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Multiple hypothesis testing for arbitrarily

varying sources

Naira M. Grigoryan and Ashot N. Harutyunyan

Highly unstable environments can be modeled by arbitrarily vary-
ing (information) sources (AVS). We conduct a study of multiple
hypothesis testing (HT) for those sources within two approaches
existing in an information-theoretic area of statistical analysis.
First we characterize the attainable exponent trade-offs for all
kind of error probabilities and indicate the corresponding decision
schemes or testing strategies. Then we treat the same problem from
an optimality achieving perspectives.

Moreover, Chernoff bounds for both the binary and M -ary HT
are specified via indication of a Sanov theorem for AVS’s. Addi-
tional geometric interpretations help to digest the structure of HT
in derived solutions.

Keywords and Phrases: Arbitrarily varying sources, multiple
hypothesis testing, error exponents, Chernoff bounds, Sanov theo-
rem.

1. Introduction

Unstable systems and environments can be characterized by multiple prob-
abilistic laws (distributions) depending on “states” they stay at rather than
a single such law. Moreover, how those states commutate with each other
has no statistical description and is arbitrary. The corresponding model
of information source, arbitrarily varying source (AVS), was introduced by
Berger [2] in a source coding game context as a rate-distortion problem. An
extended analysis of this problem in terms of error probability exponents
can be found in [12].

This paper was presented in part [9] at IEEE Information Theory Workshop
2010.
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Beyond natural phenomena which can be modeled by AVS’s, examples
of these kind of environments range from biometric verification systems (bio-
metric templates are taken at arbitrary states of the enroller device or indi-
vidual, see [13]) to cloud computing networks with state variability of virtual
devices migrating over all the cloud landscape. Many problems of decision
making in those transient environments relate to hypothesis testing (HT)
and especially to multiple HT. That motivates the current study of multi-
ple HT bounds within the classical framework of statistics and information
theory initially started with the paper [9].

The problem of testing of hypotheses for AVS’s is not new and is for-
mulated by Fu and Shen [8] in binary case as extension of simpler discrete
memoryless source (DMS) scenario. So the HT problem of [8] targets the
identification of the distribution family of observations instead of predicting
the generic distribution of a DMS without option to reject both the hypo-
thetical laws about it. Furthermore, the work [1] considered the problem by
Fu and Shen [8] in case of decision making with known to statistician states
of the source. This side information simplifies the decision making.

The prior research on HT topic starts with the groundbreaking papers
by Hoeffding [14], Csiszár and Longo [7], and Blahut [4]. The latter charac-
terized the achievable error probability exponents in binary HT for DMS’s
and established also the strong tie between information theory and HT. Fur-
ther advancement in the area covers the extension of binary HT to any M
alternative hypotheses. Haroutunian’s [10] generalization of HT for DMS
was devoted to the maximum (best, optimal) error probability exponents
for a collection of error kinds while having a “core” set of them within cer-
tain levels. This approach is known as log-asymptotic optimal (LAO) testing
having roots in Birgé [3]. In particular, the work [10] specifies the LAO inter-
dependencies between error exponents/reliabilities for all possible pairs of
hypotheses. The same HT problem with an alternative setting is the subject
of [16]. Being interested in attainable interconnections between all sort of
error probabilities it specifies the corresponding achievable region of those
tradeoffs, thus introducing a broader and unified description to the problem
solution.

In this paper we extend the results by [10], [8], and [16], simultaneously,
considering the multiple HT problem for AVS’s targeting the specification
of both the achievability region of error exponents and the LAO tradeoffs of
those exponents. Moreover, we deepen the analysis to derive the Chernoff
error bounds in HT for AVS’s, thus extending the result by Leang and
Johnson [15] for DMS’s. For that purpose we prove a generalized Sanov
theorem. In all cases the decision schemes supporting the error probability
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bounds are constructed. We attach also geometric interpretations to our
analysis.

The rest of the paper is organized as follows. Section 2 introduces the
problem formally with necessary definitions. Section 3 is a summary on the
employed in the paper methodological tool of empirical distributions in AVS
context. In Section 4 the achievable reliability region we are looking for is
characterized. The optimal error bounds within that region is the subject
of Section 5. In Section 6 a Sanov theorem for AVS’s is formulated and
proved. In Section 7 the Chernoff bound for M -ary HT problem is presented
and specialized to the binary case. Finally, Section 8 addresses geometric
interpretations of HT mechanisms for AVS’s.

2. Models of information source and HT

An AVS is a varying state-based DMS with finite alphabet X . Those states
alter within another finite set S in a non-probabilistic and arbitrary manner.
It means that an AVS {X,S} can be defined by a family of conditional
probability distributions (PD) G∗s (subset of all distributions P(X ) on X )
depending on source state s ∈ S:

(1) G∗ 4= {G∗s, s ∈ S}

with G∗s
4
= {G∗(x|s), x ∈ X}. From the condition of the state-based DMS,

the probability of a vector x = (x1, . . . , xN ) ∈ XN emitted by the AVS while
sequentially stayed at components of a vector s ∈ SN is determined by the
following product

G∗(x|s)
4
=

N∏
n=1

G∗(xn|sn).

The probability of a subset AN ⊂ XN subject to a s ∈ SN is the sum

G∗(AN |s)
4
=
∑

x∈AN

G∗(x|s).

The multiple HT problem for this source admits M > 2 different hypotheses
about the distribution (1):

(2) Hm : G∗ = Gm, m = 1,M
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with

(3) Gm
4
= {Gm,s, s ∈ S},

where

Gm,s
4
= {Gm(x|s), x ∈ X}, s ∈ S.

Let Gm be the stochastic matrix defined by (3). Based on N observations
of the source, namely on x, one should make decision in favor of one (of M)
hypotheses (2). A test ϕN by the statistician is an algorithm partitioning
XN into M disjoint subsets AmN , m = 1,M :

AmN ∩ AlN = ∅, m 6= l,
⋃
m

AmN = XN .

If x ∈ AmN then the test adopts the hypothesis Hm. Inevitably, in decision
making in favor of one of M alternatives he/she may commit M(M − 1)
different kinds of errors, which are denoted by αl,m(ϕN ) – the probability
(maximized over SN ) of the erroneous acceptance by the test ϕN of the
hypothesis Hl provided that Hm is true,

(4) αl,m(ϕN )
4
= max

s∈SN
Gm(AlN |s), 1 ≤ m 6= l ≤M.

Another type of error can be observed related to wrong decision in case
of true Hm with the probability

(5) αm(ϕN )
4
= max

s∈SN
Gm(AmN |s) ≤

M∑
l 6=m

αl,m(ϕN ), m = 1,M.

From the perspectives of study of achievable reliabilities in M -ary HT

[16], consider the M(M − 1)-dimensional vector E
4
= {El,m}l,m=1,M , l 6= m,

with each index (l,m) corresponding to error exponent − 1
N logαl,m(ϕN ).

Definition 1. E is an achievable collection of error exponents (reliabilities)
if for all ε > 0 there exists a decision scheme {AmN}Mm=1 or test ϕN with

− 1

N
logαl,m(ϕN ) > El,m − ε

for all m 6= l and large enough N .
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Let RAVS denotes the set of all achievable reliability vectors. One of our
goals is to characterize this region.

Another goal is to look for optimal tests and trade-offs between error
exponents under certain conditions. For that purpose we introduce the fol-
lowing definitions:

(6) El,m
4
= El,m(ϕ)

4
= lim sup

N→∞
− 1

N
logαl,m(ϕN ), l,m = 1,M, l 6= m,

(7) Em
4
= Em(ϕ)

4
= lim sup

N→∞
− 1

N
logαm(ϕN ), m = 1,M,

where ϕ
4
= {ϕN}∞N=1. Note that the equations (5), (6) and (7) imply

(8) Em(ϕ) ≤ min
l=1,M, l 6=m

[
El,m(ϕ)

]
, m = 1,M.

Naturally, the asymptotic exponents in (6) and (7) are in cross trade-offs
for any decision scheme. Therefore, the quality of a test scheme can be mea-
sured by the maximum exponents it provides for selected error kinds while
keeping the rest of them within acceptable degrees. This concept of opti-
mality is historically preceding (see Birge [3], Haroutunian [10]) the generic
notion of achievability region for error exponent trade-offs by Tuncel [16].
In [10] the optimal test is defined by M − 1 fixed error exponents which
indicate the “degrees of freedom” in the HT problem formulation. There-
fore, in our case, the definition of a test optimality can be formulated in the
following way.

Definition 2. A test ϕ∗ is optimal if for every other test ϕ′ achieving
equal-degree errors for wrong decisions on every true hypotheses:

E
∗
m
4
= E

∗
m(ϕ∗) = E

′
m
4
= E

′
m(ϕ′), m = 1,M − 1,

it holds that all the pair-wise error exponents of ϕ∗ are superior to those
achieved by the other test:

E
∗
l,m
4
= El,m(ϕ∗) ≥ E′l,m

4
= El,m(ϕ′), l,m = 1,M, l 6= m,

EM (ϕ∗) ≥ EM (ϕ′).

So by looking for this kind of optimal tests and relevant error expo-
nents they achieve, we are interested in special/optimal “trajectories” in
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the achievability region RAVS that provide the best error trade-offs for pairs
of hypotheses with the same degrees of overall error probabilities.

3. Empirical distributions in AVS context

The language of typical sequences is a convenient tool to apply in our analy-
sis. In the sequel we’ll use important properties of typical sequences (empiri-
cal distributions) tuned for the AVS context. In this section we make a short
survey of some basic concepts and facts needed for further expansion of the
subject.

Let

P(S)
4
= {P (s), s ∈ S}

be the collection of all distributions on S and let PG be the marginal dis-
tribution on X defined by

PG(x)
4
=
∑
s∈S

P (s)G(x|s), x ∈ X .

The type of the vector s ∈ SN is the empirical distribution defined by

Ps(s)
4
= 1

NN(s|s), where N(s|s) is the number of occurrences of s in s. Let’s
denote the set of all types of N -size state vectors by PN (S). For a pair of
sequences x ∈ XN and s ∈ SN let N(x, s|x, s) be the number of occurrences
of (x, s) in {xn, sn}Nn=1. The conditional type Gx,s of the vector x with
respect to the vector s is defined by

(9) Gx,s(x|s)
4
= N(x, s|x, s)/N(s|s), x ∈ X , s ∈ S.

The joint type of vectors x and s is the empirical distribution Ps ◦Gx,s

defined by

Ps ◦Gx,s = {Ps(s)Gx,s(x|s), x ∈ X , s ∈ S}.

For brevity we may omit the indices for type notations hereafter, however
keep the unambiguity of formulations.

Let GN (X|S) be the set of all conditional types (9). Denote by T NG (X|s)
the set of vectors x which have the conditional type G for given s hav-

ing type P . Let the conditional entropy of G given type P be H(G|P )
4
=

−
∑
x
P (s)G(x|s) logG(x|s).

Denote by D(G ‖ Gm|P ) the KL divergence between G and Gm given
type P and by D(PG ‖ PGm) the one between PG and PGm.
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For every Gm ∈ Gm, m = 1,M , the following inequality holds

(10) D(G ‖ Gm|P ) ≥ D(PG ‖ PGm).

The upper bound for the cardinality of GN (X|S) is

(11) |GN (X|S)| < (N + 1)|X ||S|.

We need some properties for types. The size of type class G ∈ GN (X|S),
where P ∈ PN (S), has the following estimate

(12) |T NG (X|s)| ≤ exp{NH(G|P )}.

For a distribution Gm ∈ G(X|S) the sequence x ∈ T NG (X|s) has the proba-
bility

(13) GNm(x|s) = exp{−N [H(G|P ) +D(G ‖ Gm|P )]}.

Note that (12) and (13) give the estimate for conditional type class proba-
bility

GNm(T NG (X|s)|s) ≥ (N + 1)−|X ||S| exp{−ND(G ‖ Gm|P )},(14)

GNm(T NG (X|s)|s) ≤ exp{−ND(G ‖ Gm|P )}.(15)

4. Characterizing the achievable reliabilities

The achievability region characterization below extends the result by [16]. In
other words, it describes the tradeoff between all error exponents for M -ary
AVS HT problem. To demonstrate the result, we’ll need the convex hull of
the family of distributions Gm for each m = 1,M ,

(16) Wm
4
=

{
Wm(x)

4
=
∑
s∈S

λsGm,s(x|s), x ∈ X , 0 ≤ λs ≤ 1,
∑
s∈S

λs = 1

}
.

Then we introduce the region EAVS of M(M − 1)-dimensional vectors

EAVS
4
=
{

E : ∀W ∃ l,(17)

such that min
Wm∈Wm

D(W ‖Wm) > El,m for ∀m 6= l
}
.

We want to show in the next theorem that (17) completely characterizes
the desired RAVS.



i
i

“1-avs” — 2016/3/28 — 22:05 — page 316 — #8 i
i

i
i

i
i

316 N. M. Grigoryan and A. N. Harutyunyan

Theorem 1. EAVS is an achievable region of reliabilities: EAVS ⊂ RAVS.

Conversely, if E ∈ RAVS, then for any δ > 0, Eδ ∈ EAVS, where Eδ
4
= {El,m −

δ}l 6=m.

Remark 1. Setting |S| = 1 in Theorem 1 we’ll readily get the region of
achievable exponents in M -ary hypothesis testing for DMS [16]. Denote it
by RDMS.

Theorem 2. EDMS ⊂ RDMS. Conversely, if E = {El,m} ∈ RDMS, then for

any δ > 0, Eδ ∈ EDMS, where Eδ
4
= {El,m − δ},

EDMS
4
= {E : ∀W ∃ l, such that D(W |Wm) > El,m for ∀m 6= l}.

Remark 2. For M = 2 we have the binary AVS HT model by Fu and Shen
[8] and the corresponding results. It can be easily seen by representing the
region EAVS in the following way:

E∗AVS

4
=
{

E : ∀W either min
W1∈W1

D(W |W1) > E2,1,(18)

or min
W2∈W2

D(W |W2) > E1,2

}
.

The alternative characterization of (18) is the following set

E∗AVS

4
= {{E1,2, E2,1} : E1,2 < E1,2(E2,1)},

where

E1,2(E2,1) = min
W2∈W2

min
W1∈W1

min
W :D(W‖W1)<E2,1

D(W ‖W2),

which is the binary AVS HT exponent function [8].

Proof. Let us prove the first part of Theorem 1. If E ∈ EAVS, then from
(12), (13) and (14), for any s ∈ SN with type Ps = P we have

Gm(AlN |s) =
∑

x∈Al
N

Gm(x|s)(19)

≤
∑

T N
G (X|s)⊂Al

N

exp{−ND(G ‖ Gm|P )}

≤ |GN (X|S)|exp{−ND(PG ‖ PGm,s)},

where G is a type G ∈ GN (X|S).
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For every Wm ∈ Wm there exists s ∈ SN , such that Wm = PsGm. There-
fore, from (19) and the polynomial order (11) of GN (X|S) we have

αl,m(ϕN ) ≤ |GN (X|S)|exp{−N min
Wm

D(W ‖Wm)}

≤ |GN (X|S)|exp{−NEl,m}
≤ exp{−N(El,m − δ)}.

This signals about a proven direct part of the theorem.
To proceed with the converse reasoning we should assume that a E ∈

RAVS. This assures that for every ε > 0 there exists a decision scheme
{AmN}Mm=1 that starting from an N > N0(ε) validates the inequality

(20) − 1

N
αl,m(ϕN ) > El,m − ε

for all m 6= l. For a picked δ > 0 we need to show that

(21) ∀W ∃ l, s. t. min
Wm∈Wm

D(W |Wm) > El,m − δ, ∀m 6= l.

To come to this statement we apply an estimate. For each Wm ∈ Wm and
AlN ⊆ XN the following inequality holds for N large enough:

(22) Wm(AlN ) ≤ max
s∈SN

Gm(AlN |s) = αl,m(ϕN ).

To show (22), first note that for any Wm ∈ Wm there exist a collection
of λs, 0 ≤ λs ≤ 1, s ∈ S, with the property

∑
s∈S

λs = 1, such that Wm =∑
s∈S

λsGm,s. Whence, for λs
4
=

N∏
n=1

λsn and any AlN ∈ XN , x ∈ AlN , at which

the test ϕN adopts the hypothesis Hl, the following can be performed:

Wm(x) =

N∏
n=1

Wm(xn) =

N∏
n=1

∑
s∈S

λsGm(xn|s) =
∑
s∈SN

λs

N∏
n=1

Gm(xn|sn)

≤ max
s∈SN

N∏
n=1

Gm(xn|sn) ≤ max
s∈SN

Gm(x|s).

Thus (22) follows.
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Now turning to the proof for (21), by the continuity of D(· ‖Wm) in the
first argument, there exists a type Q ∈ PN (X ) that for N > N1(ε) satisfies

(23) D(Q ‖ Wm) ≤ D(W ‖ Wm) + δ/2

for a fixed m.
Let Wm∗

4
= arg[max

m
min

Wm∈Wm

D(W ‖Wm)], then in light of (22) and (12)

we have

αm∗(ϕN ) ≥Wm∗(A
m∗

N )

≥Wm∗(A
m∗

N ∩ T NQ (X ))

=
∑

Am∗
N ∩T N

Q (X )

exp{−N [H(Q) +D(Q ‖Wm∗)]}

≥ |Am
∗

N ∩ T NQ (X )| exp{−NH(Q)} exp{−ND(Q ‖Wm∗)},

where Q is a type-approximation of W defined by (23) for W
N
m∗ . Note

that |Am
∗

N ∩ T NQ (X )| exp{−NH(Q)} ≥ exp{−Nδ/4} for N > N2(δ). It fol-

lows from the inequality |Am
∗

N ∩ T NQ (X )| ≥ |T
N
Q (X )|
M :

|Am
∗

N ∩ T NQ (X )| exp{−NH(Q)}(24)

≥ |T NQ (X )| exp{−NH(Q)} exp

{
−N logM

N

}
≥ exp{−Nδ/4}.

Whence, for N > max{N1(δ), N2(δ)} we have

αm∗(ϕN ) ≥ exp{−N [D(Q ‖Wm∗)− δ/4]}
≥ exp{−N [D(W ‖Wm∗) + δ/4]}

that with (20) and ε = 3δ/4 gives

Em∗ − δ < −
1

N
logαm∗(ϕN ) < D(W ‖Wm∗)

for N > max{N0(ε), N1(δ), N2(δ)} and for every W . �

5. Error exponents in optimal tradeoffs

Now we proceed with the goal of characterization of optimal tradeoffs for
error probabilities in terms of Definition 2 for fixed exponents Em, m =
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1,M − 1. First we introduce the following sets:

Bm(Wm)
4
=
{
W : min

Wm∈Wm

D(W ‖Wm) < Em

}
, m = 1,M − 1,(25)

BM (WM )
4
=
{
W : min

Wm∈Wm

D(W ‖Wm) > Em, m = 1,M − 1
}
,(26)

and also define

E
∗
l,m
4
= min

W∈Bl(Wl)
min

Wm∈Wm

D(W ‖Wm),(27)

l = 1,M − 1, m = 1,M, l 6= m,

E
∗
M,m

4
= min

W∈BM (WM )
min

Wm∈Wm

D(W ‖Wm), m = 1,M − 1,(28)

E
∗
M
4
= min

W∈BM (WM )
min

WM∈WM

D(W ‖WM ).(29)

Theorem 3. The optimal test ϕ∗ is characterized by the reliabilities defined
in (27)–(29) with the following restrictions for E

∗
m, m = 1,M − 1:

E
∗
1 < min

m=2,M
{ min

W1∈W1,

Wm∈Wm

D(Wm ‖W1)},(30)

E
∗
m < min

l 6=m

{
min

l=1,m−1
E
∗
l,m, min

l=m+1,M
min

Wl∈Wl,

Wm∈Wm

D(Wl ‖Wm)

}
,(31)

m = 2,M − 1.

Remark 3. Setting |S| = 1 in Theorem 3 we’ll readily get the optimal
exponents in M -ary hypothesis testing for DMS [10, 11].

Observe that the sets (25)–(26) specialize to

Bm(Wm)
4
= {W : D(W ‖Wm) < Em}, m = 1,M − 1,

BM (WM )
4
= {W : D(W ‖Wm) > Em, m = 1,M − 1},

and the definitions (27)–(29) specialize to

E
∗
l,m
4
= min

W∈Bl(Wl)
D(W ‖Wm), l = 1,M − 1, m = 1,M, l 6= m,(32)

E
∗
M,m

4
= min

W∈BM (WM )
D(W ‖Wm), m = 1,M − 1,(33)

E
∗
M
4
= min

W∈BM (WM )
D(W ‖Wm).(34)
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Theorem 4. The optimal test ϕ∗ is characterized by the reliabilities defined
in (32)–(34) with the following restrictions for E

∗
m, m = 1,M − 1:

E
∗
1 < min

m=2,M
{D(Wm ‖W1)},(35)

E
∗
m < min

l 6=m

{
min

l=1,m−1
E
∗
l,m, min

l=m+1,M
D(Wl ‖Wm)

}
, m = 2,M − 1.(36)

Proof. (of Theorem 3). Let the decision onm be made based on the partition:

Dm
4
=

⋃
W∈Bm(Wm)

T NW (X )

for m = 1,M . Note that Dm ∩ Dl 6= ∅ and Dm ∩ DM 6= ∅. We are going to
show that this is a partition that enables the optimal test sequence ϕ∗ =
{ϕ∗N}∞N=1.

For Wm
4
= arg min

Wm∈Wm

D(W ‖Wm), m = 1,M , and ϕ∗ we perform the

following analysis applying the unconditional version of (14):

αM,m(ϕ∗N ) ≥Wm(DM )

≥Wm

( ⋃
W∈BM (WM )

T NW (X )

)
≥ max

W∈BM (WM )
exp{−N [D(W ‖Wm) + oN (1)]}

= exp

{
−N

[
min

W∈BM (WM )
D(W ‖Wm) + oN (1)

]}
.

In a similar way we can obtain the inequalities

αl,m(ϕ∗N ) ≥ exp

{
−N

[
min

Wm∈Wm

min
W∈Bl(Wl)

D(W ‖Wm) + oN (1)

]}
,(37)

αM (ϕ∗N ) ≥WM (DM )(38)

≥WM

( ⋃
W∈BM (WM )

T NW (X )

)
≥ max

W∈BM (WM )
exp{−N [D(W ‖WM ) + oN (1)]}

= exp

{
−N

[
min

W∈BM (WM )
D(W ‖WM ) + oN (1)

]}
.
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The proof of the converse inequalities

αl,m(ϕ∗N ) ≤ exp

{
−N

[
min

Wm∈Wm

min
W∈Bl(Wl)

D(W ‖Wm) + oN (1)

]}
(39)

αM (ϕ∗N ) ≤ exp

{
−N

[
min

WM∈WM

min
W∈BM (WM )

D(W ‖WM ) + oN (1)

]}
(40)

are presented in the sequel.
From (10), (12), (13) and (15) and s ∈ SN with type Ps = P we have

Gm(Bl(Wl)|s) =
∑

x∈Bl(Wl)

Gm(x|s)(41)

≤
∑

TG(X|s)⊂Bl

exp{−ND(G ‖ Gm|P )}

≤ |GN (X|S)|exp{−ND(PG ‖ PGm)}
GM (BM (WM )|s) =

∑
x∈BM (WM )

GM (x|s)(42)

≤
∑

TG(X|s)⊂BM

exp{−ND(G ‖ GM |P )}

≤ |GN (X|S)|exp{−ND(PG ‖ PGM )}

where G ∈ GN (X|S) is a type.
For every Wm ∈ Wm there exists s ∈ SN , such that Wm = PsGm. Hence,

from (41) for l 6= m, l,m = 1,M , we come to

αl,m(ϕ∗N ) ≤ |GN (X|S)|exp

{
−N min

Wm∈Wm

min
W∈Bl(Wl)

D(W ‖Wm)

}
,

and from (42) we get

αM (ϕ∗N ) ≤ |GN (X|S)|exp

{
−N min

WM∈WM

min
W∈Bl(Wl)

D(W ‖WM )

}
.

Taking into account (37), (39), (38), (40) and the continuity of the func-
tional D(W ‖Wm) we obtain that the limit lim

N→∞
{sup−N−1 logαl,m(ϕ∗N )}

exists and equals to E
∗
l,m. The same continuity argument applies to the

exponent of αM (ϕ∗N ).
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To accomplish the proof by contradictory assumption let ϕ′ be a test
defined by the sets (D′m) such that

E
′
l,m > E

∗
l,m, l 6= m = 1,M. E

′
M > E

∗
M .

It yields for N large enough that

αl,m(ϕ′N ) < αl,m(ϕ∗N ), αM,m(ϕ′N ) < αM,m(ϕ∗N ).

Below we examine the relation between (Dm,DM ) and (D′m,D′M ). Four cases
are possible:

1) Dm ∩ D′m = ∅,

2) Dm ⊂ D′m,

3) D′m ⊂ Dm,

4) Dm ∩ D′m 6= ∅.

The same cases exist also for DM and D′M . Consider the case of Dm ∩ D′m =
∅. It follows that there exists l 6= m such that Dm ∩ D′l 6= ∅. That is there

exists a W such that D(W ‖Wm) < E
′
m, so T NW (X ) ⊂ D′l. Compute

αl,m(ϕ′N ) = max
s∈SN

Gm(D′l|s)

≥WN
m(T NW (X ))

≥ exp{−N [D(W ‖Wm) + oN (1)]}
> exp{−N [E

′
m + oN (1)]}.

Thus E
′
l,m < E

′
m = E

∗
m which contradicts to (8). �

6. Generalized sanov theorem

Here we are interested in large deviations framework for AVS’s. Let a family
of conditional probabilities G be defined according to (3) and let C ⊂ P(X )
be a subset of distributions on X . As in (16) we define and denote byW the
convex hull of G. Note that

G(C|s)
4
= G(C ∩ PN (X )|s)

4
=

∑
x: Gx∈C∩PN (X )

G(x|s).



i
i

“1-avs” — 2016/3/28 — 22:05 — page 323 — #15 i
i

i
i

i
i

Multiple hypothesis testing 323

Let us define the following set for each s

Fs
4
= {Gx,s ∈ PN (X|S) : such that Gx ∈ C ∩ PN (X )}.

AVS version of Sanov’s theorem states:

Theorem 5. For given set C,

(43) max
s
G(C|s) ≤ (N + 1)|X ||S| exp

{
−N min

W∈W
D(V ∗ ‖W )

}
,

where V ∗
4
= argmin

V ∈C
D(V ‖W ). If, in addition, the set C is the closure of its

interior, then

(44) max
s

1

N
logG(C|s)→ − min

W∈W
D(V ∗ ‖W ).

With |S| = 1 we get Sanov’s theorem for DMS. It is formulated in the
next claim.

Theorem 6. For given set C ⊂ P(X ),

G(C ∩ PN (X )) ≤ (N + 1)|X | exp{−ND(G∗ ‖ G)},

where G∗
4
= arg min

G′∈C
D(G′ ‖ G). If, in addition, C is the closure of its inte-

rior, then 1
N logG(C)→ −D(G∗ ‖ G).

Proof. We first prove the upper bound (43). For every s ∈ SN we have the
following chain of estimates which is enough to be sure in (43).

G(C|s) = G(C ∩ PN (X )|s)

=
∑

x: Gx∈C∩PN (X )

G(x|s)

=
∑

x: Gx∈C∩PN (X )

exp{−N [H(Gx,s|Ps) +D(Gx,s ‖ G|Ps)]}

=
∑

Gx,s∈Fs

∑
x∈TGx,s (X|s)

exp{−N [H(Gx,s|Ps) +D(Gx,s ‖ G|Ps)]}
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(a)

≤ exp

{
−N

[
min

Gx,s∈Fs

D(Gx,s ‖ G|Ps)− ε
]}

(b)

≤ exp

{
−N

[
min

Gx,s∈Fs

D(PsGx,s ‖ PsG)− ε
]}

(c)
= exp {−N [D(G∗x ‖W )− ε]}
(d)

≤ exp

{
−N

[
min
V ∈C

D(V ‖W )− ε
]}

= exp {−N [D(V ∗ ‖W )− ε]}

≤ exp

{
−N

[
min
W∈W

D(V ∗ ‖W )− ε
]}

,

where

(a) follows from the fact that there are only polynomially many types in
PN (X ) and from (12),

(b) follows from the property for divergence (10),

(c) G∗x
4
= PsG

∗
x,s, G

∗
x,s
4
= arg min

Gx,s∈Fs

D(PsGx,s ‖ PsG),

(d) follows from the argument that G∗x ∈ C.

Now we turn to the lower bound. Assume that C is the closure of its
interior. Since PN (X ) is dense in the set of all distributions then C ∩ PN (X )
is non-empty for all N > N0, for some N0. Furthermore, the assumption
implies that for every W ∈ W we can find a sequence of distributions Zn
such that Zn ∈ C ∩ PN (X ) and D(Zn ‖W ) → D(V ∗ ‖W ).

To show the limit (44) we make the following estimate for any W ∈ W
employing the inequality (22):

max
s∈SN

G(C|s) ≥W (C) =
∑

Z∈C∩PN (X )

W (T NV (X ))

≥
∑

Zn∈C∩PN (X )

W (T NZn
(X ))

≥ (N + 1)|X | max
Zn∈C∩PN (X )

W (T NZn
(X ))

(a)

≥ exp

{
−N min

Zn∈C∩PN (X )
D(Zn ‖W )

}
,
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where (a) follows from the unconditional version of (14). Consequently,

lim inf
1

N
log max

s∈SN
G(C|s)

≥ lim inf

(
− 1

N
− min
W∈W

D(Zn ‖W )

)
= − min

W∈W
D(V ∗ ‖W ).

Combining this with the upper bound establishes the theorem. �

7. Chernoff error bounds

Here the idea is to minimize the overall probability of error given by the
weighted sum of the individual probabilities of error. Those weights are
obtained via Bayesian inference. Therefore, in our setup we can assume that
there are M hypotheses

Hm : Gm = {Gm(x|s), x ∈ X , s ∈ S}, m = 1,M,

with associated prior probabilities πm. Denoting the optimal decision regions
by Am and their complements by Acm, m = 1,M , Theorem 6 yields

max
s∈SN

Gm(Acm|s) ≤ exp

{
−N

[
min

Wm∈Wm

D(V ∗m ‖Wm)− ε
]}

for the error probability under each hypothesis, where

V ∗m
4
= arg min

V ∈Ac
m

D(V ‖Wm).

The overall probability of error is

Pe(ϕN )
4
=

M∑
m=1

πm max
s∈SN

Gm(Acm|s).

Let

D∗AVS(M) = lim
N→∞

min
ϕN

− 1

N
logPe(ϕN ).
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Theorem 7. D∗AVS(M) = CAVS(W1, . . . ,WM ), where CAVS(W1, . . . ,WM )
is called the Chernoff distance for AVS and defined as

CAVS(W1, . . . ,WM )
4
= min

m

{
min

Wm∈Wm

D(V ∗m ‖Wm)

}
.

Proof.

Pe(ϕN ) =

M∑
m=1

πm max
s∈SN

Gm(Acm|s)

≤
M∑
m=1

πm exp

{
−N

[
min

Wm∈Wm

D(V ∗m ‖Wm)− ε
]}

≤ exp

{
−N

[
min
m

min
Wm∈Wm

D(V ∗m ‖Wm)− ε
]}

= exp {−N [CAVS(W1, . . . ,WM ))− ε]} .

�

Remark 4. For |S| = 1 we get the result by Leang and Johnson [15] for
the Chernoff bound on DMS setting of HT.

For the binary case of M = 2, Theorem 7 specializes to the following
lemma.

Lemma 8. The Chernoff information between two families of distributions
can be specified by the following representation:

CAVS(W1,W2) = min
{

min
W1∈W1

D(V ∗1 ‖W1), min
W2∈W2

D(V ∗2 ‖W2)
}

= min{D(V ∗1 ‖W ∗1 ), D(V ∗2 ‖W ∗2 )}
= CDMS(W ∗1 ,W

∗
2 ),

where W ∗i = arg min
Wi∈Wi

D(V ∗i ‖Wi), i = 1, 2, and CDMS(W ∗1 ,W
∗
2 ) is the Cher-

noff information for distributions W ∗1 and W ∗2 which according to [6] [Chap-
ter 12] satisfy the equalities

D(V ∗1 ‖W ∗1 ) = D(V ∗2 ‖W ∗2 ), V ∗1 = V ∗2 = V ∗.

With |S| = 1 the lemma easily specifies the binary Chernoff bound D∗

for DMS that according to [6] is determined by the following theorem.
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Theorem 9.

D∗ = D(Wλ∗ ‖W1) = D(Wλ∗ ‖W2).

where

Wλ =
W λ

1 (x)W2(x)1−λ∑
a∈X

W λ
1 (a)W2(a)1−λ

and λ∗ is the value of λ such that D(W ∗λ ‖W1) = D(W ∗λ ‖W2).

8. Geometry of decision schemes and bounds

Fig. 1 presents a geometric interpretation for the decision scheme in Theo-
rem 3. Fig. 2 and 3 illustrate the geometry of the Chernoff bounds derived
in Section 7 for binary and M -ary HT, respectively, (c.f. [5] for DMS’s).

Figure 1: Multiple HT for AVS. Dash-lines represent distances

min
Wl∈Wl,

Wm∈Wm

D(Wm ‖Wl)

between convex hulls (Wl,Wm), where l,m = 1, 3, l 6= m.
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Figure 2: Chernoff bound for AVS in binary HT.

Figure 3: Chernoff bound for AVS in multiple HT.
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