x,∗

k+1 =
(
Ak −BkW†

kHk

)
X̃t,x,∗

k +
(
Ak −BkW†

kHk

)
X̃t,x,∗

k wk,

X̃t,x,∗
t = x, k ∈ Tt,

(26)

and a control

ũt,x,∗k = −W†
kHkX̃

t,x,∗
k , k ∈ Tt.(27)



534 Y. H. Ni and J. F. Zhang

As the backward state does not appear in the forward SΔE, the FBSΔE⎧⎪⎨⎪⎩
X̃k,t,x

�+1 =
(
A�X̃

k,t,x
� +B�ũ

t,x,∗
�

)
+

(
C�X̃

k,t,x
� +D�ũ

t,x,∗
�

)
w�,

Z̃k,t,x
� = AT

� E�Z̃
k,t,x
�+1 + CT

� E�(Z̃
k,t,x
�+1 w�) +Q�X̃

k,t,x
� + Q̄�EkX̃

k,t,x
� ,

X̃k,t,x
k = X̃t,x,∗

k , Z̃k,t,x
N = GX̃k,t,x

N + ḠEkX̃
k,t,x
N , � ∈ Tk

admits an adapted solution. We further have

Z̃k,t,x
� =

(
P� + T�

)
X̃k,t,x

� +
(
P̄� + T̄�

)
EkX̃

k,t,x
� , � ∈ Tk+1,(28)

where P̄� = P� − P� and T̄� = T� − T�. In fact, by (26) and (27), we have{
X̃t,x,∗

k+1 =
(
AkX̃

t,x,∗
k +Bkũ

t,x,∗
k

)
+

(
AkX̃

t,x,∗
k +Bkũ

t,x,∗
k

)
wk,

X̃t,x,∗
t = x, k ∈ Tt.

From X̃k,t,x
k = X̃t,x,∗

k it follows that

X̃k,t,x
� = X̃t,x,∗

� , � ∈ Tk.

Hence,

AT
N−1EN−1Z̃

k,t,x
N = AT

N−1EN−1

[
GX̃k,t,x

N + ḠEkX̃
k,t,x
N

]
= AT

N−1GAN−1X̃
k,t,x
N−1 +AT

N−1ḠAN−1EkX̃
k,t,x
N−1

+AT
N−1GBN−1W†

N−1HN−1X̃
t,x,∗
N−1 +AT

N−1ḠBN−1W†
N−1HN−1EkX̃

t,x,∗
N−1,

and

CT
N−1EN−1

(
Z̃k,t,x
N wN−1

)
= CT

N−1GCN−1X̃
k,t,x
N−1

+ CT
N−1GDN−1W†

N−1HN−1X̃
t,x,∗
N−1.

Therefore, we have

Z̃k,t,x
N−1 =

[
QN−1 +AT

N−1GAN−1 + CT
N−1GCN−1

]
X̃k,t,x

N−1

+
[
Q̄N−1 +AT

N−1ḠAN−1

]
EkX̃

k,t,x
N−1

−
[
AT

N−1GBN−1 + CT
N−1GDN−1

]
W†

N−1HN−1X̃
t,x,∗
N−1

−AT
N−1ḠBN−1W†

N−1HN−1EkX̃
t,x,∗
N−1

= PN−1X̃
k,t,x
N−1 + P̄N−1EkX̃

k,t,x
N−1 + TN−1X̃

t,x,∗
N−1 + T̄N−1EkX̃

t,x,∗
N−1
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=
(
PN−1 + TN−1

)
X̃k,t,x

N−1 +
(
P̄N−1 + T̄N−1

)
EkX̃

k,t,x
N−1.

Similarly, we have

Z̃k,t,x
N−2 =

[
QN−2 +AT

N−2PN−1AN−2 + CT
N−2PN−1CN−2

]
X̃k,t,x

N−2

+
[
Q̄N−2 +AT

N−2P̄N−1AN−2

]
EkX̃

k,t,x
N−2

+
{
AT

N−2TN−1AN−2 + CT
N−2TN−1CN−2

−
[
AT

N−2

(
PN−1 + TN−1

)
BN−2

+ CT
N−2

(
PN−1 + TN−1

)
DN−2

]
W†

N−2HN−2

}
X̃t,x,∗

N−2

+
[
AT

N−2T̄N−1AN−2

−AT
N−2

(
P̄N−1 + T̄N−1

)
BN−2W†

N−2HN−2

]
EkX̃

t,x,∗
N−2

= PN−2X̃
k,t,x
N−2 + P̄N−2EkX̃

k,t,x
N−2 + TN−2X̃

t,x,∗
N−2 + T̄N−2EkX̃

t,x,∗
N−2

=
(
PN−2 + TN−2

)
X̃k,t,x

N−2 +
(
P̄N−2 + T̄N−2

)
EkX̃

k,t,x
N−2.

By deduction, we can get (28).
From Lemma 4 and (28), we have

Rkũ
t,x,∗
k +BT

k EkZ̃
k,t,x
k+1 +DT

k Ek(Z̃
k,t,x
k+1 wk)

= Rkũ
t,x,∗
k +BT

k

(
Pk + Tk

)
EkX̃

k,t,x
k+1 +DT

k

(
Pk + Tk

)
Ek

(
X̃k,t,x

k+1 wk

)
= 0.

From Theorem 3, Problem (LQ) for the initial pair (t, x) admits an open-loop
equilibrium pair, and (X̃t,x,∗, ũt,x,∗) is an equilibrium pair. This completes
the proof. �

3. Closed-loop time-consistent equilibrium strategy

Let L2(T;Rm×n) be a set of Rm×n-valued deterministic processes such that
for any ν = {νk, k ∈ T} ∈ L2(T;Rm×n),

∑N−1
k=0 |νk|2 <∞. The following def-

inition is concerned with the time-consistency of the feedback strategy.

Definition 6. Φ ∈ L2(T;Rm×n) is called a closed-loop equilibrium strategy
of Problem (LQ) if for any t ∈ T, k ∈ Tt, x ∈ L2

F (k;R
n) and uk ∈ L2

F (k;R
m),

(29) J
(
k,Xt,x,∗

k ; (ΦXt,x,∗)|Tk

)
≤ J

(
k,Xt,x,∗

k ; (uk, (ΦX
k,uk,Φ)|Tk+1

)
)
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holds. Here, Xt,x,∗ = {Xt,x,∗
k , k ∈ T̃t} and Xk,uk,Φ = {Xk,uk,Φ

� , � ∈ T̃k} are
given by{

Xt,x,∗
k+1 =

(
Ak +BkΦk

)
Xt,x,∗

k +
(
Ck +DkΦk

)
Xt,x,∗

k wk, k ∈ Tt,

Xt,x,∗
t = x,

(30) ⎧⎪⎨⎪⎩
Xk,uk,Φ

�+1 =
(
A� +B�Φ�

)
Xk,uk,Φ

� +
(
C� +D�Φ�

)
Xk,uk,Φ

� w�,

Xk,uk,Φ
k+1 =

(
AkX

k,uk,Φ
k +Bkuk

)
+

(
CkX

k,uk,Φ
k +Dkuk

)
wk,

Xk,uk,Φ
k = Xt,x,∗

k , � ∈ Tk+1,

(31)

and (ΦXt,x,∗)|Tk
, (ΦXk,uk,Φ)|Tk+1

are defined by

(ΦXt,x,∗)|Tk
=

(
ΦkX

t,x,∗
k , . . . ,ΦN−1X

t,x,∗
N−1

)
,

(ΦXk,uk,Φ)|Tk+1
=

(
Φk+1X

k,ut,Φ
k+1 , . . . ,ΦN−1X

k,uk,Φ
N−1

)
.

Furthermore, Φ is required to be independent of all the initial pair.

Though the notation Xt,x,∗ is also used in the previous section, through-
out this section Xt,x,∗ will denote the solution of (30). Noting that
(ΦXt,x,∗)|Tk

=
(
ΦkX

t,x,∗
k , (ΦXt,x,∗)|Tk+1

)
, (uk, (ΦX

k,ut,Φ)|Tk+1
)
)
is obtained

from (ΦXt,x,∗)|Tk
by not only replacing ΦkX

t,x,∗
k with uk but also replacing

Xt,x,∗ in (ΦXt,x,∗)|Tk+1
with Xk,uk,Φ. This is essentially different from the

case of the open-loop formulation. Briefly speaking, here we will focus on
the property of the strategy instead of the control.

Theorem 7. The following statements are equivalent.
(i) There exists a closed-loop equilibrium strategy of Problem (LQ).
(ii) There exists a Φ ∈ L2(T;Rn×m) such that for any t ∈ T,

x ∈ L2
F (Tt;R

n) and k ∈ Tt the following FBSΔE admits an adapted solu-
tion (Xk,Φ, Zk,Φ)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xk,Φ
�+1 =

(
A� +B�Φ�

)
Xk,Φ

� +
(
C� +D�Φ�

)
Xk,Φ

� w�,

Zk,Φ
� = Q�X

k,Φ
� + Q̄�EkX

k,Φ
� +ΦT

� R�Φ�X
k,Φ
� +ΦT

� R̄�Φ�EkX
k,Φ
�

+
(
A� +B�Φ�

)T
E�Z

k,Φ
�+1 +

(
C� +D�Φ�

)T
E�

(
Zk,Φ
�+1w�

)
,

Xk,Φ
k = Xt,x,∗

k , Zk,Φ
N = GXk,Φ

N + ḠEkX
k,Φ
N , � ∈ Tk

(32)

with the following stationary condition

0 = RkΦkX
t,x,∗
k +BT

k EkZ
k,Φ
k+1 +DT

k Ek

(
Zk,Φ
k+1wk

)
,(33)
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and the convexity condition

inf
ūk∈L2

F (k;Rm)

[
〈QY k,ūk,Φ, Y k,ūk,Φ〉Tk

+ 〈Q̄EkY
k,ūk,Φ,EkY

k,ūk,Φ〉Tk
(34)

+ 〈Rkūk, ūk〉k + 〈RΦY k,ūk,Φ,ΦY k,ūk,Φ〉Tk+1

+ 〈R̄k,kEkūk,Ekūk〉k + 〈R̄(Ek(ΦY
k,ūk,Φ)),Ek(ΦY

k,ūk,Φ)〉Tk+1

+ 〈GY k,ūk,Φ
N , Y k,ūk,Φ

N 〉N + 〈ḠEkY
k,ūk,Φ
N ,EkY

k,ūk,Φ
N 〉N

]
≥ 0.

Here, Xt,x,∗ = {Xt,x,∗
k , k ∈ T̃t} and Y k,ūk,Φ are given by

(35)

{
Xt,x,∗

k+1 =
(
Ak +BkΦk

)
Xt,x,∗

k +
(
Ck +DkΦk

)
Xt,x,∗

k wk, k ∈ Tt,

Xt,x,∗
t = x,

and ⎧⎪⎨⎪⎩
Y k,ūk,Φ
�+1 =

(
A� +B�Φ�

)
Y k,ūk,Φ
� ++

(
C� +D�Φ�

)
Y k,ūk,Φ
� w�,

Y k,ūk,Φ
k+1 = Bk,kūk +Dk,kūkwk,

Y k,ūk,Φ
k = 0, � ∈ Tk+1.

(36)

In (34), 〈QY k,ūk,Φ, Y k,ūk,Φ〉Tk
represents

∑N−1
�=k Ek

[
(Y k,ūk,Φ

� )TQ�Y
k,ūk,Φ
�

]
,

and similar meaning holds for other terms.
In this case, Φ in (ii) is a closed-loop equilibrium strategy.

Proof. By some calculations, one can get

J
(
k,Xt,x,∗

k ; (uk, (ΦX
k,uk,Φ)|Tk+1

)
)

(37)

= 〈QXk,uk,Φ, Xk,uk,Φ〉Tk
+ 〈Q̄EkX

k,uk,Φ,EkX
k,uk,Φ〉Tk

+ 〈Rkuk, uk〉k
+ 〈RΦXk,uk,Φ,ΦXk,uk,Φ〉Tk+1

+ 〈R̄kEkuk,Ekuk〉k
+ 〈R̄Ek(ΦX

k,uk,Φ),Ek(ΦX
k,uk,Φ)〉Tk+1

+ 〈GXk,uk,Φ
N , Xk,uk,Φ

N 〉N + 〈ḠEkX
k,uk,Φ
N ,EkX

k,uk,Φ
N 〉N

= 〈QXk,uk,Φ, Xk,uk,Φ〉Tk
+ 〈Q̄EkX

k,uk,Φ,EkX
k,uk,Φ〉Tk

+ 〈Rkuk, uk〉k
+ 〈RΦXk,uk,Φ,ΦXk,uk,Φ〉Tk+1

+ 〈R̄k,kEkuk,Ekuk〉k
+ 〈R̄Ek(ΦX

k,uk,Φ),Ek(ΦX
k,uk,Φ)〉Tk+1
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+ 〈GXk,uk,Φ
N , Xk,uk,Φ

N 〉N + 〈ḠEkX
k,uk,Φ
N ,EkX

k,uk,Φ
N 〉N ,

which is denoted as J̃
(
k,Xt,x,∗

k ;uk
)
. Similarly, we can get the expression of

J
(
k,Xt,x,∗

k ; (uk + λūk, (ΦX
k,uk,ūk,Φ,λ)|Tk+1

)
)
� J̃

(
k,Xt,x,∗

k ;uk + λūk
)
, where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xk,uk,ūk,Φ,λ
�+1 =

(
A� +B�Φ�

)
Xk,uk,ūk,Φ,λ

�

+
(
C� +D�Φ�

)
Xk,uk,ūk,Φ,λ

� w�, � ∈ Tk+1,

Xk,uk,ūk,Φ,λ
k+1 = AkX

k,uk,ūk,Φ,λ
k + Bk

(
uk + λūk

)
+

[
CkX

k,uk,ūk,Φ,λ
k +Dk

(
uk + λūk

)]
wk,

Xk,uk,ūk,Φ,λ
k = Xt,x,∗

k .

Noting that Xk,uk,Φ
k = Xk,uk,ūk,Φ,λ

k = Xt,x,∗
k , we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
k,uk,ūk,Φ,λ

�+1 −X
k,uk,Φ

�+1

λ =
(
A� +B�Φ�

)Xk,uk,ūk,Φ,λ

� −X
k,uk,Φ

�

λ

+
(
C� +D�Φ�

)Xk,uk,ūk,Φ,λ

� −X
k,uk,Φ

�

λ w�,

X
k,uk,ūk,Φ,λ

k+1 −X
k,uk,Φ

k+1

λ =
[
Ak

X
k,uk,ūk,Φ,λ

k −X
k,uk,Φ

k

λ +Bkūk

]
+

[
Ck

X
k,uk,ūk,Φ,λ

k −X
k,uk,Φ

k

λ +Dkūk

]
wk,

X
k,uk,ūk,Φ,λ

k −X
k,uk,Φ

k

λ = 0, � ∈ Tk+1.

Denote
X

k,uk,ūk,Φ,λ

� −X
k,uk,Φ

�

λ by Y k,ūk,Φ
� , which is independent of uk and λ.

Then, we can get (36), which implies⎧⎪⎨⎪⎩
EkY

k,ūk,Φ
�+1 =

(
A� +B�Φ

t,x
�

)
EkY

k,ūk,Φ
�

EkY
k,ūk,Φ
k+1 = Bkūk,

EkY
k,ūk,Φ
k = 0,

(38)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y k,ūk,Φ
�+1 − EkY

k,ūk,Φ
�+1 =

(
A� +B�Φ�

)(
Y k,ūk,Φ
� − EkY

k,ūk,Φ
�

)
+

[(
C� +D�Φ�

)(
Y k,ūk,Φ
� − EkY

k,ūk,Φ
�

)
+

(
C� +D�Φ�

)
EkY

k,ūk,Φ
�

]
w�,

Y k,ūk,Φ
k+1 − EkY

k,ūk,Φ
k+1 = Dkūkwk,

Y k,ūk,Φ
k − EkY

k,ūk,Φ
k = 0, � ∈ Nk+1.

(39)

Noting

Xk,uk,ūk,Φ,λ
� = Xk,uk,Φ

� + λY k,ūk,Φ
� , � ∈ Tk,
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we have similarly to (12)

dJ̃
(
k,Xt,x,∗

k ;uk; ūk
)
= lim

λ↓0
J̃
(
k,Xt,x,∗

k ;uk + λūk
)
− J̃

(
k,Xt,x,∗

k ;uk
)

λ
(40)

= 2〈QXk,uk,Φ, Y k,ūk,Φ〉Tk
+ 2〈Q̄EkX

k,uk,Φ,EkY
k,ūk,Φ〉Tk

+ 2〈Rkuk, ūk〉k
+ 2〈RΦXk,uk,Φ,ΦY k,ūk,Φ〉Tk+1

+ 2〈R̄kEkuk,Ekūk〉k
+ 2〈R̄Ek(ΦX

k,uk,Φ),Ek(ΦY
k,ūk,Φ)〉Tk+1

+ 2〈GXk,uk,Φ
N , Y k,ūk,Φ

N 〉N
+ 2〈ḠEkX

k,uk,Φ
N ,EkY

k,ūk,Φ
N 〉N ,

and

d2J̃
(
k,Xt,x,∗

k ;uk; ūk; ûk
)

= lim
λ↓0

dJ̃
(
k,Xt,x,∗

k ;uk + βûk; ūk
)
− dJ̃

(
k,Xt,x,∗

k ;uk; ūk
)

β

= 2〈QY k,ûk,Φ, Y k,ūk,Φ〉Tk
+ 2〈Q̄EkY

k,ûk,Φ,EkY
k,ūk,Φ〉Tk

+ 2〈Rkûk, ūk〉k
+ 2〈RΦY k,ûk,Φ,Φt,xY k,ūk,Φ〉Tk+1

+ 2〈R̄kEkûk,Ekūk〉k
+ 2〈R̄Ek(ΦY

k,ûk,Φ),Ek(Φ
t,xY k,ūk,Φ)〉Tk+1

+ 2〈GY k,ûk,Φ
N , Y k,ūk,Φ

N 〉N
+ 2〈ḠEkY

k,ûk,Φ
N ,EkY

k,ūk,Φ
N 〉N

with uk, ūk, ûk ∈ L2
F (k;R

m), and Y k,ûk,Φ being similarly defined as (36). If
ûk = ūk, then it holds that

d2J̃
(
k,Xt,x,∗

k ;uk; ūk; ūk
)

(41)

= 2〈QY k,ūk,Φ, Y k,ūk,Φ〉Tk
+ 2〈Q̄EkY

k,ūk,Φ,EkY
k,ūk,Φ〉Tk

+ 2〈Rkūk, ūk〉k
+ 2〈RΦY k,ūk,Φ,Φt,xY k,ūk,Φ〉Tk+1

+ 2〈R̄kEkūk,Ekūk〉k
+ 2〈R̄Ek(ΦY

k,ūk,Φ),Ek(ΦY
k,ūk,Φ)〉Tk+1

+ 2〈GY k,ūk,Φ
N , Y k,ūk,Φ

N 〉N
+ 2〈ḠkEY

k,ûk,Φ
N ,EkY

k,ūk,Φ
N 〉N .

Letting uk = ΦkX
t,x,∗
k in (40), we have

1

2
dJ̃

(
k,Xt,x,∗

k ; ΦkX
t,x,∗
k ; ūk

)
= 〈QXk,Φ, Y k,ūk,Φ〉Tk

+ 〈Q̄EkX
k,Φ,EkY

k,ūk,Φ〉Tk
+ 〈RkΦ

t,x
k Xt,x,∗

k , ūk〉k
+ 〈RΦXk,Φ,Φt,xY k,ūk,Φ〉Tk+1

+ 〈R̄kEk(ΦkX
t,x,∗
k ),Ekūk〉k
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+ 〈R̄(Ek(ΦX
k,Φ),Ek(ΦY

k,ūk,Φ)〉Tk+1
+ 〈GXk,Φ

N , Y k,ūk,Φ
N 〉N

+ 〈ḠEkX
k,Φ
N ,EkY

k,ūk,Φ
N 〉N

=

N−1∑
�=k

Ek

[(
Q�

(
Xk,Φ

� − EkX
k,Φ
�

)
+ (Φ�)

TR�Φ�

(
Xk,Φ

� −Xk,Φ
� Ek

)
+

(
Q�EkX

k,Φ
� + (Φ�)

TR�Φ�EkX
k,Φ
�

)T
EkY

k,ūk,Φ
�

]
+

[
RkΦkX

t,x,∗
k

]T
ūk

+ Ek

[(
G
(
Xk,Φ

N − EkX
k,Φ
N

))T (
Y k,ūk,Φ
N − EkY

k,ūk,Φ
N

)]
+

[(
GEkX

k,Φ
N

)T
EkY

k,ūk,Φ
N

]
=

N−1∑
�=k

Ek

{[
Q�

(
Xk,Φ

� − EkX
k,Φ
�

)
+ΦT

� R�Φ
t,x
�

(
Xk,Φ

� − EkX
k,Φ
�

)
+

(
A� +B�Φ�

)T (
Zk,Φ
�+1 − EkZ

k,Φ
�+1

)
+

(
C� +D�Φ�

)T (
E�

(
Zk,Φ
�+1w�

)
− Ek

(
Zk,Φ
�+1w�

))
−

(
Zk,Φ
� − Zk,Φ

� Ek

)]T (
Y k,ūk,Φ
� − EkY

k,ūk,Φ
�

)
+

[
Q�EkX

k,Φ
� +ΦT

� R�Φ�EkX
k,Φ
� +

(
A� +B�Φ�

)T
EkZ

k,Φ
�+1

+
(
C� +D�Φ

t,x
�

)T
Ek

(
Zk,Φ
�+1w�

)
− EkZ

k,Φ
�

]T
EkY

k,ūk,Φ
�

}
+

[
RkΦ

t,x
k Xt,x,∗

k +BT
k EkZ

k,Φ
k+1 +DT

k Ek

(
Zk,Φ
k+1wk

)]T
ūk.

Based on this and the proof of Theorem 3, we can achieve the desired result
of Theorem 7. �

From above theorem, we can derive a result which characterizes the
existence of the closed-loop equilibrium strategy via the solvability of two
coupled equations.

Theorem 8. The following statements are equivalent.
(i). There exists a closed-loop equilibrium strategy of Problem (LQ).
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(ii). The following coupled difference equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk = Qk +ΦT
kRkΦk +

(
Ak +BkΦk

)T
Sk+1

(
Ak +BkΦk

)
+

(
Ck +DkΦk

)T
Sk+1

(
Ck +DkΦk

)
,

S̄k = Q̄k +ΦT
k R̄kΦk +

(
Ak +BkΦk

)T
S̄k+1

(
Ak +BkΦk

)
,

SN = G, S̄N = Ḡ,

Ok ≥ 0,

OkO†
kLk − Lk = 0,

k ∈ T

(42)

are solvable in the sense that Ok ≥ 0,Ok,kO†
k,kLk,k − Lk,k = 0, k ∈ T, hold.

In (42), Ok, Lk and Φk are given by⎧⎪⎨⎪⎩
Ok = Rk +BT

k (Sk+1 + S̄k+1)Bk +DT
k Sk+1Dk,

Lk = BT
k (Sk+1 + S̄k+1)Ak +DT

k Sk+1Ck,

Φk = −O†
kLk.

In this case, a closed-loop equilibrium strategy is given by

Φk = −O†
kLk, k ∈ T.(43)

Proof. (i)⇒(ii). By Theorem 7, we have the solvability of (32) with prop-
erties (33) and (34). We now characterize Φ. Noting that Zk,Φ

N = GXk,Φ
N +

ḠkEkX
k,Φ
N , one can get

(
AN−1 +BN−1ΦN−1

)T
EN−1Z

k,Φ
N

=
(
AN−1 +BN−1ΦN−1

)T
G
(
AN−1 +BN−1ΦN−1

)
Xk,Φ

N−1

+
(
AN−1 +BN−1ΦN−1

)T [
G
(
ĀN−1 + B̄N−1ΦN−1

)
+ Ḡ

(
AN−1 + BN−1ΦN−1

)]
EkX

k,Φ
N−1,

and

(
CN−1 +DN−1ΦN−1

)T
EN−1(Z

k,Φ
N wN−1)

=
(
CN−1 +DN−1ΦN−1

)T
G
(
CN−1 +DN−1ΦN−1

)
Xk,Φ

N−1
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+
(
CN−1 +DN−1ΦN−1

)T
G
(
C̄N−1 + D̄N−1ΦN−1

)
EkX

k,Φ
N−1.

Therefore, from the expression of Zk,Φ we have

Zk,Φ
N−1 =

[
QN−1 +ΦT

N−1RN−1ΦN−1(44)

+
(
AN−1 +BN−1ΦN−1

)T
G
(
AN−1 +BN−1ΦN−1

)
+

(
CN−1 +DN−1ΦN−1

)T
G
(
CN−1 +DN−1ΦN−1

)]
Xk,Φ

N−1

+
[
Q̄N−1 +ΦT

N−1R̄N−1ΦN−1

+
(
AN−1 +BN−1ΦN−1

)T
Ḡ
(
AN−1 +BN−1ΦN−1

)]
EkX

k,Φ
N−1

=
[
QN−1 +ΦT

N−1RN−1ΦN−1

+
(
AN−1 +BN−1ΦN−1

)T
G
(
AN−1 +BN−1ΦN−1

)
+

(
CN−1 +DN−1ΦN−1

)T
G
(
CN−1 +DN−1ΦN−1

)]
×

(
Xk,Φ

N−1 − EkX
k,Φ
N−1

)
+

[
QN−1 +ΦT

N−1RN−1ΦN−1

+
(
AN−1 +BN−1ΦN−1

)TG(AN−1 +BN−1ΦN−1

)
+

(
CN−1 +DN−1ΦN−1

)T
G
(
CN−1 +DN−1ΦN−1

)]
EkX

k,Φ
N−1.

Furthermore, we have

BT
N−1EN−1Z

N−1,Φ
N = BT

N−1

(
G+ Ḡ

)(
AN−1 +BN−1ΦN−1

)
XN−1,Φ

N−1 ,

and

DT
N−1EN−1(Z

N−1,Φ
N wN−1) = DT

N−1G
(
CN−1 +DN−1ΦN−1

)
XN−1,Φ

N−1 ,

which together with (33) imply

0 =
[(
RN−1 +BT

N−1

(
G+ Ḡ

)
BN−1 +DT

N−1GDN−1

)
ΦN−1

+BT
N−1

(
G+ Ḡ

)
AN−1 +DT

N−1GCN−1

]
XN−1,Φ

N−1 .
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Concerned with Problem (LQ) for the initial pair (N − 1, x) and x ∈
L2
F (N − 1;Rn), we have

0 =
(
RN−1 +BT

N−1GBN−1 +DT
N−1GDN−1

)
ΦN−1

+BT
N−1GkAN−1 +DT

N−1GCN−1,

as x can be arbitrarily selected. From Lemma 4, it follows that

ΦN−1 = −O†
N−1LN−1,

and

ON−1O†
N−1LN−1 − LN−1 = 0,

where{
ON−1 = RN−1 +BT

N−1

(
G+ Ḡ

)
BN−1 +DT

N−1GDN−1,

LN−1 = BT
N−1

(
G+ Ḡ

)
AN−1 +DT

N−1GCN−1.

Let⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

SN−1 = QN−1 +ΦT
N−1RN−1ΦN−1

+
(
AN−1 +BN−1ΦN−1

)T
G
(
AN−1 +BN−1ΦN−1

)
+

(
CN−1 +DN−1ΦN−1

)T
G
(
CN−1 +DN−1ΦN−1

)
,

S̄k,N−1 = Q̄N−1 +ΦT
N−1R̄N−1ΦN−1

+
(
AN−1 +BN−1ΦN−1

)T
Ḡ
(
AN−1 +BN−1ΦN−1

)
.

Then, by (44) we have

Zk,Φ
N−1 = SN−1X

k,Φ
N−1 + S̄N−1EkX

k,Φ
N−1.(45)

Repeating the analysis between (44) and (45), we can get the results except
for Ok ≥ 0, k ∈ T.

To this end, we prove Ok ≥ 0, k ∈ T. From (34), we have for any ūk ∈
L2
F (k;R

m) that

0 ≤ 〈QY k,ūk,Φ, Y k,ūk,Φ〉Tk
+ 〈Q̄EkY

k,ūk,Φ,EkY
k,ūk,Φ〉Tk

+ 〈Rkūk, ūk〉k
+ 〈RΦY k,ūk,Φ,ΦY k,ūk,Φ〉Tk+1

+ 〈R̄kEkūk,Ekūk〉k
+ 〈R̄Ek(ΦY

k,ūk,Φ),Ek(ΦY
k,ūk,Φ)〉Tk+1

+ 〈GY k,ūk,Φ
N , Y k,ūk,Φ

N 〉N
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+ 〈ḠEkY
k,ūk,Φ
N ,EkY

k,ūk,Φ
N 〉N

=

N−1∑
�=k

{
Ek

[
Y k,ūk,Φ
�

(
Q� +ΦT

� R�Φ� +
(
A� +B�Φ�

)T
S�+1

(
A� +B�Φ�

)
+

(
C� +D�Φ�

)T
S�+1

(
C� +D�Φ�

)
− S�

)
Y k,ūk,Φ
�

]
+

(
EkY

k,ūk,Φ
�

)T(Q� +ΦT
� R�Φ�

+
(
A� +B�Φ�

)T (
S�+1 + S̄�+1

)(
A� +B�Φ�

)
+

(
C� +D�Φ�

)T
S�+1

(
C� +D�Φ�

)
−

(
S� + S̄�

))
EkY

k,ūk,Φ
�

}
+ ūTk

[
Rk +BT

k

(
Sk+1 + S̄k+1

)
Bk +DT

k Sk+1Dk

]
ūk

= ūTk
[
Rk +BT

k

(
Sk+1 + S̄k+1

)
Bk +DT

k Sk+1Dk

]
ūk

= ūTkOkūk.

Hence, Ok ≥ 0 for any k ∈ T.
(ii)⇒(i). By reversing above procedure, we can get the results. �
If (42) is solvable, then we have ST

k = Sk, S̄k = S̄k, k ∈ T. In this case,
we call (42) has the symmetric structure. Instead, the GDREs (22) for the
open-loop formulation do not have symmetric structure. Let Sk = Sk + S̄k,
k ∈ T and G = G+ Ḡ. Then, (42) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk = Qk +AT
k Sk+1Ak + CT

k Sk+1Ck − LT
kO

†
kLk

− LT
kO

†
kLk + LT

kO
†
kOkO†

kLk,

Sk = Qk +AT
k Sk+1Ak + CT

k Sk+1Ck − LT
kO

†
kLk,

SN = G, SN = G,
Ok ≥ 0,

OkO†
kLk − Lk = 0,

k ∈ T,

(46)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ok = Rk +BT
k Sk+1Bk +DT

k Sk+1Dk,

Lk = BT
k Sk+1Ak +DT

k Sk+1Ck,

Ok = Rk +BT
k Sk+1Bk +DT

k Sk+1Dk,

Lk = BT
k Sk+1Ak +DT

k Sk+1Ck,
k ∈ T.
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Let us review a static mean-field stochastic LQ problem, denoted as
Problem (sLQ), whose system equation is (1) and the cost functional is

J(t, x;u) =

N−1∑
k=t

E
[
(Xt

k)
TQkX

t
k + (EXt

k)
T Q̄kEX

t
k + uTkRkuk(47)

+ (Euk)
T R̄kEuk

]
+ E

[
(Xt

N )TGXt
N

]
+ (EXt

N )T ḠEXt
N .

So, the expectations in (47) are different from those in (2) that are the con-
ditional expectations. This is why we call Problem (sLQ) a static problem.
From [9], the existence of optimal control of Problem (sLQ) for all the initial
pairs is equivalent to the existence of the closed-loop optimal strategy and
is also equivalent to the solvability of the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk = Qk +Aτ
kPk+1Ak + CT

k Pk+1Ck −HT
k W

†
kHk,

Pk = Qk +AT
kPk+1Ak + CT

k Pk+1Ck −HT
kW

†
kHk,

PN = GN , PN = G+ Ḡ,

Wk,Wk ≥ 0, WkW
†
kHk −Hk = 0,

WkWT
k Hk −Hk = 0,

k ∈ T,

(48)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Wk = Rk +Bτ
kPk+1Bk +Dτ

kPk+1Dk,

Hk = Bτ
kPk+1Ak +Dτ

kPk+1Ck,

Wk = Rk +BT
k Pk+1Bk +DT

k Pk+1Dk,

Hk = BT
k Pk+1Ak +DT

k Pk+1Ck,

k ∈ T.

Here, (48) is called solvable if Wk,Wk ≥ 0,WkW
†
kHk −Hk = 0,WkWT

k Hk −
Hk = 0, k ∈ T, are satisfied. Note that the GDREs (48) differs (46) and (21)-
(22). This reveals the essential difference between the static mean-field LQ
problem (Problem (sLQ)) and the dynamic mean-field LQ problem (Problem
(LQ)).

4. Example

In this section, an example is presented to illustrate the theory developed
in above sections.



546 Y. H. Ni and J. F. Zhang

Example 1. Consider a Problem (LQ), whose system matrices and weight-
ing matrices are given below

A0 =

[
2.3 1.41
−0.83 2.59

]
, A1 =

[
2.32 −1.35
−1.43 3.78

]
,

A2 =

[
1.34 −1.32
0.43 1.73

]
, B0 =

[
3.15 −1.3
2.2 4.01

]
,

B1 =

[
−3.45 −1.06
−0.52 −2.65

]
, B2 =

[
4.45 2.36
−1.2 5

]
,

C0 =

[
−3.32 1.32
−1.5 2.93

]
, C1 =

[
−3.05 −1.3
1.4 3.46

]
,

C2 =

[
−2.75 −2.16
0.62 −1.75

]
, D0 =

[
−4.05 −2.6
−2.02 3

]
,

D1 =

[
−2.12 2.52
−1.65 3.89

]
, D2 =

[
1.05 1.23
−1.54 2.66

]
,

Q0 =

[
−1.75 0

0 1.5

]
, Q1 =

[
0 0
0 1

]
,

Q2 =

[
2.12 1.52
1.52 3

]
, Q̄0 =

[
2 0
0 −0.3

]
,

Q̄1 =

[
0 0
0 −0.5

]
, Q̄2 =

[
−1.12 −0.52
−0.52 −1

]
,

R0 =

[
−2 0
0 −1

]
, R1 =

[
1 0
0 1

]
,

R2 =

[
1 0
0 0.5

]
, R̄0 =

[
1 −0.5

−0.5 −1

]
,

R̄1 =

[
−0.5 0
0 1

]
, R̄2 =

[
−0.5 0
0 2

]
,

G =

[
2 0
0 1

]
, Ḡ =

[
−1 0
0 1

]
.

Considering the open-loop equilibrium control, from (21) and (22) (with
N = 3) we have

R2 +BT
2 P3B2 +DT

2 P3D2 =

[
27.7591 −3.0114
−3.0114 68.1710

]
> 0,
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R1 +BT
1 P2B1 +DT

1 P2D1 =

[
492.4316 −162.4572
−162.4572 896.5842

]
> 0,

R0 +BT
0 P1B0 +DT

0 P1D0 =

[
10650 3113
3113 13472

]
> 0,

W2 =

[
27.7591 −3.0114
−3.0114 68.1710

]
,

W1 =

[
473.2906 −151.3192
−140.8696 771.7742

]
,

W0 =

[
7133.6 2471.9
2046.2 7875.8

]
.

Note that the set of eigenvalues of W2,W1 and W0 are, respectively,
{27.5359, 68.3942}, {413.7517, 831.3131} and {5.2253, 9.7841}. Then, the cor-
responding (21) and (22) are solvable. Therefore, for any initial pair t ∈
{0, 1, 2} and any x ∈ L2

F (t;R
n) the corresponding Problem (LQ) admits an

open-loop equilibrium pair; for the initial pair (0, x) with x ∈ L2
F (0;R

n), an
open-loop equilibrium control is given by

u0,x,∗ = −W†
kHkX

0,x,∗
k , k ∈ {0, 1, 2},

where

W†
2H2 =

[
−0.0614 −0.4228
0.0317 0.0432

]
,

W†
1H1 =

[
−0.0360 −0.3667
−0.2348 −0.0076

]
,

W†
0H0 =

[
0.6217 −0.1490
−0.2753 0.5735

]
,

and{
X0,x,∗

k+1 =
[
AkX

0,x,∗
k +Bku

0,x,∗
k

]
+

[
CkX

0,x,∗
k +Dku

0,x,∗
k

]
wk,

X0,x,∗
t = x, k ∈ {0, 1, 2}.

On the other hand, concerned with the closed-loop equilibrium strategy,
from (46) (with N = 3) we have

O2 =

[
27.7591 −3.0114
−3.0114 68.1710

]
> 0,
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O1 =

[
490.5935 −178.4499
−178.4499 830.3166

]
> 0,

O0 =

[
6120.2 1693.2
1693.2 7576.2

]
> 0.

Therefore, the corresponding (46) is solvable, and a closed-loop equilibrium
strategy is given by

Φ2 =

[
0.0614 0.4228
−0.0317 −0.0432

]
,

Φ2 =

[
0.0290 0.3654
0.2508 0.0124

]
,

Φ2 =

[
−0.6344 0.1815
0.2718 −0.5565

]
.

5. Conclusion

In this paper, the open-loop equilibrium control and the closed-loop equilib-
rium strategy of a time-inconsistent mean-field stochastic LQ optimal con-
trol are investigated. Necessary and sufficient conditions are, respectively,
presented for these two cases. Concerned with the existence of the open-
loop time-consistent equilibrium control for all the initial pairs, two coupled
constrained LDEs and two coupled constrained GDREs are introduced. On
the other hand, the existence of the closed-loop time-consistent equilibrium
strategy is equivalent to the solvability of another two coupled constrained
GDREs. Interestingly, GDREs for the open-loop formulation do not have
symmetry structure, while the ones for the closed-loop formulation do have
symmetric solutions. For future researches, we would like to study time-
inconsistent stochastic LQ problems with other types of time-inconsistency.

References

[1] M. Ait Rami, X. Chen, and X. Y. Zhou, Discrete-time indefinite LQ
control with state and control dependent noises. Journal of Global Op-
timization, 2002, vol. 23, 245–265.

[2] S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation.
Rev. Financial Stud., 2010, vol. 23, 2970–3016.



Stochastic LQ optimal control without time-consistency 549

[3] T. Bjork and A. Murgoci, A general theory of Markovian time in-
consisiten stochastic control problem. http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=1694759, 2010.

[4] I. Ekeland and A. Lazrak, Being serious about non-commitment: sub-
game perfect equilibrium in continuous time. arXiv:math/0604264,
2008.

[5] I. Ekeland and T. A. Privu, Investment and consumption without com-
mitment. Mathematics and Financial Economics, vol. 2, no. 1, pp. 57-86,
2008.

[6] Y. Hu, H. Jin, and X. Y. Zhou, Time-inconsistent stochastic linear-
quadratic control. SIAM Journal on Control and Optimization, 2012,
vol. 50, 1548–1572.

[7] X. Li, Y. H. Ni, and J. F. Zhang, On time-consistent solution to time-
inconsistent linear-quadratic optimal control of discrete-time stochastic
systems. Submitted to: IEEE Transactions on Automatic Control.

[8] Y. H. Ni, X. Li, and J. F. Zhang, Indefinite mean-field stochastic linear-
quadratic optimal control: from finite horizon to infinite horizon. IEEE
Trans. on Automatic Control, DOI:10.1109/TAC.2015.2509958, 2016.

[9] Y. H. Ni, J. F. Zhang, and X. Li, Indefinite mean-field stochastic linear-
quadratic optimal control. IEEE Transactions on Automatic Control,
2015, vol. 60, no. 7, 1786–1800.

[10] R. Penrose, A generalized inverse of matrices. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 1955, vol. 52, 17–19.

[11] J. M. Yong, A deterministic linear quadratic time-inconsitent optimal
control problem. Mathematical Control and Related Rields, 2011, vol. 1,
no. 1, 83–118.

[12] J. M. Yong, Deterministic time-inconsistent optimal control problems—
an essentially cooperative approach. Acta Appl. Math. Sinica, 2012,
vol. 28, 1–20.

[13] J. M. Yong, A linear-quadratic optimal control problem for mean-field
stochastic differential equations. SIAM Journal on Control Optimiza-
tion, 2013, vol. 51, 2809–2838.

[14] J. M. Yong, Linear-quadratic optimal control problems for mean-field
stochastic differential equations—time-consistent solutions. Electroni-
cally published by Transactions of the American Mathematical Society,
DOI:10.1090/tran/6502, 2015.



550 Y. H. Ni and J. F. Zhang

Department of Mathematics, School of Science

Tianjin Polytechnic University

Tianjin 300387, P.R. China

E-mail address: yhni@amss.ac.cn

Key Laboratory of Systems and Control

Institute of Systems Science

Academy of Mathematics and Systems Science

Chinese Academy of Sciences

Beijing 100190, P. R. China

E-mail address: jif@iss.ac.cn


