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1. Introduction

The problem of solving a system of n nonlinear equations in n variables
F (x) = 0 numerically where

F : Rn → Rn
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appears widely in scientific computations. We assume F is smooth, i.e., it
has as many continuous partial derivatives as the discussion requires. A well
known algorithm for this problem is the Newton’s iterations:

x(n+1) = x(n) −DF (x(n))−1F (x(n)), n = 0, 1, 2, . . . , x(0) ∈ Rn

where DF (x(n)) is the Jacobian matrix of F at x(n). This algorithm is local
in the sense that a very good estimate of the correct solution is required for
the convergence of the algorithm. Unfortunately, such knowledge concerning
zero points of F is usually unavailable a priorily. As a possible remedy, one
may define a homotopy function H(x, t) : Rn × R→ Rn so that

H(x, 0) = G(x), H(x, 1) = F (x),

where G : Rn → Rn is a smooth map whose zeros can easily be obtained, and
H is also smooth (in both x and t). Let x0 be a solution of G(x) = 0. Then at
t = 0, H(x, 0) = 0 has a solution x = x0. At t = 1, the system H(x, 1) = 0
agrees with F (x) = 0. If for arbitrary t ∈ R, x(t) solves H(x(t), t) = 0, then,
under certain mild conditions, x(t) will generate a smooth curve. If one
can successfully trace this smooth curve x(t) from t = 0 where x(0) = x0

continuously, then when t reaches 1, a solution x(1) = x∗ of F (x) = 0 is
attained.

Under this framework, this method, the so-called homotopy continuation
method, has been substantially developed during the last few decades and
proved to be a reliable and efficient numerical algorithm for solving solutions
of nonlinear systems of equations numerically. It has become an important
tool for this problem as illustrated by the extensive bibliography listed in
[4]. Most importantly, this method is global in the sense that solutions of
G(x) = 0 may not need to be anywhere close to the solution of F (x) = 0.

In this article, a special category of nonlinear systems we choose to
deal with by employing the homotopy continuation method is the systems
of polynomial equations. The problem of solving polynomial systems has
been, and will continue to be, one of the most important subjects in both
pure and applied mathematics. The need to solve systems of polynomial
equations arises very frequently in various fields of science and engineering,
such as, formula construction, geometric intersection, inverse kinematics,
robotics, vision and the computation of equilibrium states of chemical reac-
tion equations, etc. Many of those applications have been well documented
in [107]. Solving polynomial systems is an area where numerical computa-
tions arise almost naturally. Given the complexity of the problem, we must
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use standard machine arithmetic to develop efficient algorithms. Moreover,
by Galois theory explicit formulas for the solutions are unlikely to exist. We
are concerned with the robustness of our methods and want to be sure that
all isolated solutions are obtained, i.e., we want exhaustive methods. These
criteria are met by homotopy continuation methods. In 1977, Garcia and
Zangwill [33] and Drexler [25] independently presented theorems suggest-
ing that homotopy continuation methods could be used to find the full set
of isolated solutions of n polynomial equations in n variables numerically.
Afterwards, with few decades of developments, this method has advanced
to a most powerful and widely used procedure in approximating all isolated
zeros of a polynomial system. Along the way, a new discipline Numerical
Algebraic Geometry [102] has emerged.

While the natural setting for studying polynomial systems is the prod-
uct of complex (or projective) spaces, in practice, polynomial systems almost
always appear with real coefficients, and most importantly, only real solu-
tions are on the wish list. One may, of course, find all solutions in the
complex setting first, and then filter out all the non-real solutions. However,
to deal with those systems in real spaces directly would certainly be benefi-
cial numerically. In this article, we will pay a special attention in solving real
polynomial systems by real homotopies. Indeed, we shall introduce solving
nonlinear systems of real equations by the real homotopies in the first place.

There is no shortage of the demand of solving larger and larger polyno-
mial systems in applications. To attain more computing resources for solv-
ing large polynomial systems, the parallelization of the homotopy method
becomes inevitably essential. The biggest advantage of the homotopy con-
tinuation method in solving polynomial systems is perhaps its natural par-
allelism in the sense that each isolated zero is computed totally independent
of the others.

The landscape of computation hardware has seen an extremely active
development in recent years making a wide spectrum of exciting new tech-
nologies available. First, developments in new processor design and network
technology have allowed supercomputers and computer clusters to grow
larger and faster than ever. Second, new ideas such as cycle-scavenging and
grid computing has led to the creation of virtual supercomputers out of large
numbers of individual computers around the globe. Another exciting devel-
opment is the advent of parallel computing on GPUs (Graphical Processing
Units). While originally designed for rendering graphics rendering only, over
the years GPUs has become sufficiently sophisticated to handle a much wider
range of problems. Highly parallel by design, GPUs are more efficient than
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general purpose CPUs in carrying out a range of complex algorithms. In
this article we will also describe the adaptation of homotopy continuation
algorithms to a variety of parallel computation environments. Of course,
we can only present the most current parallel computing technologies for
solving very large polynomial systems. While the specific details of these
technologies can be volatile and are likely to change in the near future, we
hope the general idea to remain valid.

2. Curve tracing

The idea of tracing a solution curve of a homotopy equation to reach a solu-
tion of a nonlinear system asked to be solved underlines this entire article.
We therefore start by establishing its theoretical framework.

Let F : Rn → Rp be smooth. A point y ∈ Rp is said to be a regular value
of F if

RangeDF (x) = Rp for all x ∈ F−1({y}) = {x ∈ Rn | F (x) = y}

where DF (x) denotes the n× p Jacobian matrix of F , consisting of all the
partial derivatives of F (x) with respect to x = (x1, . . . , xn). Sard’s Theorem
[94] states that if F is smooth, then almost all y ∈ Rp are regular values.

In the context of our homotopy constructions, a differentiable homotopy
H(x, t) : Rn × R→ Rn with

H(x, 0) = G(x) and H(x, 1) = F (x),

can be thought of as a deformation between two systems G(x) and F (x)
among a family of systems. The point 0 = (0, . . . , 0) ∈ Rn is a regular value
for H if the n× (n+ 1) Jacobian matrix DH of H with respect to (x, t) =
(x1, . . . , xn, t) is of rank n (full row rank) for all (x, t) ∈ H−1({0}) ⊂ Rn × R.
This mild condition enables the “continuation” of a solution of a single
system in the deformation into a solution curve.

2.1. The continuation of solution curves

Assuming 0 is a regular value of H, if a solution x0 to the system G(x) =
H(x, 0) = 0 is known then the point (x0, 0) is in H−1({0}) and hence, by
assumption, DH is of rank n at this point. By the Implicit Function Theo-
rem, locally (i.e., in a neighborhood (x0, 0)) H−1({0}) consists of a segment
of a smooth curve (however short) that passes through (x0, 0). Actually this
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segment of curve cannot terminate: by continuity, any limit point of this
segment must also be inside H−1({0}), and the regular value assumption
of 0 hence ensures DH to be of rank n at this limit point. The very same
application of the Implicit Function Theorem then extends the curve a little
further. As this process repeats itself, the smooth curve starting from (x0, 0)
can be extended indefinitely. This is the essence of homotopy continuation
method. We say H satisfies the smoothness condition if 0 is a regular value
of H and H−1({0}) 6= ∅.

The solution curve defined by H(x, t) = 0 starting from the point (x0, 0)
will lead to solutions to the system of interest F (x) = 0 when this smooth
curve crosses the plane of Rn × R defined by t = 1 (as illustrated in Fig-
ure 1).

t = 0 t = 1

x = x0

a solution of F (x) = 0

Figure 1. A smooth curve defined by H(x, t) = 0 reaching a solution x∗ of
the target system.

2.2. The local description of a solution curve

In the following, we assume the homotopy H satisfies the smoothness con-
dition, and our focus will concentrate on tracing those smooth curves in
H−1({0}) numerically. To trace a smooth curve γ ⊂ Rn × R that contains
the starting point (x0, 0), there is a wide range of variations on the basic
methods. For brevity, we only discuss one specific method and refer to [4]
for a comprehensive list of existing methods.

In the construction of the homotopy H(x, t) = 0, it may seem natural
to use t as the designated parameter for the solution curve as originally
suggested by Davidenko [24]. However, this parametrization has a severe
limitation, as t cannot be used as a smooth parameter in certain situations.
For example, as shown in Figure 2, at points where ∂H/∂x is singular the
solution curve of H(x, t) = 0 cannot be parametrized by t directly. Actually,
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Figure 2. Points at which curves cannot be parametrized by t

one may avoid such difficulties by considering both x and t as independent
variables and parametrize the smooth curve γ by the arc-length.

To facilitate our discussion, we shall use the notation y = (x, t) and write
H(x, t) = H(y), where none of the variables will be used as a parameter
of solution curve γ of H(y) = 0. An arc-length parametrization of γ is a
smooth function y : R+ → γ such that y(0) = (x0, 0), H(y(s)) = 0, and the
tangent vector ẏ always has unit length for all s ∈ R+. Those conditions for
y(s) make it a solution of the following system of differential equations:

(2.1)

DH(y(s)) · ẏ(s) = 0

‖ẏ(s)‖ = 1

y(0) = (x0, 0).

Apparently, solution of this system is not unique, since on every point of
the smooth curve, there are always two different arc-length parametriza-
tions moving towards opposite directions. Therefore, to trace a curve along
arc-length parametrization without backtracking, one must determine and
maintain a consistent orientation.

As in (2.1), ẏ(s) is in the null space of the n× (n+ 1) matrix DH(y(s)),
which is of rank n by assumption. Thus, the (n+ 1)× (n+ 1) square matrix[
DH(y(s))

ẏ(s)

]
must be nonsingular, and its determinant will never vanish for

all s ∈ R+. So the sign of this determinant never changes along the curve,
therefore

σ(y) := sgn det

[
DH(y(s))

ẏ(s)

]
can be used to determine the orientation of the parametrization. Once an
orientation σ0 = ±1 has been decided, this orientation σ(y) = σ0 must be
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maintained in the process of tracing the curve by adjusting the sign of
ẏ. With this additional orientation constraint, equations of the arc-length
parametrization for the smooth curve γ ⊂ H−1({0}) become

(2.2)

DH(y(s)) · ẏ(s) = 0

sgn det

[
DH(y(s))

ẏ(s)

]
= σ0

‖ẏ(s)‖ = 1

y(0) = (x0, 0)

.

for chosen sign σ0 = +1 or −1.
In principle, any of the available ODE solvers capable of integrating the

above system can be used to trace the curve and obtain a solution to the
target system at t = 1. However, due to numerical stability concerns, a more
preferable method to trace the curve is the“prediction-correction scheme”.
In this scheme, one traces along the smooth curve γ via a series of discrete
“prediction-correction” steps. Starting from a point known to be on or very
close to the curve γ, the “prediction” step produces an approximation of
a point “one step” further in the right orientation for a proper step size.
Such a prediction step will be followed by a “correction” step in which a
Newton-like method is applied to refine the prediction to within a close
proximity of the curve γ. These steps may be repeated to move forward in
the sense of increasing arc-length along the curve γ. Among many different
choices for the “predictors” as well as “correctors”, we shall present here
a commonly used combination of the (generalized) Euler’s method for the
predictor and Newton’s method for the corrector. They form a simple but
effective prediction-correction duet. (See [4] for a comprehensive discussion
of a wide range of variations.)

2.3. Euler’s predictor

Starting from a point y0 ∈ Rn+1 on the curve γ, the Euler’s predictor simply
moves one step along the tangent direction of γ at y0 for certain step size as
depicted in Figure 3. The tangent direction ẏ is given by (2.2), which can
be computed numerically via the QR-decomposition of DH(y0)>: If

(DH(y0))> = Q

[
R
0

]
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ẏ

y0

Figure 3. Euler’s predictor moves one step along the tangent direction

where Q is orthogonal and R is upper triangular with full rank, let ∆y =
Q en+1 where en+1 = (0, . . . , 0, 1)T ∈Rn+1. Clearly, ‖∆y‖2 =1 and DH(y0) ·
∆y = 0. So, up to a sign change, ∆y satisfies (2.2). To choose the correct
sign, note that

[
DH(y0)

∆y

]
=

[
RT

eTn+1

]
QT ,

thus det

[
DH(y0)

∆y

]
= detR · detQ. Signs of both detR and detQ are easy to

compute: with R being upper triangular, the sign of its determinant is sim-
ply the product of the signs of its diagonal entries. If the QR-decomposition
is computed via Householder transformations, as we usually do, then Q =
Q1 · · ·Qk where each factor represents a Householder transformation with
determinant being −1. Hence the sign of detQ = (−1)k, and a proper assign-

ment of the sign σ, the sign of det

[
DH(y0)
σ ·∆y

]
will agree with the original

orientation σ0 of γ. With step size ∆s, the point

ŷ = y0 + ∆s · σ ·∆y

is designated as the resulting prediction.

2.4. Generalized Newton’s corrector

The resulting prediction produced by a predictor may not be exactly on or
even very close to the curve γ. If the next prediction step starts from such
a poor approximatiom, the error can quickly build up to an unacceptable
level. To curb such error accumulation, a “correction” step is necessary to
return the resulting prediction ŷ to (or close to) the curve γ. Let y denote
the point on the curve γ that is nearest to the prediction ŷ . The point y
solves the following optimization problem:
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(2.3)
min ‖y − ŷ‖
H(y) = 0

as illustrated in Figure 4. Indeed, it can be shown that a unique solution
exists as long as ŷ is sufficiently close to γ.

ŷ

y

Figure 4. The generalized Newton’s corrector finds a point on the curve that
is closest to the prediction

From the theory of Lagrange multipliers, under the smoothness con-
dition, the solution to the above minimization problem must satisfy the
Lagrangian equations

H(y) = 0

y − ŷ ∈ range(DH)> = (KerDH)⊥.

Alternatively, we write

(2.4)
H(y) = 0

(z(y))> (y − ŷ) = 0

where z(y) ∈ kerDH(y) with ‖z‖ = 1. Linearizing (2.4) at ŷ by taking the
first two terms of the Taylor series expansions leads to

(2.5)
H(ŷ) +DH(ŷ)(y − ŷ) = 0

z(ŷ)> (y − ŷ) = 0.

Since

[
DH(ŷ)
z(ŷ)>

]
is nonsingular, so

[
DH(ŷ)
z(ŷ)>

] [
DH+(ŷ) z(ŷ)

]
= In+1
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where DH+(ŷ) is the Moore-Penrose inverse of the n× (n+ 1) matrix
DH(ŷ) of H at ŷ; i.e., DH+(ŷ) = DH(ŷ)T (DH(ŷ)DH(ŷ)T )−1. From (2.5),[

DH(ŷ)
z(ŷ)>

]
(y − ŷ) = −

[
H(ŷ)

0

]
.

Consequently,

y − ŷ = −(DH(ŷ))+H(ŷ).

This leads to the generalized Newton’s iteration: the Newton point N (ŷ)
for approximating the solution of (2.3) is given by

N (ŷ) := ŷ − (DH(ŷ))+H(ŷ).

The map N : Rn+1 → Rn+1 will also be called the Newton map.
Starting from the potentially inaccurate prediction ŷ produced by the

Euler’s predictor, the mapN is iteratively applied to ŷ until certain criterion
of convergence is met. Stated formally, the result of the correction is

y = N k(ŷ) = N ◦N ◦ · · · ◦ N (ŷ)

where k ∈ Z+ is determined by convergence criterion. It is well known that
this generalized Newton method converges quadratically for ŷ sufficiently
close to γ under the smoothness assumption (see, e.g., [88] and [89]). There-
fore, the shrinking distance ‖N j(ŷ)−N j−1(ŷ)‖ between successive points
produced by the iterations can be used as a criterion for convergence.

Of course, if the iterations fail to converge, one must go back to adjust
the step size for the Euler’s predictor.

3. Varieties of homotopies

In the above, we introduced the notion of commencing at a given known
point (x0, 0) and tracing the solution curve of a homotopy equationH(x, t) =
0 to a solution of the nonlinear system of equations asked to be solved.
The exact solution curve that occurs will depend directly upon the selected
homotopy function H(x, t). A great number of different types of homotopy
functions have been developed over the last several decades. Here we do not
intend to provide an exhaustive list. Instead, this section will highlight three
of the commonly used constructions.
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3.1. Fixed point homotopy

Let F : Rn → Rn and x = (x1, . . . , xn). One of the simplest homotopy for
finding solutions of F (x) = 0 is the fixed point homotopy given by

H(x, t) = (1− t)(x− a) + tF (x)

where a ∈ Rn and t ∈ R. At t = 0, the starting system is H(x, 0) = x−
a = 0 for which the only solution is x = a. At t = 1, the system H(x, 1) =
F (x) = 0 is the system of equations of interest. The smoothness of this
homotopy construction is warranted by Generalized Sard’s theorem[1] for
which we shall state the simplified form:

Theorem 3.1 (Generalized Sard’s Theorem). For two open sets X ⊂
Rn1 and Y ⊂ Rn2 , let φ : X × Y → Rm be a smooth function. If v ∈ Rm
is a regular value of φ, then for almost all y ∈ Y, v is a regular value of
φy = φ(•,y) : X → Rm.

To apply this to the fixed point homotopy defined above, consider a
as a variable and define φ : Rn × (R \ {1})× Rn → Rn by φ(x, t,a) = (1−
t)(x− a) + tF (x). Then

Dφ(x, t,a) =
[
(1− t)I + tDF (x), −(x− a) + F (x), −(1− t)I

]
.

With the last n columns being −(1− t)I, this matrix has rank n for any
(x, t,a) ∈ Rn × (R \ {1})× Rn satisfying φ(x, t,a) = 0. Namely, 0 ∈ Rn is
a regular value of the map φ : Rn × (R \ {1})× Rn → Rn. By Generalized
Sard’s theorem, for almost all a ∈ Rn, 0 is a regular value of φ(•, •,a) =
H(•, •). Thus, when a ∈ Rn is chosen at random then, with probability one,
H satisfies the smoothness condition, for t 6= 1, since H(a, 0) = 0 (so, the
inverse image H−1({0}) is not empty). The system H(x, t) = 0 defines (dis-
joint) smooth solution curves in Rn × (R \ {1}). The general method for
tracing smooth curves described in §2 can then be used to trace the unique
smooth solution curve emanating from (x, t) = (a, 0). When this curve passes
through the hyperplane defined by t = 1, a solution of the target system
F (x) = 0 would be attained. It is, of course, possible for the curve pass-
ing through t = 1 multiple times and we shall obtain multiple solutions of
F (x) = 0.

This homotopy construction was first introduced in [24]. Partially due
to its easily established smoothness condition, it has been used and studied
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intensively since 1950s. We highlight here two classes of theorems related to
this homotopy.

3.1.1. Fixed point theorems. In the above, the target functions F (x)
were defined on the entire space Rn. In most occasions, however, they were
restricted to inhabit a certain domain, such as F : U → Rn where U ⊂ Rn
is open. Similarly, sometimes it is useful to restrict the variable t to the unit
interval I = [0, 1]. With the restricted domains U and I, the framework of
our homotopy will be

H : U × [0, 1]→ Rn.

Same as before, if 0 is a regular value of H with nonempty inverse image,
that is, H satisfies the smoothness condition, then H−1({0}) consists of
smooth curves in U × [0, 1]. The underlying principle for finding a solution of
nonlinear system of equations F (x) = 0 of interest with selected homotopy
H is to trap a solution curve γ ⊂ H−1({0}) inside U with starting point
(a, 0) where a ∈ U and force the curve to proceed to the appropriate place.
For instance, if we ensure the solution curve γ never pierce the boundary of
U , denoted by ∂ U , then γ cannot escape from U . It will then be forced to
go to a proper location — a solution of the target system at t = 1.

Given a homotopy H : U × [0, 1]→ Rn and a t0 ∈ [0, 1], let

H|−1
t=t0({0}) = {x ∈ U | H(x, t0) = 0 }.

We say H is boundary-free [32] at t0∈ [0, 1] if x /∈∂U for any x ∈ H|−1
t=t0({0}).

In general we say H is boundary-free for t in a subset S ⊂ [0, 1] if H is
boundary-free for all t ∈ S. Accordingly, when H is boundary-free for S =
[0, 1), then the only place the solution curve γ could possibly touch the
boundary of U is at t = 1.

For U ⊂ Rn, we use intU to denote the interior of U .

Theorem 3.2. Given smooth function F : U → Rn, let U ⊂ Rn be compact
and intU 6= ∅. For some a ∈ intU , if H : U × [0, 1]→ Rn is boundary-free
for 0 ≤ t < 1, where

(3.1) H(x, t) = (1− t)(x− a) + t(x− F (x)),

then F has a fixed point, i.e., there exists an x∗ ∈ U such that F (x∗) = x∗.

Proof. From what had been developed before, the proof of this theorem
is quite straightforward. Since by Generalized Sard’s Theorem, for almost
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all a ∈ U , H in (3.1) satisfies the smoothness condition for t 6= 1. Therefore,
the smooth solution curve γ ⊂ H−1({0}) starting at (a, 0) exists. Prohibited
by the assumption that H is boundary free, the curve cannot meet ∂ U for
0 ≤ t < 1. Since U is compact and thus bounded, the curve must reach t = 1.
A point (x∗, 1) ∈ H−1({0}) therefore exists for which F (x∗) = x∗. �

There are two very important conditions both ensure H is boundary-free
for t ∈ [0, 1): Given a ∈ intU

Leray-Shauder: x 6= tF (x) + (1− t)a for 0 < t < 1 and x ∈ ∂U .

Geometrically, this condition means that given any x ∈ ∂U , the point
x does not lie in the interior of the line segment joining a and F (x).
Since a ∈ intU and a ∈ H|−1

t=0({0}) is unique, H is boundary-free at
t = 0. Simplifying (3.1) yields that any point (x, t) on the solution
curve must satisfy x = t F (x) + (1− t) a for 0 < t < 1. Therefore, H
is boundary-free for 0 ≤ t < 1.

Brouwer: F : U → U is smooth and U is convex.

Since F : U → U , for any x ∈ U , F (x) ∈ U . Hence the point x̂ =
t F (x) + (1− t) a for 0 < t < 1 must be in intU since U is convex.
Thus if x ∈ ∂U , then x 6= t F (x) + (1− t) a for 0 < t < 1, and there-
fore H is boundary-free for 0 ≤ t < 1.

As a corollary of Theorem 3.2, under either of the above conditions, a
fixed point of F exists when U is compact and intU is nonempty.

Remark 3.3. The celebrated Brouwer fixed point theorem given above was
developed very early in the last century. It was used widely in economics,
biology, ecology, medicine, physics, chemistry, and other fields to classify
the equilibrium. Most importantly, in the proof of this theorem via the fixed
point homotopy as described above actually provides a means to calculate
those equilibrium constructively.

3.1.2. Existence of solutions to systems of nonlinear equations.
Given a smooth function F : Rn → Rn, a condition that ensures the exis-
tence of a solution to the system of nonlinear equations F (x) = 0 in a domain
U ⊂ Rn is for U to be compact and having an interior point a such that for
all x ∈ ∂U , F (x)>(x− a) > 0 (or, equivalently, F (x)>(x− a) < 0).

Theorem 3.4. Let F : Rn → Rn be smooth, and U ⊂ Rn be a compact sub-
set with nonempty interior. Let a ∈ intU be arbitrary. If for all x ∈ ∂U ,
F (x)>(x− a) > 0, then there exists an x∗ ∈ intU such that F (x∗) = 0.
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Proof. Let the homotopy H : Rn × [0, 1]→ Rn be given as

H(x, t) = (1− t)(x− a) + t F (x).

As before, for almost all a, H satisfies the smoothness condition for t 6= 1.
This warrants the solution set of H(x, t) = 0 consists of all smooth curves.
Simply by inspection, a is the unique solution of H(x, 0) = 0. Also, if x ∈
∂U , then

H(x, t)>(x− a) = (1− t)‖x− a‖2 + tF (x)>(x− a) > 0.

So, the solution curve defined by H(x, t) = 0 that emanates from (a, 0)
cannot return to t = 0, and it cannot reach the boundary of U . Thus it must
extend to t = 1 within the interior of U , yielding a point (x∗, 1) ∈ H−1({0})
with x∗ ∈ U which satisfies F (x∗) = 0. �

Note that the set U in the above theorem can be selected quite arbitrar-
ily, so the condition F (x)>(x− a) > 0 in the theorem is very flexible.

3.2. Newton homotopy

Another commonly used homotopy function is the Newton homotopy
H : Rn+1 → Rn given by

H(x, t) = (1− t)[F (x)− F (a)] + tF (x)(3.2)

= F (x)− (1− t)F (a)

where F : Rn → Rn is the smooth system of interest, and a is a generically
chosen point in Rn. Clearly, at t = 1, H(x, 1) ≡ F (x) = 0, and at t = 0,
the starting system is H(x, 0) = F (x)− F (a) = 0 for which a is a solution.
As before, if H satisfies the smoothness condition, then the solution set of
H(x, t) = 0 in Rn+1 consists of smooth curves, and the predictor-corrector
scheme developed in §2 can be used to trace the smooth solution curve
emanating from (a, 0) ∈ Rn+1.

Let U ⊂ Rn be open and bounded with a smooth and connected bound-
ary. The smoothness of H as well as its boundary-free property with respect
to U can be established via Smale’s boundary conditions:

1) F : Rn → Rn is a smooth map;

2) 0 is a regular value of F ;

3) F has no zero on ∂U ;
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∂U

U

x1

x2

Figure 5. Smale’s boundary condition requires that the Newton direction
at any point on the boundary of U to point either in or out of U but not
tangent to ∂U .

4) DF (x) is nonsingular for all x ∈ ∂U ; and

5) at any x ∈ ∂U , the Newton direction

−(DF (x))−1F (x)

is not tangent to ∂U .

Under these assumptions, Percell proved [90] that for almost all a ∈ ∂U , the
Newton homotopy (3.2) satisfies the smoothness condition, that is, 0 is a reg-
ular value of H. Furthermore, Smale [98] showed that in this circumstance,
the smooth solution curve of H(x, t) = 0 passing through the starting point
(a, 0) and pointing into U must reach at least one point (x∗, 1) at the level
t = 1 and a solution of F (x) = 0 is found. Although this Smale’s boundary
conditions is generally difficult to verify, for those functions F having only
isolated nonsingular solutions it can be shown (see [89]) that these condi-
tions are satisfied by some sufficiently small ball around each solution of
F . This can be considered as a generalization of the well known Newton-
Kantorovitch Theorem [47].

It is worth noting the close connection between the Newton homotopy
and the well known Newton’s method for solving nonlinear equations: Dif-
ferentiating both sides of H(x, t) = 0 given by (3.2) yields the initial value
problem

(3.3)
ẋ(t) = −(DF (x(t)))−1F (a)

x(0) = a
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on domains in which DF (x) is nonsingular. Applying Euler’s method at
t = 0 with step size 1 to the above ODE from the initial point x = a, the
approximation of x(1) becomes

x(1) = a− (DF (a))−1F (a)

which is precisely a single iteration of Newton’s method. Hence, Newton’s
iteration can be considered as the application of Euler’s method with step
size 1 on the solution curve given by the Newton homotopy (3.2).

However, in contrast to Newton’s method which is generally a local
method, the Newton homotopy exhibits certain global convergence prop-
erty via Smale’s boundary conditions for instance. The detailed comparison
between the two can be found in [4].

3.3. d-homotopy method

The d-homotopy (also known as d-trick homotopy) method is designed to
find additional solutions after an isolated regular solution of the system
F (x) = 0 has been found. Assuming x∗ is a known isolated regular solution
of F (x) = 0, the d-homotopy is given by

(3.4) H(x, t) = F (x) + td

for some chosen d ∈ Rn. The Newton homotopy can be considered a special
case of this d-homotopy with d = −F (a). For simplicity, we further assume
all the solutions of the system F (x) = 0 are isolated and regular, that is,
DF (x) is nonsingular for all x ∈ F−1({0}). With this assumption, the regu-
larity of the d-homotopy can be established via Generalized Sard’s theorem
by the same technique used in §3.1 for the fixed point homotopy: Take d as
a variable and let φ : (Rn × R)× Rn → Rn be given by

φ(x, t,d) = F (x) + td.

Then

Dφ =
[
DF d tIn

]
where In is the n× n identity matrix.

Since the last n columns is tIn, the rank of the above matrix is n for t 6= 0.
At t = 0, φ(x, 0,d) ≡ F (x) which, by assumption, has only isolated regular
solutions. Hence DF is nonsingular for all x ∈ Rn satisfying φ(x, 0,d) = 0.
Therefore the matrix Dφ has rank n for all (x, t,d) ∈ (Rn × R)× Rn for
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t = 0

x∗

Figure 6. The d-homotopy defines a curve that turns around and intersect
the hyperplane at t = 0 again.

which φ(x, t,d) = 0. Rephrasing: 0 is a regular value of φ. By Generalized
Sard’s theorem, for almost all d ∈ Rn, 0 is a regular value of H(•, •) =
φ(•, •,d). Consequently, when d ∈ Rn is chosen at random, with probability
one, H satisfies the smoothness condition, and solution set of H(x, t) = 0
consist of (disjoint) smooth curves in Rn × R. Starting from (x∗, 0) with
the known solution x = x∗ of F (x) = 0, we trace the unique smooth curve
defined by H(x, t) = 0 that passes through (x∗, 0). Slightly different from
the framework outlined in §2 and §3.1, we wish this solution curve will turn
back and intersect the hyperplane at t = 0 again, producing an additional
solution to F (x) = 0 at the intersection point. Figure 6 is a depiction of the
situation. Similar to all homotopies in the previous sections, it is possible for
the curve to pass through t = 0 multiple times afterwards, obtaining even
more solutions. The following proposition says actually the boundary-free
condition ensures the turning back of the solution curve and its intersection
with the hyperplane at t = 0 again.

Proposition 3.5. For a smooth function F : Rn → Rn, let U ⊂ Rn be a
bounded open set which contains a known solution x∗ of F (x) = 0. If

(1) 0 is a regular value of F ,

(2) For chosen d, the boundary-free condition, that is, H(x, t) = F (x)−
td 6= 0 holds for all x ∈ ∂U and t ∈ R.
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Then the curve γ ⊂ H−1({0}) which contains (x∗, 0) will intersect U × {0}
again.

Proof. The boundary-free condition (2) makes the curve γ lying strictly
inside the cylinder intU × R. A solution (x, t) ∈ γ must satisfy F (x) = td
and x ∈ U . Hence,

(3.5) |t| = ‖F (x)‖
‖d‖

remains bounded. The assertion of the proposition thus follows because the
solution curve γ has “no place to run”. �

In the proof above, the solution curve γ may be traced from (x∗, 0) in
either direction: increasing in t or decreasing in t. When γ runs into the
region with t > 0, (3.5) becomes

t =
‖F (x)‖
‖d‖ .

Therefore under the relaxed boundary-free condition

(2a) H(x, t) = F (x)− td 6= 0 for all x ∈ ∂U and t ≥ 0, the assertion of
the proposition is still valid.

Similarly, the boundary-free condition (2) in the proposition can also be
relaxed to

(2b) H(x, t) = F (x)− td 6= 0 for all x ∈ ∂U, t ≤ 0.

t < 0 t = 0 t > 0

x∗

Figure 7. The d-homotopy defines a solution curve that is “trapped” inside
a finite cylinder.
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3.4. Strengths of homotopy methods and case studies

In contrast to local methods, such as Newton’s method, for solving nonlinear
systems, one great advantage of homotopy methods is the global nature
manifested in Theorems 3.2, 3.4, the Leray-Shauder, Brouwer fixed point
conditions, and the Smale’s boundary conditions listed above. This section
highlights other noteworthy strengths of (real) homotopy methods through
concrete examples.

3.4.1. Handling singular solutions. Unlike Newton’s method that gen-
erally fail near singular solutions, the homotopy continuation method has
a particularly valuable advantage in handling singular solutions. We shall
illustrate this via two simple examples.

Example 3.6 (A trivial example). We start with a trivial yet illuminat-
ing example: f(x) = x2. It is immediate that the only solution of f(x) = 0
is x = 0, and it is singular since f(x) and f ′(x) both vanish at x = 0. Thus
a direct application of Newton’s iteration on a point near x = 0 would face
numerical difficulties as f ′(x) is close to zero.

However, with homotopy continuation method, it is possible to obtain
the singular solution x = 0 with no difficulties. Consider for example the
Newton homotopy construction given by

h(x, t) = f(x)− (1− t)f(a) = x2 − (1− t)a2

for a randomly chosen nonzero a ∈ R. The equation h(x, t) = 0 actually
defines a smooth curve that passes though the singular solution at (x, t) =
(0, 1) shown in Figure 8. As the curve tracing algorithm march towards
the singular solution, nothing extraordinary happens. After all, the singular
solution is simply a smooth point on the smooth solution curve, exhibiting
no additional numerical difficulties than any other points on the curve.

While numerical analysts are mostly familiar with the modifications to
Newton’s method (see standard text such as [104]) which can be used to
locate the singular solution x = 0 of this equation (f(x) = x2 = 0), there
are, however, situations where no direct modification of Newton’s method
can salvage, but a homotopy-based method would experience no numerical
difficulties. The next example is one such system — the Griewank-Osborne
system.
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Figure 8. The smooth curve defined by Newton homotopy applied to the
equation f(x) = x2 = 0.

Example 3.7 (The Griewank-Osborne system).The Griewank-Osborne
system, analyzed in [35] is given by:

(3.6) F (x, y) =


29

16
x3 − 2xy = 0

y − x2 = 0.

The only solution of this system in R2 is (0, 0) which is singular since Jaco-
bian matrix DF of F is singular at (0, 0). It is notoriously known that even
starting from points arbitrarily close to the solution (0, 0) of the system
Newton’s method can exhibit chaotic behaviors: It may converge infinitely
slowly or even diverge completely.

In contrast, we shall show that the Newton homotopy H : R3 → R2 con-
structed for the Griewank-Osborne system given by

(3.7) H(x, y, t) =


29

16
x3 − 2xy − t

(
29

16
a3 − 2ab

)
y − x2 − t (b− a2)

satisfies the smoothness condition with plenty choices of (a, b) ∈ R2 and is
capable of finding the singular solution (x, y) = (0, 0) with no difficulties.
Parts of these analysis first appeared in [72, 73].
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Proposition 3.8. For almost all (a, b) ∈ R2 in the sense of Lebesgue mea-
sure, the Newton homotopy H, defined in (3.7), satisfies the smoothness
assumption. Consequently, for almost all (a, b) ∈ R2, H−1((0, 0)) consists of
disjoint smooth curves.

Proof. Points (a, b) ∈ R2 that violate the smoothness assumption are those
points for which there exists (x, y, t) ∈ R3 such that H(x, y, t) = 0 but
rankDH(x, y, t) < 2. In other words, all 2× 2 minors of the 2× 3 matrix
DH(x, y, t) vanish, thus providing a system of 5 equations in 5 unknowns
(x, y, t, a, b):

29

16
x3 − 2xy − t (

29

16
a3 − 2ab) = 0

y − x2 − t (b− a2) = 0

23

16
x2 − 2y = 0

1

16
(a2 − b)(87x2 − 32y)− 1

8
(29a3 − 32ab)x = 0

29

16
a3 − 2ab− 2(a2 − b)x = 0.

The associated primes of the ideal induced by this system (in R[x, y, t, a, b])
are 〈x, y, t, 29a2 − 32b〉, 〈x, y, a, b〉, 〈x, y, t, a〉. Therefore the only choices of
(a, b) ∈ R2 that violate the smoothness assumption are those with 29a2 =
32b or a = 0 which forms a (nowhere dense set) of measure zero. As a result,
for almost all (a, b) ∈ R2, (3.7) is regular. �

Proposition 3.9. For all (a, b) ∈ R2 with b > 119
128a

2, there is an open and
unbounded set U ⊂ R2 of positive Lebesgue measure such that for all (a, b) ∈
U , the equation H(x, y, t) = (0, 0) defines a smooth curve containing both
(a, b, 1) and (0, 0, 0).

By this proposition, the Newton homotopy method via curve tracing
starting from any point (a, b) ∈ U , will reach the (only) solution (0, 0) of the
original system (3.6). This is supported by our numerical experiments. Fig-
ure 9 shows the scatter plot of the starting points (a, b) ∈ R2 for which the
Newton homotopy method using floating point arithmetic were successful in
obtaining the solution (0, 0) of the original system within the machine preci-
sion (produced using data presented in [72] with permission). An unbounded
region is clearly visible.
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Successful starting points

Figure 9. Scatter plot of some (a, b) ∈ R2 for which the Newton homotopy
(3.7) was successful in obtaining the singular solution (x, y) = (0, 0) of the
target Griewank-Osborne system (3.6).

Proof. (Appendix of [73]) Eliminating y from H(x, y, t) = (0, 0) provides

h(x, t) = − 3

16
x3 − 2x(x2 + tb− ta2)− t

(
29

16
a3 − 2ab)

)
.

As a cubic polynomial in x only, its discriminant is

∆ = −4− 3

16
[−2t(b− a2)]3 − 27

(
− 3

16

)2 [
−t
(

29

16
a3 − 2ab)

)]2

.

Substituting b =
119 + r

128
a2 in the above yields

∆ =
t2a6

220

[
−243r2 − 3(r3 − 27r2 + 243r − 729)t− 1458r − 2187

]
.

We are interested in the sign of ∆ as t goes from 1 to 0. Note that

220∆

t2a6
= −243r2 − 3(r3 − 27r2 + 243r − 729)t− 1458r − 2187

is a linear function in t. A straightforward calculation shows that this func-
tion takes negative values at t = 0 and t = 1 for any r > 0. Therefore ∆ < 0
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for all t ∈ [0, 1] and r > 0. Since b = 119+r
128 a2, so for U = {(a, b) | b > 119

128a
2}

and t ∈ [0, 1], the discriminant of h(x, t), as a univariate polynomial in x, is
negative indicating that it has a unique real root for each fixed t. Combining
with the smoothness of H, the equation h(x, t) = 0 defines a single smooth
curve in R× [0, 1] and, by extension, H(x, y, t) = (0, 0) also defines a single
smooth curve in R2 × [0, 1] which necessarily connects the starting point and
the target solution (0, 0) of the Griewank-Osborne system. �

Though the smoothness condition for the Newton homotopy is difficult
to establish in general, toward the real world problems in physics, chemistry,
and a variety of other fields the great usefulness of the Newton homotopy is
undeniable as the example in the following section shows.

3.4.2. Obtaining multiple solutions using one curve. When a local
method such as Newton’s iterations is used to solve a nonsingular system,
with an appropriate choice of the starting point, the method may converge
to a solution, and the story ends there. A distinct advantage of the (real)
homotopy continuation methods is their ability to obtain solutions one after
another by tracing just one solution curve.

As noted in §3, for a homotopy H(x, t), if the solution curve defined
by H(x, t) = 0 passes through t = 1, then a solution of the target system is
obtained. However, it is possible for the same curve to pass through t = 1
multiple times, each time producing a distinct solution. In many real world
problems, a large number of solutions can lie on the same solution curve,
making homotopy method a particularly appealing choice. Below we exam-
ine a specific example from theoretical physics that has been studied with
Newton homotopy method in [72].

Example 3.10 (The nearest-neighbor φ4 model [72]). The two-
dimensional nearest-neighbor φ4 model is an important model in theoretical
physics that has been widely studied. For an N ∈ Z+, the model, in N2

variables x = (x00, x01, x10, . . . , xNN ), is the real-valued “potential” function
given by

(3.8) V (x) =
∑

Λ

 3

5 · 4!
x4
ij − x2

ij +
J

4

∑
(i′,j′)∈N (i,j)

(xij − xi′j′)2

 ,

where Λ = {(i, j)}N−1
i,j=0 ⊂ Z2 is a square lattice with N2 points, the set

N (i, j) = {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} modulo Λ is the subset
of Λ that consists of four nearest neighboring points of (i, j), and J is a
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chosen real value. The stationary system of this model is the system of N2

equations in N2 variables obtained by setting each partial derivative of V
to zero, i.e.,

(3.9)
∂V (x)

∂xij
=

1

10
x3
ij + (4J − 2)xij − J

∑
(i′,j′)∈N (i,j)

xi′j′ = 0.

for each pair of i, j = 0, . . . , N − 1. Given the physical context, only real
solutions are needed.

A variety of computational methods have been used to study this model.
However, this family of problems, parametrized by J ∈ R, poses a particu-
larly tough computational challenge, especially for larger N . In particular,
it is shown in [74] that the total number of solutions of the above system
in CN2

always equals to its “total degree” 3N
2

which grows quickly as N
increases. For example, at N = 5 the total number of complex solutions
is 847288609443 and for N = 6 the number exceeds 1017. Direct computa-
tion of all complex solutions is clearly infeasible with current technology for
larger N values. However, numerical experiments with this system reveals
an interesting property: by varying the parameter J from 0 to 1, the number
of real solutions decreases drastically while the number of complex solutions
stays the same. In particular, for J values close to 1, only an extremely small
fraction of the solutions are real. In this case, the Newton homotopy, which
directly targets the real solutions, has a clear advantage over methods that
compute all complex solutions in the first place, followed by filtering out all
the real solutions.

In practical experiments, the Newton homotopy, as defined in (3.2), was
applied to the above system with varying values for N and J . From a single
randomly chosen starting point, the Newton homotopy can find multiple real
solutions. Tables 1 and 2 show the capability and efficiency of the Newton
homotopy in finding multiple real solutions for a range of N and J val-
ues. Remarkably, all real solutions were found in the cases with N = 3 and
J = 0.9, 0.8, 0.7. Each of these systems has only 3 real solutions, and all of
them can be found by tracing just one single solution curve of the Newton
homotopy with a generically chosen starting point. The time consumption
information is listed in Table 1.

Fixing J = 0.9, Newton homotopy in solving (3.9) with increasing value
of N = 3, 4, 5, 6, 7 have also been investigated. Table 2 exhibits the strength
of the Newton homotopy: a large number of real solutions can be found very
quickly. In particular, whenN = 6 andN = 7, these two systems have a total
number of more than 1017 and 1023 complex solutions respectively. Solving
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J N.o. R-solutions obtained % R-solutions Time

0.9 3 (All) 100% 0.009s

0.8 3 (All) 100% 0.009s

0.7 3 (All) 100% 0.012s

Table 1. Number of real solutions obtained and timing information when
the Newton homotopy is applied to the φ4 model with N = 3 and varying
values of J . A single randomly chosen starting point was used. The timing
information is computed based on the performance on a workstation with
Intel Core i5-3570K running at 3.4GHz.

N N.o. R-solutions % R-solutions Time

3 3 (All) 100% 0.01s

4 83 (All) 100% 0.62s

5 102 - 2.00s

6 208 - 23.95s

7 358 - 29.66s

Table 2. Number of real solutions obtained and the time consumption when
the Newton homotopy is applied to the φ4 model [72] with J = 0.9 and
varying values of N = 3, 4, 5, 6. A single randomly chosen starting point was
used. The timing information is computed based on the performance on a
workstation with Intel Core i5-3570K running at 3.4GHz.

all those complex solutions first seems particularly infeasible. However, the
Newton homotopy, using a single starting point, can find 208 and 358 real
solutions for these two systems respectively within 30 seconds. Figure 10
showcases this ability of the Newton homotopy. In the Figure, the t-value
(horizontal axis) is plotted against the arc-length (vertical axis). Notice the
numerous crossing of the solution curve with the plane at t = 1. Actually,
each of them produces a distinct real solution of the target system.

3.4.3. Preserving Morse indices for gradient systems. In applica-
tions, one important source of nonlinear systems of equations is the gradi-
ent systems derived from partial derivatives of real-valued functions. More
precisely, the corresponding gradient system of a real-valued differentiable
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Figure 10. The t value along a solution curve defined by H(x, t) = 0 where
H is the Newton homotopy for the nearest neighborhood φ4 problem (3.9)
with N = 6 and J = 0.9. The light vertical line in the middle represents the
plane at t = 1 whose intersections with the curve produces real solutions of
the system.

function V : Rn → R in the variables x = (x1, . . . , xn) is the system of equa-
tions

∂V

∂x1
= 0

...

∂V

∂xn
= 0.

For brevity, we also use the notation DV (x) = 0 for this system. The solu-
tions of this system are known as critical points of V , and the problem of find-
ing such critical points is a fundamental problem that arises in such diverse
fields as physics, economics, engineering, optimal control, etc. For simplic-
ity, V is assumed to be smooth in the following discussion. Those critical
points are classified by the eigenvalues of its Hessian matrix D2V = D(DV ).
With V being smooth, D2V , as an n× n matrix with real entries, is nec-
essarily symmetric, hence all its eigenvalues are real. By Sylvester’s Law of
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Inertia, the signs of these eigenvalues are independent from the coordinate
systems. A critical point is said to be degenerate if its Hessian D2V has
a zero eigenvalue and nondegenerated otherwise. Moreover the number of
negative eigenvalues is known as the Morse-index of the critical point. This
Morse-index is invariant under a nonsingular smooth change of coordinate
and hence a geometric property of the critical point itself. If we further
assume V to be locally analytic near a critical point x∗, then

V (x) = V (x∗) +DV (x∗) · (x− x∗) + (x− x∗)> ·D2V (x∗) · (x− x∗)

+O(‖x− x∗‖3).

Evidently, a nondegenerated critical point x∗ of V is a local minimum if
and only if the Morse-index of D2V (x∗) is 0, that is, all its eigenvalues
are positive. Local minima are of great importance in many applications.
For example, if V models a potential energy of a physical system, the local
minima of V then correspond to stable states of the system. Critical points
of other Morse-indices also have meaningful interpretation in certain types
of applications.

While there are many numerical methods for locating such critical points,
the homotopy continuation method may have a great advantage in many sit-
uations. In particular, when one considers a family of real-valued functions
parametrized by a new variable t:

(3.10) V̂ (x, t) = (1− t)U(x) + t V (x)

for some smooth function U : Rn → R. Clearly, V̂ (x, 0) ≡ U(x), V̂ (x, 1) =
V , and V̂ (x, t) can be interpreted as an objective function that smoothly
deforms over time (represented by the variable t) from U to V . Now, the
function

(3.11) H(x, t) := (1− t)DU(x) + tDV (x)

can be taken as a homotopy between DU and DV . The system of equations
H(x, t) = 0 then defines the critical points of the “deforming objective func-
tion” given in (3.10). If one critical points of U is known, one can start from
this point and trace the critical point of V̂ (x, t) as t varies. When t reaches
1, then a critical point of V̂ (x, 1) ≡ V (x) is located.

The potential advantage of this homotopy-based approach is the pos-
sibility of preserving the Morse-index. Suppose the homotopy satisfies the
smoothness condition. Thus, H−1({0}) ⊂ Rn+1 is a disjoint union of smooth
curves. Let (x(s), t(s)) be the solution curve defined by H(x, t) = 0 that
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passes through a given starting point x0 and parametrized by arc-length
s. Obviously, eigenvalues of Hx = D2

xV̂ vary continuously along the curve,
and since eigenvalues of Hx are all real, they must reach zero before chang-
ing signs. As a consequence, if Hx remains nonsingular (i.e., the product of
eigenvalues remain nonzero) along the solution curve, then the Morse-index
is preserved. Geometrically, if the solution curve contains no turning point
(see Figure 2), then the Morse-index is preserved along the entire curve.

The effectiveness of this scheme depends on the choice of the starting
function U in (3.11). A particularly common choice of U is

U =
1

2
(x1 − a1)2 + · · ·+ 1

2
(xn − an)2 =

1

2
‖x− a‖22,

which has a unique local minimum at x = a. Also, at x = a, DU = (x1 −
a1, . . . , xn − an) = x− a, and the homotopy, as constructed in (3.11), is
therefore

H(x, t) = (1− t)(x− a) + tDV (x)

which is precisely the fixed point homotopy (3.1) applied to solving the
nonlinear system DV (x) = 0. If the solution curve defined by H(x, t) = 0
never encounters any turning points, then the Morse-index of the critical
point is preserved along the curved. Since the starting point x = a at t = 0
is the unique local minimum (with Morse-index 0), the resulting solution of
the target system DV (x) = H(x, 1) = 0 must therefore be a local minimum
of V (x).

More generally, for any desired Morse-index m with 0 ≤ m ≤ n, one may
construct the starting objective function

U = −1

2
(x1 − a1)2 − · · · − 1

2
(xm − am)2

+
1

2
(xm+1 − am+1)2 + · · ·+ 1

2
(xn − an)2.

Clearly, x = a is the unique critical point of U and its Morse-index is m.
Consequently, the homotopy (3.11) (defined with this choice of U as the
starting objective function) can then locate a critical point of Morse-index
m if the solution curve reaches the hyperplane at t = 1 without encountering
a turning point. General homotopy constructions exploiting this feature have
been studied in [2, 6].
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Remark 3.11. Though the procedure described above requires the solution
curve to never encounter a turning point in order to preserve the Morse-
index. Computational experiments [19] suggests that the Morse-index may
be preserved under much more relaxed conditions.

4. Homotopy continuation methods for finding all
isolated complex solutions of polynomial systems

Though homotopy continuation methods in numerical computation were
first developed as tools for finding solutions to nonlinear systems of equa-
tions, in late 1970s’ Garcia and Zangwill [33] as well as Drexler [25] indepen-
dently presented theorems suggesting that homotopy continuation methods
could be used to find the full set of isolated zeros of polynomial systems
numerically. Finding solutions of polynomial systems is a classical prob-
lem that has occupied a special place in mathematics over its long history.
Moreover, this is an area where numerical computations arise almost natu-
rally since by Galois theory explicit formulas for the solutions are unlikely
to exist. To deal with this problem, the homotopy continuation method has
attracted a considerable attention in the last few decades. It has been deeply
developed and proved to be a reliable and efficient numerical algorithm for
approximating all isolated zeros of polynomial systems and identifying pos-
itive dimensional solutions sets with their degrees.

This part of the article will focus on the methods for finding all isolated
solutions of system of polynomial equations, or polynomial systems, rather
than finding one or some solutions as in the real cases discussed in previ-
ous sections. Obviously, to have any hope for finding all the solutions, the
working framework must be in the complex spaces.

4.1. An important feature of the homotopy
constructed in Cn

For complex space C, C[x1, . . . , xn] denotes the set of all polynomials in the
n variables x1, . . . , xn with complex coefficients, which forms a commutative
ring under polynomial addition and multiplication. Given a system of n poly-
nomials P = (p1, . . . , pn) where pi ∈ C[x1, . . . , xn] for i = 1, . . . , n, to find all
isolated solutions x = (x1, . . . , xn) ∈ Cn to the system of n equations P (x) =
0, we construct, as before, a smooth homotopy H(x, t) : Cn × [0, 1]→ Cn to
deform P to a polynomial system G = (g1, . . . , gn) where gi ∈ C[x1, . . . , xn]
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for i = 1, . . . , n having known (or easily found) zeros, namely,

H(x, 0) = G(x) and H(x, 1) = P (x).

By identifying Cn with R2n via the map

(4.1) (z1, . . . , zn) 7→ (Re z1, Im z1, . . . ,Re zn, Im zn),

H can be considered as a map from R2n × [0, 1] to R2n. With this inter-
pretation, we still say 0 ∈ Cn is a regular value of H, or H is regular, if
the Jacobian matrix DH(x, t) ∈M2n×2n+1(R) with respect to both x and
t is of rank 2n for all (x, t) ∈ R2n × [0, 1] satisfying H(x, t) = 0. When 0
is a regular value of H, then H(x, t) = 0 defines (disjoint) smooth solution
curves in R2n+1, and any curve γ ⊂ Cn × [0, 1] defined by the homotopy
H(x, t) = 0 can be parametrized by the arc length s. In the content of solv-
ing polynomial systems in Cn, there is a special feature that has a profound
effect which will significantly alter the choices of the underlying numerical
methods. We will show below that for any point on the smooth homotopy
curve (x(s), t(s)) of H(x, t) = 0 parametrized by the arc length s, dt

ds is
always nonzero, and therefore dt

ds > 0. Meaning: those curves do not “turn
back in t”. In other words, they extend across the interval 0 ≤ t < 1 and
can always be parametrized by t. Accordingly, standard procedures in trac-
ing general homotopy paths need to be adjusted to capitalize this special
feature.

Lemma 4.1. Regard the n× n complex matrix M as a linear transforma-
tion of complex variables (x1, . . . , xn) in Cn into itself. If this transforma-
tion is regarded as one on the space R2n of real variables (u1, v1, . . . , un, vn)
where xj = uj + i vj , j = 1, . . . , n, (here, i =

√
−1) and is represented by the

2n× 2n real matrix N then

detN =
∣∣ detM

∣∣2 ≥ 0

and

dimR(kerN) = 2× dimC(kerM) is even.

Here, dimR and dimC refer to real and complex dimension respectively.

Proof. The relation between M and N is the following: if the (j, k)-entry
of M is the complex number mjk = ξjk + i ηjk, and N is written in block
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form as an n× n array of 2× 2 blocks, then the (j, k)-block of N is the real
matrix (

ξjk −ηjk
ηjk ξjk

)
.

Denote this relation by α(M) = N . It is clear that α(AB) = α(A)α(B) for
complex matrices A and B, and α(A−1) = α(A)−1.

Now when M is upper triangular, the assertion is immediate. For general
M , there exists complex nonsingular matrix A for which A−1MA is upper
triangular. Because

α(A−1MA) = α(A−1)α(M)α(A) = α(A)−1Nα(A),

we have

det(α(A−1MA)) = det(α(A))−1 × detN × det(α(A)) = detN.

The assertion holds, since

det(α(A−1MA)) =
∣∣ det(A−1MA)

∣∣2 =
∣∣ detM

∣∣2. �

Proposition 4.2. If (x0, t0) is a point on any smooth homotopy paths
(x(s), t(s)) of the homotopy H(x, t) = 0 defined on Cn × [0, 1] with t0 ∈
[0, 1), then Hx(x0, t0) is nonsingular. Hence,

dt

ds
6= 0 at (x0, t0).

Proof. Regard H as a map from R2n × R to R2n. Since the 2n× (2n+ 1)
Jacobian matrix DH = [Hx, Ht] must be of full rank at (x0, t0) (otherwise it
would be a bifurcation point [5]), its kernel is at most one-dimensional. By
the above lemma, the matrix Hx must have zero kernel, so it is nonsingular.

Hence,
dt

ds
6= 0 at (x0, t0), because

Hx
dx

ds
+Ht

dt

ds
= 0. �

4.2. Path tracking in Cn

So, homotopy paths defined by H(x, t) = 0 in Cn × [0, 1] can always be
parametrized by t. Let x(t), 0 ≤ t ≤ 1, be a path in Cn satisfying the homo-
topy equation H(x, t) = 0, namely,

(4.2) H(x(t), t) = 0 0 ≤ t ≤ 1.
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In the following, we shall denote
dx

dt
by x′(t). Now, differentiating (4.2)

with respect to t yields

Hxx′(t) +Ht = 0 0 ≤ t ≤ 1,

or

(4.3) x′(t) = −H−1
x Ht 0 ≤ t ≤ 1.

This ordinary differential equation is commonly known as the Davidenko
differential equation [24], which forms the basis of the numerical path track-
ing algorithms with which one can trace a solution path of the homotopy
equation (4.2) from its starting point. While any numerical ordinary differ-
ential equation solver can, in principle, be applied to Equation (4.3) and thus
be used for path tracking, just like in the real curve tracing discussed in §2
a special class of predictor-corrector method is generally preferred. In such
a scheme, an efficient but potentially inaccurate “predictor” accounts for
producing a rough estimate of the next point on the path using the informa-
tion of known points on the path. Then a series of Newton-like “corrector”
iterations is employed to bring the point back to the path approximately.

One of the most basic predictor-corrector configuration is the duet of
Euler’s method with Newton’s iterations. For a fixed 0 ≤ t0 < 1, to proceed
from a point x(t0) that is approximately on the path x(t), one takes the
following steps:

• Euler Prediction:

For an adaptive step size δ > 0, let t1 = t0 + δ < 1 and

(4.4) x̃(t1) = x(t0) + δ x′(t0).

• Newton’s Correction:

For fixed t1, H(x, t1) = 0 becomes a system of n equations in n un-
knowns. So, Newton’s iteration can then be employed to solve the
solution of H(x, t1) = 0 with starting point x̃(t1), i.e.,

(4.5) x(m+1) = x(m) − [Hx(x(m), t1)]−1H(x(m), t1), m = 0, 1, . . .

with x(0) = x̃(t1). When the iteration fails to converge, the prediction
step will be repeat with δ ← δ

2 . Eventually, an approximate value of
x(t1) can be determined until certain stopping criteria are met
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5. Complex linear homotopies

Let P (x) = (p1(x), . . . , pn(x)) = 0 be a system of n polynomial equations in
n unknowns x = (x1, . . . , xn), we want to find all isolated solutions of

(5.1)

p1(x1, . . . , xn) = 0,

...

pn(x1, . . . , xn) = 0

in Cn. In the early stage, the homotopy continuation method for solving
(5.1) is to define a trivial system Q(x) = (q1(x), . . . , qn(x)) = 0 and then
follow the curves in the real variable t which make up the solution set of

H(x, t) = (1− t)Q(x) + tP (x) = 0.(5.2)

More precisely, if Q(x) = 0 is chosen correctly, the following three properties
hold:

Property 0 (Triviality): The solutions of Q(x) = 0 are known.

Property 1 (Smoothness): The solution set ofH(x, t) = 0 for 0 ≤ t <
1 consists of a finite number of smooth paths, each parametrized by t
in [0, 1).

Property 2 (Accessibility): Every isolated solution of H(x, 1) =
P (x) = 0 can be reached by some path originating at t = 0. It fol-
lows that this path starts at a solution of H(x, 0) = Q(x) = 0.

When the three properties hold, the solution paths can be traced from the
initial points (known because of property 0) at t = 0 to all solutions of the
original problem P (x) = 0 at t = 1 using standard numerical techniques
(Prediction-Correction steps given in the last section for instance).

Several authors have suggested choices of Q(x) that satisfy the three
properties (See [21, 57, 79, 115, 117] for a partial list). A typical suggestion
is

q1(x) = a1x
d1
1 − b1,

...(5.3)

qn(x) = anx
dn
n − bn,

where d1, . . . , dn are the degrees of p1(x), . . . , pn(x) respectively and aj , bj
are random complex numbers (and therefore nonzero with probability one).
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So in one sense, the original problem we posed is solved. All isolated solu-
tions of P (x) = 0 are found at the end of the d1 × · · · × dn paths that make
up the solution set of H(x, t) = 0, 0 ≤ t < 1. The number d1 × · · · × dn is
commonly known as the total degree or the Bézout number of the system.
Sometimes it is regarded as the expected number of isolated solutions.

The book by A. Morgan [80] detailed many aspects of the above approach.
A major part of this section will focus on the development afterwards that
makes this method more convenient to apply.

The reason the problem is not satisfactorily solved by the above con-
struction is the existence of extraneous paths. Although the above method
produces d := d1 × · · · × dn paths, the system P (x) = 0 may have fewer than
d isolated solutions (even counting multiplicity). We call such a system defi-
cient. In this case, some of the paths produced by the above method will be
extraneous paths.

t = 0 t = 1

Figure 11. Extraneous homotopy paths may diverge to infinity

More precisely, even though Properties 0-2 imply that each isolated solu-
tion of P (x) = 0 will lie at the end of a solution path, it is also consistent
with those properties that some of the paths may diverge to infinity as
the parameter t approaches 1 (the smoothness property rules this out for
t→ t0 < 1). In other words, it is quite possible for Q(x) = 0 to have more
isolated solutions than P (x) = 0. In this case, some of the paths leading
from roots of Q(x) = 0 are extraneous, and diverge to infinity when t→ 1
(see Figure 11). Empirically, we find that most systems arising in applica-
tions are deficient. A great majority of the systems have fewer than, and in
some cases only a small fraction of, the “expected number ” of solutions.
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For a typical example of this sort, let’s look at the following famous Cassou-
Noguès system [65]

(5.4)

p1 = 15b4cd2 + 6b4c3 + 21b4c2d− 144b2c− 8b2c2e− 28b2cde

− 648b2d+ 36b2d2e+ 9b4d3 − 120,

p2 = 30b4c3d− 32cde2 − 720b2cd− 24b2c3e− 432b2c2 + 576ce

− 576de+ 16b2cd2e+ 16d2e2 + 16c2e2 + 9b4c4 + 39b4c2d2

+ 18b4cd3 − 432b2d2 + 24b2d3e− 16b2c2de− 240c+ 5184,

p3 = 216b2cd− 162b2d2 − 81b2c2 + 1008ce− 1008de+ 15b2c2de

− 15b2c3e− 80cde2 + 40d2e2 + 40c2e2 + 5184,

p4 = 4b2cd− 3b2d2 − 4b2c2 + 22ce− 22de+ 261.

Since d1 = 7, d2 = 8, d3 = 6 and d4 = 4 for this system, the system Q(x)
in (5.3) will produce d1 × d2 × d3 × d4 = 7× 8× 6× 4 = 1344 paths for the
homotopy in (5.2). However, the system (5.4) has only 16 isolated zeros.
Consequently, a major fraction of the paths are extraneous. Sending out
1344 paths in search of 16 solutions is a highly wasteful computation.

The choice of Q(x) in (5.3) to solve the system P (x) = 0 requires an
amount of computational effort proportional to d1 × · · · × dn and roughly,
proportional to the size of the system. We would like to derive methods
for solving deficient systems for which the computational effort is instead
proportional to the actual number of isolated solutions.

For deficient systems, there are some partial results that use algebraic
geometry to reduce the number of extraneous paths with various degrees of
success.

5.1. Random product homotopy

For a specific example that is quite simple, consider the algebraic eigenvalue
problem,

Ax = λx

where

A =

 a11 · · · a1n
...
an1 · · · ann


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is an n× n matrix. This problem is actually an n polynomial equations in
the n+ 1 variables λ, x1, . . . , xn:

(5.5)

p1 = λx1 − (a11x1 + · · ·+ a1nxn) = 0

...

pn = λxn − (an1x1 + · · ·+ annxn) = 0.

Augmenting the system with a linear equation

pn+1 = c1x1 + · · ·+ cnxn + cn+1 = 0

where c1, . . . , cn+1 are chosen at random, we have a polynomial system of
n+ 1 equations in n+ 1 variables. Write y = (λ,x) = (λ, x1, . . . , xn). This
system has total degree 2n. Thus the “expected number of solutions” is
2n, and the classical homotopy continuation method using the start sys-
tem Q(y) = 0 in (5.3) sends out 2n paths from 2n trivial starting points.
However, the system P (y) = (p1(y), . . . , pn+1(y)) = 0 has only n isolated
solutions (even fewer for special choices of coefficients). This is a deficient
system, at least 2n − n paths will be extraneous. It is never known from the
start which of the paths will end up to be extraneous, so they must all be
followed to the end, representing wasted computation.

The random product homotopy was developed in [61, 62] to alleviate
this problem. According to that technique, a more efficient choice for the
trivial system Q(y) = 0 is

(5.6)

q1 = (λ+ e11)(x1 + e12)

q2 = (λ+ e21)(x2 + e22)

...

qn = (λ+ en1)(xn + en2)

qn+1 = c1x1 + · · ·+ cnxn + cn+1

where complex numbers eij for i = 1, . . . , n, j = 1, 2 and ck, k = 1, . . . , n+ 1
are generically chosen. Set

H(y, t) = (1− t) cQ(y) + tP (y) for generic c ∈ C.

It is clear by inspection that Q(y) = 0 has exactly n roots. Thus there
are only n paths starting from n starting points for this choice of homotopy.
Moreover, it is proved in [62] that Properties 0-2 hold for almost all complex
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numbers eij and c. Thus all solutions of P (y) = 0 are found at the end of
the n paths. The result of [62] is then a mathematical result (that there can
be at most n solutions to (5.5)) and the basis of a numerical procedure for
approximating the solutions.

The reason this works is quite simple. The solution paths of (5.2) which
do not proceed to a solution of P (y) = 0 in Cn+1 diverge to infinity. If the
system (5.2) is viewed in projective space

CPn = {(x0, . . . , xn) ∈ Cn+1\(0, . . . , 0)}/ ∼

where the equivalent relation “∼” is given by x ∼ y if x = cy for some
nonzero c ∈ C, the diverging paths simply converge to a “point at infinity”
in CPn.

For a polynomial f(x1, . . . , xn) of degree d, denote its associated homo-
geneous polynomial by

f̃(x0, x1, . . . , xn) = xd0 f

(
x1

x0
, . . . ,

xn
x0

)
.

The solutions of f(x) = 0 “at infinity” are those zeros of f̃ in CPn with
x0 = 0 and the remaining zeros of f̃ with x0 6= 0 are the solutions of f(x) = 0
in Cn when x0 is set to be 1.

Viewed in projective space CPn+1 the system P (y) = 0 in (5.5) has
some roots at infinity. The roots at infinity make up a nonsingular variety,
specifically the linear space CPn−2 defined by x0 = λ = 0 and c1x1 + · · ·+
cnxn = 0. A Chern class formula from intersection theory ([28], 9.1.1, 9.1.2)
shows that the contribution of a linear variety of solutions of dimension e to
the “total degree” d1 × · · · × dn, or the total expected number of solutions,
of the system is at least s, where s is the coefficient of te in the Maclaurin
series expansion of

(1 + t)e−n
n∏
j=1

(1 + djt).

In our case, d1 = · · · = dn = 2, dn+1 = 1, and e = n− 2, hence,

(1 + 2t)n(1 + t)

(1 + t)3
=

(1 + t+ t)n

(1 + t)2
=

∑n
j=0(1 + t)n−jtj

(
n
j

)
(1 + t)2

=

n∑
j=0

(1 + t)n−j−2tj
(
n

j

)
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and s =
∑n−2

j=0

(
n
j

)
, meaning there are at least

∑n−2
j=0

(
n
j

)
solutions of P (y) =

0 at infinity. In addition, there is an isolated solution x0 = x1 = · · · = xn =
0, λ = 1 at infinity. Thus there are at most

2n − s− 1 = (1 + 1)n −
n−2∑
j=0

(
n

j

)
− 1 = n

solutions of P (λ, x1, . . . , xn) = 0 in Cn+1. The system Q(λ, x1, . . . , xn) = 0
is chosen to have the same nonsingular variety at infinity, and this variety
stays at infinity as the homotopy progresses from t = 0 to t = 1. As a result,
the infinity solutions stay infinite, the finite solution paths stay finite, and
no extraneous paths exist.

This turns out to be a fairly typical situation. Even though the sys-
tem P (x) = 0 to be solved has isolated solutions, when viewed in projective
space there may be a large number of roots at infinity and quite often high-
dimensional manifolds of roots at infinity. Extraneous paths are those that
are drawn to the manifolds lying at infinity. If Q(x) = 0 can be chosen cor-
rectly, extraneous paths can be eliminated. To be more precise, we state the
main random product homotopy result, Theorem 2.2 of [62]. Let V∞(Q) and
V∞(P ) denote the zeros “at infinity” of Q(x) = 0 and P (x) = 0 respectively.

Theorem 5.1. If V∞(Q) is nonsingular and contained in V∞(P ), then
Properties 1 and 2 hold.

Of course, Properties 1 and 2 are not enough. Without starting points,
the path-tracing method cannot get started. Thus Q(x) = 0 should also be
chosen to be of random product forms, as in (5.6), which are trivial to solve
because of their form.

This result was superseded by the result in [60]. The complex numbers
eij are chosen at random in [62] to ensure Properties 1 and 2. In [60], it was
proved that eij can be any fixed numbers, as long as the complex number c
is chosen at random, Properties 1 and 2 still hold. In fact, the result in [60]
implies that the start system Q(x) = 0 in the above theorem need not be in
product form. It can be any chosen polynomial system as long as its zeros
in Cn are known or easy to obtain and its variety of roots at infinity V∞(Q)
is nonsingular and contained in V∞(P ).

Theorem 2.1 in [68] goes one step further. Even when the set V∞(Q) of
roots at infinity ofQ(x) = 0 has singularities, if the set is contained in V∞(P )
counting multiplicities, that is, containment in the sense of scheme theory
of algebraic geometry, then Properties 1 and 2 still hold. More precisely, let
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I = 〈q̃1, . . . , q̃n〉 and J = 〈p̃1, . . . , p̃n〉 be the homogeneous ideals spanned by
homogenizations of qi’s and pi’s respectively. For a point p at infinity, if the
local rings Ip and Jp satisfy

Ip ⊂ Jp
then Properties 1 and 2 hold. However, this hypothesis can be much more
difficult to verify than whether the set is nonsingular. This limits the use-
fulness of this approach for practical examples.

5.2. m-Homogeneous structure

In [81], another interesting approach to reduce the number of extrane-
ous paths is developed, using the concept of multi-homogeneous, or m-
homogeneous for short, structures.

The complex n-space Cn can be naturally embedded in the projective
space CPn. Similarly, the space Ck1 × · · · × Ckm can be naturally embed-
ded in CPk1 × · · · × CPkm . A point (y1, . . . ,ym) in Ck1 × · · · × Ckm with

yj = (y
(j)
1 , . . . , y

(j)
kj

), for j = 1, . . . ,m, corresponds to a point (z1, . . . , zm) in

CPk1 × · · · × CPkm with zj = (z
(j)
0 , . . . , z

(j)
kj

) and z
(j)
0 = 1 for all j = 1, . . . ,m.

The set of such points in CPk1 × · · · × CPkm is usually called the affine space

in this setting. The points in CPk1 × · · · × CPkm with at least one z
(j)
0 = 0

are called the points at infinity.
Let f be a polynomial in the n variables x1, . . . , xn. If we partition

the variables into m groups y1 = (x
(1)
1 , . . . , x

(1)
k1

), y2 = (x
(2)
1 , . . . , x

(2)
k2

), . . . ,

ym = (x
(m)
1 , . . . , x

(m)
km

) with k1 + · · ·+ km = n and let di be the degree of f
with respect to yi (more precisely, to the variables in yi), then we can define
its m-homogenization as

f̃(z1, . . . , zm) = (z
(1)
0 )d1 × · · · × (z

(m)
0 )dmf(y1/z

(1)
0 , . . . ,ym/z

(m)
0 ).

This polynomial is homogeneous with respect to each group of variables

zj = (z
(j)
0 , . . . , z

(j)
kj

), for j = 1, . . . ,m. Here z
(j)
i = x

(j)
i , for i 6= 0. Such a poly-

nomial is said to be m-homogeneous with respect to the partition of the
variables, and the tuple (d1, . . . , dm) is called the m-homogeneous degree of
f . To illustrate this definition, let us look at the polynomial system

(5.7)

p1(x) = x1(a11x1 + · · ·+ a1nxn) + b11x1 + · · ·+ b1nxn + c1 = 0

...

pn(x) = x1(an1x1 + · · ·+ annxn) + bn1x1 + · · ·+ bnnxn + cn = 0.
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This system has total degree d = d1 · · · dn = 2n. Thus the “expected number
of solutions” is 2n, and the classical homotopy continuation method using
the start system Q(x) = 0 in (5.3) sends out 2n paths from 2n trivial starting
points. However, the system P (x) = 0 has at most n+ 1 isolated solutions.
This is a deficient system, at least 2n − n− 1 paths will be extraneous.

Now, if we consider the partition of variables y1 = (x1), y2 = (x2, . . . , xn)

and z1 = (x
(1)
0 , x1), z2 = (x

(2)
0 , x2, . . . , xn), then for j = 1, . . . , n, the degree

of

pj(x) = x1(aj1x1 + · · ·+ ajnxn) + bj1x1 + · · ·+ bjnxn + cj

= aj1x
2
1 + x1(aj2x2 + · · ·+ ajnxn + bj1)

+ bj2x2 + · · ·+ bjnxn + cj .

is 2 with respect to y1 and is 1 with respect to y2. Hence, its 2-homogenization
is

p̃j(z1, z2) = aj1x
2
1x

(2)
0 + x1x

(1)
0 (aj2x2 + · · ·+ ajnxn + bj1x

(2)
0 )

+ (x
(1)
0 )2(bj2x2 + · · ·+ bjnxn + cjx

(2)
0 ),

which is homogeneous with respect to both z1 = (x
(1)
0 , x1) and z2 = (x

(2)
0 ,

x2, . . . , xn). When the system (5.7) is viewed in CPn with the homogeniza-
tion

p̃1(x0, x1, . . . , xn) = x1(a11x1 + · · ·+ a1nxn)

+ (b11x1 + · · ·+ b1nxn)x0 + c1x
2
0

= 0,

...

p̃n(x0, x1, . . . , xn) = x1(an1x1 + · · ·+ annxn)

+ (bn1x1 + · · ·+ bnnxn)x0 + cnx
2
0

= 0,

its total degree, or the Bézout number, is d = d1 × · · · × dn = 2n. However,

when (5.7) is viewed in CP1 × CPn−1 = {(z1, z2) = ((x
(1)
0 , x1), (x

(2)
0 , x2, . . . ,

xn)) where z1 = (x
(1)
0 , x1) ∈ CP1 and z2 = (x

(2)
0 , x2, . . . , xn) ∈ CPn−1} with
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2-homogenization

(5.8)

p̃1(z1, z2) = a11x
2
1x

(2)
0 + x1x

(1)
0 (a12x2 + · · ·+ a1nxn + b11x

(2)
0 )

+ (x
(1)
0 )2(b12x2 + · · ·+ b1nxn + c1x

(2)
0 ),

...

p̃n(z1, z2) = an1x
2
1x

(2)
0 + x1x

(1)
0 (an2x2 + · · ·+ annxn + bn1x

(2)
0 )

+ (x
(1)
0 )2(bn2x2 + · · ·+ bnnxn + cnx

(2)
0 ),

the Bézout number will be different. It is defined to be the coefficient of
α1

1α
n−1
2 in the product (2α1 + α2)n, which is equal to 2n.
In general, for an m-homogeneous system

(5.9)

p̃1(z1, . . . , zm) = 0,

...

p̃n(z1, . . . , zm) = 0,

in CPk1 × · · · × CPkm where p̃j has m-homogeneous degree (d
(j)
1 , . . . , d

(j)
m )

with respect to (z1, . . . , zm) for j = 1, . . . , n, then them-homogeneous Bézout
number [95] d of the system with respect to (z1, . . . , zm) is the coefficient of
αk11 × · · · × αkmm in the product

(5.10)
(d

(1)
1 α1 + · · ·+ d(1)

m αm)(d
(2)
1 α1 + · · ·+ d(2)

m αm)

· · · (d(n)
1 α1 + · · ·+ d(n)

m αm).

The classical Bézout Theorem says the system (5.9) has no more than d
isolated solutions, counting multiplicities, in CPk1 × · · · × CPkm . Applying
this to our example in (5.8), the upper bound on the number of isolated
solutions, in affine space and at infinity, is 2n. When solving the original
system in (5.7), we may choose the start system Q(x) = 0 in the homotopy

H(x, t) = (1− t) cQ(x) + tP (x)



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 162 — #44 i
i

i
i

i
i

162 T.-R. Chen and T.-Y. Li

in random product form to respect the 2-homogeneous structure of P (x).
For instance, we may choose Q(x) = (q1(x), . . . , qn(x)) to be

(5.11)

q1(x) = (x1 + e11)(x1 + e12)(x2 + · · ·+ xn + e13),

q2(x) = (x1 + e21)(x1 + e22)(x2 + e23),

...

qn(x) = (x1 + en1)(x1 + en2)(xn + en3),

which has the same 2-homogeneous structure as P (x) with respect to the
partition y1 = (x1) and y2 = (x2, . . . , xn). Namely, for each j, qj(x) has
degree 2 with respect to y1 and degree one with respect to y2. It is easy to see
by inspection that for randomly chosen complex numbers eij , Q(x) = 0 has
2n solutions in Cn = C1 × Cn−1 (thus, no solutions at infinity when viewed
in CP1 × CPn−1). Hence there are 2n paths starting from 2n starting points
for this choice of the homotopy. It was shown in [81] that Properties 1 and
2 hold for all complex number c except those lying on a finite number of
rays starting at the origin. Thus, all solutions of P (x) = 0 are found at the
end of n+ 1 paths. The number of extraneous paths, 2n− (n+ 1) = n− 1,
is far less than the number of extraneous paths, 2n − n− 1, by using the
classical homotopy with Q(x) = 0 in (5.3).

More precisely, we state the main theorem in [81].

Theorem 5.2. Let Q(x) be a system of polynomials chosen to have the
same m-homogeneous form as P (x) with respect to certain partition of the
variables (x1, . . . , xn). Assume Q(x) = 0 has exactly the Bézout number of
nonsingular solutions with respect to this partition, and let

H(x, t) = (1− t) cQ(x) + tP (x)

where t ∈ [0, 1] and c ∈ C∗ = C \ {0}. If c = reiθ for some positive r ∈ R,
then for all but finitely many θ ∈ [0, 2π], Properties 1 and 2 hold.

Notice that when the number of nonsingular isolated zeros of Q(x),
having the same m-homogeneous structure of P (x) with respect to a given
partition of variables (x1, . . . , xn), reaches the corresponding Bézout number,
then no other solutions of Q(x) = 0 exist in affine space.

In general, if x = (x1, . . . , xn) is partitioned into x = (y1, . . . ,ym) where

y1 = (x
(1)
1 , . . . , x

(1)
k1

), y2 = (x
(2)
1 , . . . , x

(2)
k2

), . . . , ym = (x
(m)
1 , . . . , x

(m)
km

)
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with k1+ · · ·+km=n, and for polynomial system P (x) = (p1(x), . . . , pn(x))

where pj(x) has degree (d
(j)
1 , . . . , d

(j)
m ) with respect to (y1, . . . ,ym) for j=

1, . . . , n, we may choose the start system Q(x) = (q1(x), . . . , qn(x)) where

(5.12) qj(x) =

m∏
i=1

d
(j)
i∏
l=1

(c
(i)
l1 x

(i)
1 + · · ·+ c

(i)
lki
x

(i)
ki

+ c
(i)
l0 ), j = 1, . . . , n.

Clearly, for each j, qj(x) has degree (d
(j)
1 , . . . , d

(j)
m ) with respect to (y1, . . . ,

ym), the same degree structure of pj(x). Furthermore, it is not hard to
see that, for generic coefficients Q(x) has exactly m-homogeneous Bézout
number, with respect to this particular partition x = (y1, . . . ,ym), of non-
singular isolated zeros in Cn. They are easy to obtain. In fact, the system
Q(x) in (5.11) is constructed according to this principle. In [113], the product
in (5.12) is modified along the same line to be more efficient to evaluate.

As mentioned earlier, solving system in (5.7) with the start system Q(x)
in (5.11), there are still n− 1 extraneous paths for the homotopy. This is
because, even when viewed in CP1 × CPn−1, P (x) has zeros at infinity. One
can see in (5.8) that

S =
{

((x
(1)
0 , x1), (x

(2)
0 , x2, . . . , xn)) ∈ CP1 × CPn−1 | x(1)

0 = 0, x
(2)
0 = 0

}
is a set of zeros of P (x) at infinity. So, to lower the number of those extra-
neous paths further, we may choose the start system Q(x) to have the same
nonsingular variety of zeros at infinity S as P (x) does, in addition to shar-
ing the same 2-homogeneous structure of P (x). For instance, the system
Q(x) = (q1(x), . . . , qn(x)) where

q1(x) = (x1 + e11)(x1 + x2 + · · ·+ xn + e12),

q2(x) = (x1 + e21)(x1 + x2 + e22),

...

qn(x) = (x1 + en1)(x1 + xn + en2)

shares the same 2-homogeneous structure of P (x) with y1 = (x1) and y2 =
(x2, . . . , xn), namely, for each j, qj(x) has degree two with respect to y1

and degree one with respect to y2. On the other hand, when viewed in

(z1, z2) ∈ CP1 × CPn−1 with z1 = (x
(1)
0 , x1) and z2 = (x

(2)
0 , x2, . . . , xn), this

system has the same nonsingular variety S of zeros at infinity as P (x). The
system Q(x) = 0 also has n+ 1 solutions in Cn for generic eji’s, and there
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will be no extraneous paths. It can be shown [68, 81] that if Q(x) = 0 in

H(x, t) = (1− t)cQ(x) + tP (x)

is chosen to have the same m-homogeneous form as P (x) and the set of zeros
at infinity V∞(Q) of Q(x) is nonsingular and contained in V∞(P ), the set of
zeros at infinity of P (x), then for c = reiθ for some positive r ∈ R and for
all but finitely many θ, Properties 1 and 2 hold.

Most often the zeros at infinity of an m-homogeneous polynomial system
P̃ (z1, . . . , zm) in CPk1 × · · · × CPkm is hard to identify. Nevertheless, the
choice of Q(x) = 0 in (5.12), having no zeros at infinity regardless of the
structure of the zeros at infinity of P (x), can still reduce the number of
extraneous paths dramatically by simply sharing the same m-homogeneous
structure of P (x) only.

Let us look at the system

p1(x) = x1(a11x1 + · · ·+ a1nxn) + b11x1 + · · ·+ b1nxn + c1 = 0,

...

pn(x) = x1(an1x1 + · · ·+ annxn) + bn1x1 + · · ·+ bnnxn + cn = 0,

in (5.7) again. This time we partition the variables x1, . . . , xn into y1 =
(x1, x2) and y2 = (x3, . . . , xn). For this partition, the 2-homogeneous degree
structure of pj(x) stays the same, namely, the degree of pj(x) is two with
respect to y1 and is one with respect to y2. However, the Bézout number with
respect to this partition becomes the coefficient of α2

1α
n−2
2 in the product

(2α1 + α2)n according to (5.10). This number is(
n
2

)
× 22 = 2n(n− 1),

which is greater than the original Bézout number 2n with respect to the
partition y1 = (x1) and y2 = (x2, . . . , xn) when n > 2. If the start system
Q(x) is chosen to have the same m-homogeneous structure of P (x) with
respect to this partition, then, assuming Q(x) has no zeros at infinity, we
need to follow 2n(n− 1) paths to find all n+ 1 isolated zeros of P (x). This
represents a much bigger amount of extraneous paths.

Apparently, the m-homogeneous Bézout number is highly sensitive to
the chosen partition: different ways of partitioning the variables produce
different Bézout numbers. By using Theorem 5.2, we usually trace the Bézout
number (with respect to the chosen partition of variables) of paths to obtain



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 165 — #47 i
i

i
i

i
i

Homotopy continuation method 165

all the isolated zeros of P (x). In order to minimize the number of paths need
to be traced and hence avoid more extraneous paths, it’s critically important
to find a partition which provides the lowest Bézout number possible. In
[112], an algorithm for this purpose was given. By using this algorithm one
can determine, for example, the partition P = {(b), (c, d, e)} which gives the
lowest possible Bézout number 368 for the Cassou-Nogues system in (5.4).
Consequently, we may construct a random product start system Q(x), as
in (5.12) for instance, to respect the degree structure of the Cassou-Nogues
system with respect to this partition. The start system Q(x) will have 368
isolated zeros in Cn, and, according to Theorem 2.2, only 368 homotopy
paths need to be followed to obtain all 16 isolated zeros of the system,
in contrast to following 1344 paths if we choose the start system Q(x) as
in (5.3).

In the remainder of this section, we shall elaborate the algorithm given in
[112] designed to search for a partition of variables which provides the lowest
corresponding m-homogeneous Bézout number of a polynomial system.

First of all, we need a systematic listing of all the possible partitions of
the variables {x1, . . . , xn}. This can be obtained via considering the refor-
mulated problem: how many different ways are there to partition n distinct
items into m identical boxes for m = 1, . . . , n? Denote those numbers by
g(n,m), m = 1, . . . , n. Clearly, we have g(n, n) = 1 and g(n, 1) = 1. Fur-
thermore, the recursive relation

g(n,m) = m× g(n− 1,m) + g(n− 1,m− 1)

holds, because for each of the g(n− 1,m) partitions of n− 1 items, we may
add the nth item to any one of m boxes, plus for each of the g(n− 1,m− 1)
partitions of n− 1 items into m− 1 boxes we can only put the nth item in
the mth box by itself. The numbers g(n,m) are known as Stirling numbers
of the second kind [93].

For a given partition y1 = (x
(1)
1 , . . . , x

(1)
k1

), . . . ,ym = (x
(m)
1 , . . . x

(m)
km

) of
the variables {x1, . . . , xn} of a polynomial system P (x) = (p1(x), . . . , pn(x))
where k1 + · · ·+ km = n and

dij = degree of pi with respect to yj ,

straightforward application of the definition given in (5.10) to compute the
Bézout number, (namely, expanding the product and finding the appropri-
ate coefficient), does not lead to an efficient algorithm except in the most
simplest cases. A simpler approach is given below.
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First of all, it’s easy to see that the definition of the Bézout number given
in (5.10) can be restated as: the Bézout number is the sum of all products
of the form

d1`1 × d2`2 × · · · × dn`n
where among `1, . . . , `n each integer j = 1, . . . ,m appears exactly kj times.
That is, in the degree matrix

(5.13) D =

 d11 · · · d1m
...

. . .
...

dn1 · · · dnm


we sum degree products over all possible ways to choose each row once
while choosing kj entries from each column j. Thus, to calculate the Bézout
number, we may enumerate the permissible combinations, form the cor-
responding degree products, and add them up. Since many of the degree
products contain common factors, we may reduce the number of multiples
by a method resembling the evaluation of a determinant via expansion by
minors, either down the column or across the rows. The row expansion is
generally more efficient, so we shall present only this alternative.

For partition vector K = [k1, . . . , km], consider forming degree products
in degree matrix D in (5.13) as follows. First, in row 1 of D, suppose we
choose element d1j . Then to complete the degree product we must choose
one element from each of the remaining rows while only kj − 1 elements
from the jth column are included. So, a minor corresponding to d1j is
derived by deleting row 1 of D and decrementing kj by 1. This minor
has the corresponding Bézout number in its own right, with respect to the
partition vector K ′ = [k1, . . . , kj−1, kj − 1, kj+1, . . . , km]. The row expansion
algorithm for the Bézout number of degree matrix D with respect to the
partition vector K = [k1, . . . , km] is to compute the sum along the first row
of each d1j(kj > 0) times the Bézout number of the corresponding minor.
The Bézout number of each minor is then computed recursively by the same
row expansion procedure.

More precisely, let b(D, K̄, i) be the Bézout number of the degree matrix

Di =

di1 · · · dim
...

. . .
...

dn1 · · · dnm


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consisted of the last n− i+ 1 rows of D in (5.13), with respect to the par-
tition vector K̄ = [k̄1, . . . , k̄m]. Here, of course, k̄1 + · · ·+ k̄m = n− i+ 1.
Let M(K̄, j) be the partition vector derived by decrementing k̄j in K̄ by 1,
namely,

M(K̄, j) = [k̄1, . . . , k̄j−1, k̄j − 1, k̄j+1, . . . , k̄m].

With the convention b(D, K̄, n+ 1) := 1 the row expansion algorithm may
be written as

b(D, K̄, i) =

m∑
j=1

kj 6=0

dijb(D,M(K̄, j), i+ 1)

and the Bézout number of the original degree matrix D with respect to the
partition vector K = [k1, . . . , km] is simply B = b(D,K, 1).

Note that if the degree matrix D is sparse, we may skip over computa-
tions where dij = 0 and avoid expanding the recursion below that branch.

Example 5.3 ([112]). . For the polynomial system P (x) = (p1(x), . . . ,
p4(x)), with x = (x1, x2, x3, x4), let y1 = (x1, x2) and y2 = (x3, x4). So, the
partition vector K = [2, 2]. Let

D =


d11 d12

d21 d22

d31 d32

d41 d34


be the degree matrix. Then, by the row expansion algorithm, the Bézout
number B of D with respect to K is,

B = d11b(D, [1, 2], 2) + d12b(D, [2, 1], 2)

= d11

[
d21 · b(D, [0, 2], 3) + d22 · b(D, [1, 1], 3)

]
+ d12

[
d21 · b(D, [1, 1], 3) + d22 · b(D, [2, 0], 3)

]
= d11

[
d21d32 · b(D, [0, 1], 4) + d22(d31 · b(D, [0, 1], 4) + d32 · b(D, [1, 0], 4))

]
+ d12

[
d21(d31 · b(D, [0, 1], 4) + d32 · b(D, [1, 0], 4))

+ d22 · (d31 · b(D, [1, 0], 4)
]

= d11(d21d32d42 + d22(d31d42 + d32d41))

+ d12(d21(d31d42 + d32d41) + d22d31d41).
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Example 5.4 ([112]). Consider the system

x2
1 + x2 + 1 = 0

x1x3 + x2 + 2 = 0

x2x3 + x3 + 3 = 0.

There are five ways to partition the variables {x1, x2, x3}. We list the
degree matrices and Bézout numbers calculated by the row expansion algo-
rithm for all five partition schemes as follows:

1) {x1, x2, x3}

K = [3], D =

2
2
2

 , Bézout number = 8

2) {x1, x2} {x3}

K = [2, 1], D =

2 0
1 1
1 1

 Bézout number = 4.

3) {x1, x3} {x2}

K = [2, 1], D =

2 1
2 1
1 1

 Bézout number = 8

4) {x1} {x2, x3}

K = [1, 2], D =

2 1
1 1
0 2

 Bézout number = 6

5) {x1}, {x2}, {x3}

K = [1, 1, 1], D =

2 1 0
1 1 1
0 1 1

 Bézout number = 5

Thus, the grouping ({x1, x2}, {x3}) has the lowest Bézout number(= 4)
and would lead to the most efficient homotopy continuation.
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When exhaustively searching for the partitioning of the variables which
provides the minimal Bézout number of the system, there are several ways
to speed up the process. For instance, as we sequentially test partitioning in
search for minimal Bézout numbers, we can use the smallest one found so
far to cut short unfavorable partitioning. Since the degrees are all nonnega-
tive, the Bézout number is a sum of nonnegative degree products. If at any
time the running subtotal exceeds the current minimal Bézout number, the
calculation can be aborted and testing of the next partitioning can proceed.
This can save a substantial amount of computation during an exhaustive
search. See [112] for more details.

While the number of partitioning to be tested grows rapidly with the
number of variables, the exhaustive search can be easily parallelized by sub-
dividing the tree of partitioning and distributing these branches to multiple
processors for examination. Thus, continuing advances in both raw computer
speed and in parallel machines will make progressively larger problems fea-
sible.

In [110], a generalized Bézout number, or GB, is developed in the GBQ-
algorithm, in which the partition of variables is permitted to vary among the
pj(x)’s. Even lower Bézout number may be achieved when a proper partition
structure of the variables for each individual polynomial pj(x), j = 1, . . . , n
is chosen. This strategy can take a great advantage on certain sparse systems
where an appropriate partition of variables is evident.

5.3. Cheater’s homotopy

To organize our discussion in this section, we will at times use a notation
that makes the coefficients and variables in the polynomial system P (x) = 0
explicit. Thus when the dependence on coefficients is important, we will
consider the system P (c,x) = 0 of n polynomial equations in n unknowns,
where c = (c1, . . . , cM ) are coefficients and x = (x1, . . . , xn) are unknowns.

A method called the cheater’s homotopy [63, 64] has been developed to
deal with the problem when the system P (c,x) = 0 is asked to be solved for
several different set of the coefficients c (a similar procedure can be found
in [82]).

The idea of the method is to theoretically establish Properties 1 and 2
by deforming a sufficiently generic system (the precise sense will be given
later) and then to “cheat” on Property 0 by using a preprocessing step. The
amount of computation of preprocessing step may be large, but is amortized
among the several solving characteristics of the problem.
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We begin with an example. With x = (x1, x2), let P (x) be the system

(5.14)
p1(x) = x3

1x
2
2 + c1x

3
1x2 + x2

2 + c2x1 + c3 = 0,

p2(x) = c4x
4
1x

2
2 − x2

1x2 + x2 + c5 = 0.

This is a system of two polynomial equations in two unknowns x1 and x2.
We want to solve this system of equations several times for various specific
choices of c = (c1, . . . , c5).

It turns out that for any choice of coefficients c, system (5.14) has no
more than 10 isolated solutions. More precisely, there is an open dense subset
S of C5 such that for all c belonging to S, (5.14) has exactly 10 solutions.
Moreover, 10 is an upper bound for the number of isolated solutions for all
c in C5. The total degree of the system is 6× 5 = 30, meaning that if we
had taken a generic system of two polynomials in two variables of degree 5
and 6, we expect there would be 30 solutions. Thus (5.14), with any choice
of c = (c1, . . . , c5), is a deficient system. The classical homotopy using the
start system Q(x) = 0 in (5.3) produces d = 30 paths, beginning at 30 trivial
starting points. Thus there are (at least) 20 extraneous paths.

The cheater’s homotopy continuation approach begins by solving (5.14)
with randomly-chosen complex coefficients c̄ = (c̄1, . . . , c̄5); let X∗ be the set
of 10 solutions. No work is saved there, since 30 paths need to be followed,
and 20 paths are wasted. However, the 10 elements of the set X∗ are the
seeds for the remainder of the process. In the future, for each choice of
coefficients c = (c1, . . . , c5) for which the system (5.14) needs to be solved,
we use the homotopy continuation method to follow a linear homotopy from
the system with coefficient c̄ to the system with coefficient c. We follow the
10 paths beginning at the 10 elements of X∗. Thus Property 0, that of having
trivial-available starting points, is satisfied. The fact that Properties 1 and
2 are also satisfied is the content of Theorem 5.5 below. Thus for each fixed
c, all 10 (or fewer) isolated solutions of (5.14) lie at the end of 10 smooth
homotopy paths beginning at the seeds in X∗. After the initial preprocessing
step of finding the “seeds”, the complexity of all further solving of (5.14) is
proportional to the number of solutions 10, rather than the total degree 30.

Furthermore, this method requires no a priori analysis of the system. The
first preprocessing step of finding the seeds establishes a sharp theoretical
upper bound on the number of isolated solutions as a by-product of the
computation; further solving of the system uses the optimal number of paths
to be traced.

We earlier characterized a successful homotopy continuation method as
having three properties: triviality, smoothness, and accessibility. Given an
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arbitrary system of polynomial equations, such as (5.14), it is not too hard
(through generic perturbations) to find a family of systems with the last
two properties. The problem is that one member of the family must be
trivial to solve, or the path-following cannot get started. The idea of the
cheater’s homotopy is simply to “cheat” on this part of the problem, and
run a preprocessing step (the computation of the seeds X∗) which gives us
the triviality property in a roundabout way. Thus the name, the “cheater’s
homotopy”.

A statement of the theoretical result we need follows. Let

(5.15)

p1(c1, . . . , cM , x1, . . . , xn) = 0,

...

pn(c1, . . . , cM , x1, . . . , xn) = 0,

be a system of polynomial equations in the variables c1, . . . , cM , x1, . . . , xn.
Write P (c,x) = (p1(c,x), . . . , pn(c,x)). For each choice of c = (c1, . . . , cM )
in CM , this is a system of polynomial equations in the variables x1, . . . , xn.
Let d be the total degree of the system for a generic choice of c.

Theorem 5.5. Let c belong to CM . There exists an open dense full-measure
subset U of Cn+M such that for (b∗1, . . . , b

∗
n, c
∗
1, . . . , c

∗
M ) ∈ U , the following

holds:

(a) The set X∗ of solutions x = (x1, . . . , xn) of

q1(x1, . . . , xn) = p1(c∗1, . . . , c
∗
M , x1, . . . , xn) + b∗1 = 0

...

qn(x1, . . . , xn) = pn(c∗1, . . . , c
∗
M , x1, . . . , xn) + b∗n = 0

consists of d0 isolated points, for some d0 ≤ d.

(b) The smoothness and accessibility properties hold for the homotopy

H(x, t) = P ((1− t)c∗1 + tc1, . . . , (1− t)c∗M + tcM , x1, . . . , xn)(5.16)

+ (1− t)b∗

where b∗ = (b∗1, . . . , b
∗
n). It follows that every solution of P (c,x) = 0 is

reached by a path beginning at a point of X∗.
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A proof of Theorem 5.5 can be found in [64]. The theorem is used as
part of the following procedure. Let P (c,x) = 0 be as in (5.15) denote the
system to be solved for various values of the coefficients c.

Cheater’s Homotopy Procedure:

(1) Choose complex numbers (b∗1, . . . , b
∗
n, c
∗
1, . . . , c

∗
M ) at random, and use

the classical homotopy continuation method to solveQ(x) = 0 in (5.16).
Let d0 denote the number of solutions found (This number is bounded
above by the total degree d). Let X∗ denote the set of d0 solutions.

(2) For each new choice of coefficients c = (c1, . . . , cM ), follow the d0 paths
defined by H(x, t) = 0 in (5.16), beginning at the points in X∗, to find
all solutions of P (c,x) = 0.

In Step (1) above, for random complex numbers (c∗1, . . . , c
∗
M ), using clas-

sical homotopy continuation methods to solve Q(x) = 0 in (5.16) may itself
be computationally expensive. It is desirable that those numbers do not have
to be random. For illustration, consider the linear system

(5.17)

c11x1 + · · ·+ c1nxn = b1,

...

cn1x1 + · · ·+ cnnxn = bn,

which may be considered as a polynomial system with degree one of each
equation. For randomly chosen cij ’s, (5.17) has a unique solution which is
not available right away. However, if we choose cij = δij(the Kronecker delta;
= 1 if i = j, = 0 if i 6= j), the solution is immediate.

For this purpose, an alternative is suggested in [69]. When a system
P (c,x) = 0 with a particular parameter c0 is solved, this c0 may be assigned
specifically instead of being chosen randomly, then for any parameter c ∈ CM
consider the nonlinear homotopy

(5.18) H(a,x, t) = P ((1− [t− t(1− t)a])c0 + (t− t(1− t)a)c,x) = 0.

It was shown in [69] that for randomly chosen complex number a the solution
paths of H(a,x, t) = 0 in (5.18), emanating from the solutions of P (c0,x) =
0 will reach the isolated solutions of P (c,x) = 0 under the natural assump-
tion that for generic c, P (c,x) has the same number of isolated zeros in Cn.

The most important advantage of the homotopy in (5.18) is that the
parameter c0 of the start system P (c0,x) = 0 need not be chosen at ran-
dom as long as it is chosen for which P (c0,x) = 0 has the same number of
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solutions as P (c,x) = 0 for generic c. Therefore, in some situations, when
the solutions of P (c,x) = 0 are easily available for certain particular param-
eter c0, the system P (c0,x) = 0 may be used as the start system in (5.18)
and the extra effort of solving P (c,x) = 0 for a randomly chosen c would
be saved.

To finish, we give a more non-trivial example of the use of the procedure
described in this section.

Consider the indirect position problem for revolute-joint kinematic
manipulators. Each joint represents a one-dimensional choice of parameters,
namely the angular position of the joint. If all angular positions are known,
then of course the position and orientation of the end of the manipulator (the
hand) are determined. The indirect position problem is the inverse problem:
given the desired position and orientation of the hand, find a set of angu-
lar parameters for the (controllable) joints which will place the hand in the
desired state.

The indirect position problem for six joints is reduced to a system of
eight nonlinear equations in eight unknowns in [108]. The coefficients of the
equations depend on the desired position and orientation, and a solution of
the system (an eight-vector) represents the sines and cosines of the angular
parameters. Whenever the manipulator’s position is changed, the system
needs to be resolved with new coefficients. The equations are too long to
repeat here (see the appendix of [108]); suffice to say that it is a system
of eight degree-two polynomial equations in eight unknowns which is quite
deficient. The total degree of the system is 28 = 256, but there are at most
32 isolated solutions.

The nonlinear homotopy (5.18) requires only 32 paths to solve the system
with different set of parameters[67, 69]. The system contains 26 coefficients,
and a specific set of coefficients is chosen for which the system has 32 solu-
tions. For subsequent solving of the system, for any choice of the coefficients
c1, . . . , c26, all solutions can be found at the end of exactly 32 paths, by using
the homotopy in (5.18) with randomly chosen complex number a.

6. Theorem of Bernshtéın, mixed volume, and mixed cells

Almost all the homotopies we discussed above are in the form of

H(x, t) = (1− t)cQ(x) + tP (x)

which is linear in t. Homotopies that are nonlinear in t was originally sug-
gested by S. T. Yau [116]. In the middle of 90’s, a major computational
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advance has emerged in solving polynomial systems by the nonlinear homo-
topy method. The new method takes a great advantage of Bernstéın’s theo-
rem [9] which provides a much tighter bound, in general, than the classical
Bézout number and its variants for the number of isolated zeros of a poly-
nomial system in the algebraic tori (C∗)n where C∗ = C \ {0}. Based on
this root count, a nonlinear homotopy, commonly known as the polyhedral
homotopy, was introduced in [42] to find all isolated zeros of polynomial
systems.

6.1. Theorem of Bernshtéın

We begin with an example [42]. With x = (x1, x2), let P (x) be the system

(6.1)
p1(x) = c11x1x2 + c12x1 + c13x2 + c14 = 0,

p2(x) = c21x1x
2
2 + c22x

2
1x2 + c23 = 0.

Here, cij ∈ C∗ = C \ {0}. The formal expressions for the monomials {x1x2,
x1, x2, 1} in p1 are x1x2 = x1

1x
1
2, x1 = x1

1x
0
2, x2 = x0

1x
1
2 and 1 = x0

1x
0
2. The

set of their exponents

S1 = {a = (0, 0), b = (1, 0), c = (1, 1), d = (0, 1)}

is called the support of p1, and its convex hull Q1 = conv(S1) is called
the Newton polytope of p1. Similarly, p2 has support S2 = {e = (0, 0), f =
(2, 1), g = (1, 2)} and Newton polytope Q2 = conv(S2). With the notation
xq = xq11 x

q2
2 for q = (q1, q2), we may rewrite (6.1) as

p1(x) =
∑
q∈S1

c1,qxq and p2(x) =
∑
q∈S2

c2,qxq.

For polytopes R1, . . . , Rk in Rn, their Minkowski sum [76] R1 + · · ·+Rk
is defined by

R1 + · · ·+Rk = {r1 + · · ·+ rk | rj ∈ Rj , j = 1, . . . , k}.

(polytopes Q1, Q2 and Q1 +Q2 for the system in (6.1) are shown in Fig-
ure 12). Now, consider the area of the convex polygon λ1Q1 + λ2Q2 with
non-negative variables λ1 and λ2 for the system (6.1). First of all, the area
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a b

cd

(a) Q1

e

f

g

(b) Q2

a+ e b+ e

d+ e

c+ f

c+ gd+ g

b+ f

(c) The Minkowski sum Q1 +Q2

Figure 12. The Newton polytopes of p1 and p2 along with their Minkowski
sum

of a triangle on the plane with vertices u, v and w is known to be

(6.2)
1

2

∣∣∣∣det

[
u− v
w − v

]∣∣∣∣ .
To compute the area f(λ1, λ2) of λ1Q1 + λ2Q2, we may partition the poly-
tope λ1Q1 + λ2Q2 into a collection of mutually disjoint triangles A1, A2, . . . ,
Al. If we choose those triangles in which none of their vertices is an interior
point of the polytope λ1Q1 + λ2Q2, then all their vertices take the form
λ1r1 + λ2r2 for certain r1 ∈ Q1 and r2 ∈ Q2. From (6.2), the area of each
Ai is a second degree homogeneous polynomial in λ1 and λ2, and there-
fore, f(λ1, λ2), as a sum of the areas of A1, . . . , Al, is also a second degree
homogeneous polynomial in λ1 and λ2. Writing

f(λ1, λ2) = a1λ
2
1 + a2λ

2
2 + a12λ1λ2,

the coefficient a12 of λ1λ2 in f is called the mixed volume of the polytopes
Q1 and Q2, denoted by M(Q1, Q2). Clearly,

a12 = f(1, 1)− f(1, 0)− f(0, 1)

= area of (Q1 +Q2)− area of (Q1)− area of (Q2).

The areas of Q1 +Q2, Q1 and Q2, as displayed in Figure 12, are 6.5, 1
and 3.5 respectively. Therefore, the mixed volume of the polytopes Q1 and
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Q2 is

M(Q1, Q2) = a12 = 6.5− 1− 1.5 = 4.

On the other hand, viewed in CP2, the system (6.1) has two zeros (x0, x1, x2)
= (0, 0, 1) and (0, 1, 0) at infinity; hence, it can have at most 4 isolated zeros
in (C∗)2. This is the content of the Bernshtéın theorem: The number of
isolated zeros of (6.1) in (C∗)2, counting multiplicities, is bounded above by
the mixed volume of its Newton polytopes. Furthermore, when cij ’s in (6.1)
are chosen generically, then these two numbers coincide.

To state the Bernshtéın Theorem in general form, let the given poly-
nomial system be P (x) = (p1(x), . . . , pn(x)) ∈ C[x], where x = (x1, . . . , xn).
With a = (a1, . . . , an) and xa = xa1

1 · · ·xann , write

(6.3)

p1(x) =
∑
a∈S1

c∗1,ax
a,

...

pn(x) =
∑
a∈Sn

c∗n,ax
a,

where S1, . . . , Sn are fixed subsets of Nn0 with cardinals kj = #Sj , and c∗j,a ∈
C∗ for a ∈ Sj , j = 1, . . . , n. As before, Sj is the support of pj(x), and S =
(S1, . . . , Sn) is the support of P (x). The convex hull Qj = conv(Sj) in Rn is
the Newton polytope of pj .

For nonnegative variables λ1, . . . , λn, let λ1Q1 + · · ·+ λnQn be the
Minkowski sum of λ1Q1, . . . , λnQn, that is,

λ1Q1 + · · ·+ λnQn = {λ1r1 + · · ·+ λnrn | rj ∈ Qj , j = 1, 2, . . . , n}.

Following similar reasonings for calculating Vol2(λ1Q1 + λ2Q2), the area of
λ1Q1 + λ2Q2 of the system in (6.1), it can be shown that the n-dimensional
volume, denoted by Voln, of the polytope λ1Q1 + · · ·+ λnQn is a homoge-
neous polynomial of degree n in λ1, . . . , λn. The coefficient of the monomial
λ1 × · · · × λn in this homogeneous polynomial is called the mixed volume of
the polytopes Q1, . . . , Qn, denoted byM(Q1, . . . , Qn), or the mixed volume
of the supports S1, . . . , Sn denoted byM(S1, . . . , Sn). When no ambiguities
exist, it is called the mixed volume of P (x) at times.
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We now embed the system (6.3) in the systems P (c,x) = (p1(c,x), . . . ,
pn(c,x)) where

(6.4)

p1(c,x) =
∑
a∈S1

c1,ax
a,

...

pn(c,x) =
∑
a∈Sn

cn,ax
a,

and the coefficients c = (cj,a) with a ∈ Sj for j = 1, . . . , n are taken to be a
set of m := k1 + · · ·+ kn variables. That is, we regard P (x) = P (c∗,x) for
a set of specified values of coefficients c∗ = (c∗j,a) in (6.4).

In what follows, the total number of isolated zeros, counting multiplic-
ities, of a polynomial system will be referred to as the root count of the
system.

Lemma 6.1 ([42]). For polynomial systems P (c,x) in (6.4), there exists
an open and dense set U ⊆ Cm such that for those coefficients c∗ = (c∗j,a) ∈
U , the root count in (C∗)n of the corresponding polynomial systems in (6.4)
is a fixed number. Moreover, the root count in (C∗)n the polynomial system
P (c,x) for any choice of c is bounded above by this number.

Since the set U in the above lemma is open and dense (and hence has
full measure), with probability one, the corresponding polynomial system
for randomly chosen coefficients c∗ = (c∗j,a) ∈ Cm will have the same root
count in (C∗)n. Such polynomial systems are said to be in general position.
That is, a polynomial system P (c,x) with the specific choice of coefficients
c ∈ Cm is in general position if its root count in (C∗)n equals the upper
bound provide by Lemma 6.1.

Remark 6.2. It is worth noting, however, the property of being in general
position has a much stronger characterization: For the family P (c,x) of
polynomial systems given in (6.4) which is parametrized by the coefficients
c = (cj,a), there exists a polynomial G(c) such that P (c,x) is in general
position whenever G(c) 6= 0.

Example 6.3. A simple example that illustrates the assertions above is
the following 2× 2 linear systems:

(6.5)
c11x1 + c12x2 = b1,

c21x1 + c22x2 = b2.
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Here, c = (c11, c12, c21, c22,−b1,−b2). Let

G(c) = det

(
c11 c12

c21 c22

)
× det

(
c11 b1
c21 b2

)
× det

(
b1 c12

b2 c22

)
.

Then, when the coefficients c∗ = (c∗11, c
∗
12, c

∗
21, c

∗
22,−b∗1,−b∗2) satisfies G(c∗) =

0, its corresponding linear system (6.5) has no isolated solution in (C∗)2;
otherwise, the system has a unique solution in (C∗)2. Note that those c ∈ C6

where G(c) 6= 0 forms an open dense set in C6.

For P (c,x) in general position with support (S1, . . . , Sn), let L(S1, . . . ,
Sn) be the fixed number of its isolated zeros in (C∗)n. This number satisfies
the following properties:

1: (Symmetric) L(S1, . . . , Sn) remains invariant when Si and Sj , i 6= j,
exchange their positions along with their corresponding polynomials
pi and pj .

2: (Shift invariant) L(S1, . . . ,a + Sj , . . . , Sn) = L(S1, . . . , Sn) for a ∈ Nn0 .
Replacing pj(c,x) in the system in (6.4) by xapj(c,x) results in a

new system with support (S1, . . . ,a + Sj , . . . , Sn). Clearly, the number
of its isolated zeros in (C∗)n stays the same.

3: (Multi-linear) L(S1, . . . , Sj + S̄j , . . . , Sn) = L(S1, . . . , Sj , . . . , Sn) +
L(S1, . . . , S̄j , . . . , Sn) for S̄j ⊂ Nn.

Let P̄ (c,x) = (p1(c,x), . . . , p̄j(c,x), . . . , pj(c,x)) be a system in gen-
eral position with support (S1, . . . , S̄j , . . . , Sn). Then replacing pj(c,x)
in the system P (c,x) by pj(c,x)p̄j(c,x) yields a system with support
(S1, . . . , Sj + S̄j , . . . , Sn). It is clear that the number of isolated zeros
of the resulting system in (C∗)n is the sum of the numbers of those
isolated zeros of P (c,x) and P̄ (c,x) in (C∗)n.

4: (Automorphism invariant) L(S1, . . . , Sn) = L(US1, . . . , USn) where U
is an n× n integer matrix with detU = ±1 and USj = {Ua | a ∈
Sj} for j = 1, . . . , n.

Note that in writing xa = xa1

1 · · ·xann we regard the vector a = (a1,
. . . , an) as a column vector. Let Uj be the j-th column of U = (uij)
and x = yU := (yU1 , . . . ,yUn), i.e.,

xj = yUj = y
u1j

1 · · · yunjn , j = 1, . . . , n.
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This coordinate transformation yields

xa = xa1

1 · · ·xann(6.6)

= (yU1)a1 · · · (yUn)an

= yu11a1+···+u1nan
1 · · · yun1a1+···+unnan

n

= yUa,

and transforms the system P (x) with support (S1, . . . , Sn) to Q(y) =
P (yU ) with support (US1, . . . , USn). For a given isolated zeros y0 of
Q(y) in (C∗)n, x0 = yU0 is clearly an isolated zero of P (x) in (C∗)n.
Furthermore, since detU = ±1, V := U−1 is also an integer matrix,
and

xV = (yU )V = y(UV ) = y.

Therefore, for an isolated zero x0 of P (x) in (C∗)n, y0 = xV0 is an
isolated zero of Q(y) in (C∗)n. This one to one correspondence between
isolated zeros of Q(y) and P (x) in (C∗)n gives L(S1, . . . , Sn) = L(US1,
. . . , USn).

Functions that take n finite subsets S1, . . . , Sn of Nn0 and return a real
number satisfying all the above properties are rarely available. The mixed
volume M(S1, . . . , Sn), emerged in the early 20th century, happens to be
one of them:

1: (Symmetry) This property is obvious for M(S1, . . . , Sn) by its defini-
tion.

2: (Shift invariant) For a ∈ Nn0 and Qk = conv(Sk), k = 1, . . . , n,

Voln(l1Q1 + · · ·+ lj(a +Qj) + · · ·+ lnQn)

= Voln(`ja + `1Q1 + · · ·+ `jQj + · · ·+ `nQn)

= Voln(`1Q1 + · · ·+ `nQn).

Hence, M(S1, . . . ,a + Sj , . . . Sn) =M(S1, . . . , Sn).

3: (Multi-linear) We shall only prove this property for the first compo-
nent of M(S1, . . . , Sn), namely, for S̄1 ⊂ Nn0 ,

M(S1 + S̄1, S2, . . . , Sn) =M(S1, . . . , Sn) +M(S̄1, . . . Sn).
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For positive α, β, `1, . . . , `n and Q̄1 = conv(S̄1),

Voln(`1(αQ1 + βQ̄1) + `2Q2 + · · ·+ `nQn)(6.7)

=
∑

j1+···+jn=n

a(α, β, j1, . . . , jn)`j11 · · · `jnn

where a(α, β, j1, . . . , jn) denotes the coefficients of the above polyno-
mial, and

Voln(`1αQ1 + `1βQ̄1 + · · ·+ `nQn)(6.8)

=
∑

j1+j′1+···+jn=n

b(j1, j
′
1, . . . , jn)(`1α)j1(`1β)j

′
1 · · · `jnn

in which the coefficients are denoted by b(j1, j
′
1, . . . , jn). Comparing

the coefficients of `1 · · · `n in (6.7) and (6.8) yields

(6.9) a(α, β, 1, . . . , 1) = α b(1, 0, 1, . . . , 1) + β b(0, 1, . . . , 1)

Letting (1) α = β = 1, (2) α = 1, β = 0, and (3) α = 0, β = 1 in (6.9)
respectively yields

M(S1 + S̄1, . . . , Sn) = a(1, . . . , 1) = b(1, 0, 1, . . . , 1) + b(0, 1, . . . , 1)

= a(1, 0, 1, . . . , 1) + a(0, 1, . . . , 1)

=M(S1, . . . , Sn) +M(S̄1, . . . , Sn).

4: (Automorphism invariant) For linear transformation U ,

Voln(U(`1Q1 + · · ·+ `nQn)) = | detU |Voln(`1Q1 + · · ·+ `nQn)

Therefore, when detU = ±1,

Voln(`1(UQ1) + · · ·+ `n(UQn)) = Voln(U(`1Q1 + · · ·+ `nQn))

= Voln(`1Q1 + · · ·+ `nQn),

and consequently,

M(US1, . . . , USn) =M(S1, . . . , Sn).

The above connection between L(S1, . . . , Sn) and M(S1, . . . , Sn) sug-
gested the following Bernshtéın theorem:
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Theorem 6.4 ([9, Theorem A]). The number of isolated zeros, counting
multiplicities, in (C∗)n of a polynomial system P (x) = (p1(x), . . . , pn(x))
with support S = (S1, . . . , Sn) is bound above by the mixed volumeM(S1, . . . ,
Sn). When P (x) is in general position, it has exactlyM(S1, . . . , Sn) isolated
zeros in (C∗)n.

In [14], the root count in the above theorem was nicknamed the BKK
bound after the works of Bernshtein [9], Kushnirenko [50] and Khovanskii
[48]. In general, it provides a much tighter bound of the number of isolated
zeros of a polynomial system compared to variant Bézout bounds discussed
in the last section. However, this theorem does have an apparent limita-
tion: it only counts the number of isolated zeros of a polynomial system in
(C∗)n rather than the number of all isolated zeros in affine space Cn. For
counting the number of all isolated zeros of a polynomial system in Cn, a
more general version of the theorem is strongly desirable. This problem was
first attempted in [91], a bound for the root count in Cn was obtained via
the notion of the shadowed sets. Later, a significantly tighter bound was
discovered in the following theorem.

Theorem 6.5 ([70]). The root count in Cn of a polynomial system P (x) =
(p1(x), . . . , pn(x)) with supports S = (S1, . . . , Sn) is bounded above by the
mixed volume M(S1 ∪ {0}, . . . , Sn ∪ {0}).

In other words, the root count of a polynomial system P (x) = (p1(x), . . . ,
pn(x)) in Cn is bounded above by the root count in (C∗)n of the polynomial
system P̄ (x) in general position obtained by augmenting constant terms to
those pj ’s in P (x) which do not have constant terms. As a corollary, when
0 ∈ Sj for all j = 1, . . . , n, namely, all pj(x)’s in P (x) have constant terms,
then the mixed volumeM(S1, . . . , Sn) of P (x) is a bound for the root count
of P (x) in Cn, more than just the root count of P (x) in (C∗)n.

This theorem was further extended in several different ways (see [43, 92]).
§10 will explore one such extension in detail.

6.2. Mixed volume and fine mixed subdivision

Let us take a look at the system of two polynomials

(6.10) F (x1, x2) =

{
f1(x1, x2) = c1x

2
1x

2
2 + c2x

2
1 + c3x

2
2 + c4

f2(x1, x2) = c5x
2
1x2 + c6x1x

2
2 + c7.
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The supports of these two polynomials are

S1 = {(2, 2), (2, 0), (0, 2), (0, 0)}
S2 = {(2, 1), (1, 2), (0, 0)}

and the Newton polytopes of f1 and f2 are

Q1 = convS1 = and Q2 = convS2 =

respectively. As before, the mixed volume of (Q1, Q2) can be computed by
the formula

M(Q1, Q2) = area of (Q1 +Q2)− area of (Q1)− area of (Q2).

However, when the polynomial system has more equations, this formula
becomes

M(Q1, . . . , Qn) = (−1)n−1
n∑
i=1

Voln(Qi) + (−1)n−2
∑
i<j

Voln(Qi +Qj)

+ · · ·+ Voln(Q1 + · · ·+Qn).

Practically, it is difficult to use this somewhat complicated formula for mixed
volume computations in general. To efficiently compute the mixed volume
we must look for other formulations.

Let’s look at the following subdivision of the Minkowski sum Q1 +Q2

Q1 +Q2 =

in which the dotted portion is an exact copy of Q1 while the crossed portion
is a translated copy of Q2. The remaining (shaded) parts come from the
Minkowski sum of “mixing” edges of Q1 and Q2.

The mixed volume of (Q1, Q2) is defined via the scaled versions λ1Q1

and λ2Q2 with scaling factors λ1, λ2 ∈ R+ and their Minkowski sum λ1Q1 +
λ2Q2. Importantly, if we assume the original partition never deteriorate after
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scaling, namely, the original partition of Q1 +Q2 stays as a partition of
λ1Q1 + λ2Q2 after scaling, then the area of those individual parts in λ1Q1 +
λ2Q2 are scaled by proper factors: The areas of the copies of Q1 (dotted)
and Q2 (crossed) are scaled by λ2

1 and λ2
2 respectively, and the areas of the

“mixed” parts are scaled by λ1λ2 as marked in the picture below:

λ2
1

λ2
2λ1λ2

λ1λ2

So the area of the above polytope, under the mixed scaling, can be decom-
posed into

Vol2(λ1Q1 + λ2Q2) = λ2
1 + λ2

2

+ λ1λ2 + λ1λ2

which is a homogeneous polynomial of degree 2 in λ1 and λ2. Recall that the
mixed volume M(Q1, Q2) is defined to be the coefficient of the term λ1λ2

in the above polynomial. Therefore,

M(Q1, Q2) = + = 4 + 4 = 8,

and the BKK bound for the system (6.10) is then 8.
Assembling the mixed volumeM(Q1, Q2) in this manner is independent

of the scaling factors λ1 and λ2. It is valid for any such subdivisions of
Q1 +Q2 as given above which never deteriorate after mixed scaling. That
is, those original subdivisions stay as subdivisions under mixed scalings.
They are known as the mixed subdivisions. To state a formal definition for
such subdivisions with less notations, we shall omit those “+” and “conv” in
most of the occasions. For instance, instead of formulating the subdivision
for Q1 + · · ·+Qn(= conv(S1) + · · ·+ conv(Sn)) we shall deal with the n-
tuple (S1, . . . , Sn) for short.
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Let S = (S1, . . . , Sn) be a set of finite subsets of Nn0 , whose union affinely
spans Rn. By a cell of S = (S1, . . . , Sn) we mean a tuple C = (C1, . . . , Cn) of
nonempty subsets Ci ⊆ Si, and each Ci is called a component of this cell.
For brevity, the following notations will be used throughout this section:

type C = (dim(convC1), . . . ,dim(convCn))

conv C = convC1 + · · ·+ convCn

Vol C = Vol(convC).

In the above, it is easy to verify that convC is a convex polytope. Recall that
a polytope P ⊂ Rn is the convex hull of finite many points in Rn. A subset
F of polytope P is called a face of P if there exists α ∈ Rn for which the
linear functional f(x) = 〈α,x〉 for x ∈ Rn attains its minimum over P at F ,
and the vector α is called an inner normal of F . Here and after, 〈 , 〉 stands
for the usual inner product in Euclidean spaces. When P is a k-dimensional
polytope in Rn, its (k − 1)-dimensional faces are called facets of P .

Definition 6.6. A subdivision of S = (S1, . . . , Sn) is a collection D of
cells C = (C1, . . . , Cn) of S = (S1, . . . , Sn) such that

(a): dim(convC) = n for all C ∈ D,

(b): For a distinct pair A,B ∈ D, if convA ∩ convB is nonempty, then
it is a common face of both,

(c):
⋃
C∈D convC = convS.

Note that the above conditions characterize precisely a subdivision of
the single convex polytope Q̃ = Q1 + · · ·+Qn of dimension n in the familiar
sense: a collection of convex polytopes of dimension n in Q̃ whose mutual
intersections only appear on their common faces and whose union is the
entire Q̃. While a proper subdivision of Q̃ is important in computing the
volume of Q̃ as long as the volume of each sub-polytope is easy to attain,
in the study of mixed volume, it is perhaps more important to find the
expression of the volume of the Minkowski sum λ1Q1 + · · ·+ λnQn in terms
of the scaling factors λ1, . . . , λn. For this purpose, merely a subdivision as
given above is insufficient.

For λ = (λ1, . . . , λn) ∈ (R+)n, we shall use the notation λ ◦ S for the
scaled version (λ1S1, . . . , λnSn), and λ◦Q̃ for λ1 convS1+· · ·+λn convSn=
λ1Q1 + · · ·+ λnQn. This notation also applies to individual cells: λ ◦ (C1,
. . . , Cn)=(λ1C1, . . . , λnCn) for any cell C=(C1, . . . , Cn) of S=(S1, . . . , Sn).
Under this “mixed” scaling, a general subdivision of S = (S1, . . . , Sn) may
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not behave properly. That is, a subdivision of S = (S1, . . . , Sn) may not
stay, after mixed scaling, as a subdivision of λ ◦ S = (λ1S1, . . . , λnSn) cor-
respondingly. A subdivision of S = (S1, . . . , Sn) is called scaling invariant if
after mixed scaling, the collection of scaled cells in the subdivision remains
as a subdivision of λ ◦ S = (λ1S1, . . . , λnSn). To characterize such subdivi-
sions, we add additional restrictions:

Definition 6.7. A subdivision D of S = (S1, . . . , Sn) is called a mixed
subdivision if, in addition, it satisfies

(d1): For each cell C = (C1, . . . , Cn) ∈ D,
∑n

j=1 dim(convCj) = n

(d2): For any distinct pair of cells A = (A1, . . . , An), B = (B1, . . . , Bn)
∈ D,

(convA) ∩ (convB) = (convA1 ∩ convB1) + · · ·+ (convAn ∩ convBn).

Cells of a mixed subdivision are called mixed cells.

A mixed subdivision of S = (S1, . . . , Sn) may be refined via further sub-
division of individual components of each cell. It is computationally bene-
ficial (as Equation (6.13) later in the section will show) to utilize the most
refined mixed subdivisions:

Definition 6.8. A mixed subdivision D is called a fine mixed subdivi-
sion if it also satisfies the following condition:

(e): For each cell C = (C1, . . . , Cn) ∈ D, convCj is a simplex of dimen-
sion #Cj − 1 for j = 1, . . . , n.

The importance of mixed subdivisions (and fine mixed subdivisions)
lies in their nice behavior under the “mixed” scaling by positive factors
λ = (λ1, . . . , λn). They are “scaling invariant” as mentioned above. More-
over, under this condition, one can establish the tie between the cells in a
subdivision and the expression of Voln(λ1Q1 + · · ·+ λnQn) by which the
mixed volume is defined.

Proposition 6.9. Let D be a mixed subdivision of S = (S1, . . . , Sn). For
any λ = (λ1, . . . , λn) ∈ (R+)n, the set

λ ◦ D := {(λ1C1, . . . , λnCn) | (C1, . . . , Cn) ∈ D}
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forms a mixed subdivision of λ ◦ S = (λ1S, . . . , λnS). Furthermore, if D is
a fine mixed subdivision of S, then λ ◦ D is a fine mixed subdivision of
λ ◦ S = (λ1S, . . . , λnS).

This proposition actually lays the ground for the version of the mixed
volume computation algorithms to be discussed in Section 8. The complete
proof is somewhat technical, please see [18]. Here we only want to emphasize
that the condition (d2) plays a critical role in the proof and illustrate the
subtlety via a counter example:

Example 6.10. For two supports S1 = {(0, 0), (1, 0), (0, 1)} and S2 =
{(0, 0), (1, 0), (0, 1)} in R2 and their convex hulls Q1 = convS1 and Q2 =
convS2, we have

Q1 = Q2 = and Q1 +Q2 = .

Let A = ({(0, 0), (1, 0), (0, 1)}, {(0, 0)}), B = ({(0, 0), (1, 0), (0, 1)}, {(0, 1)}),
and C = ({(1, 0), (0, 1)}, {(0, 0), (1, 0)}) be the three cells of D = {A,B,C}.
That is,

convA = convB = convC = .

Clearly, dim(convA) = dim(convB) = dim(convC) = 2 and the intersec-
tion of any two is their common face. Furthermore, the union of the three

convA ∪ convB ∪ convC =

A

B

C

.

is indeed the entire Q1 +Q2. Therefore D satisfies the definition of a sub-
division (conditions (a),(b),(c)). Moreover, since cells A,B, and C are of
type (2, 0), (2, 0), and (1, 1) respectively, D even satisfies the condition (d1).
However, it does not behave as expected under the scaling by λ = (λ1, λ2).
The cells will both separate and overlap as one chooses different scaling
factors.
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For example, with factors λ = (λ1, λ2) = (1, 2), the scaled version 1 ·
Q1 + 2 ·Q2 is

+ = .

But under the same scaling factors the cells separate and the union becomes

conv((1, 2) ◦A) ∪ conv((1, 2) ◦B) ∪ conv((1, 2) ◦ C) = .

It no longer covers the entire 1 ·Q1 + 2 ·Q2.
Alternatively, with the scaling factor λ = (2, 1), 2 ·Q1 + 1 ·Q2 is

+ = .

Under the same scaling, the cells conv((2, 1) ◦A), conv((2, 1) ◦B), conv((2,
1) ◦ C) are

, ,

respectively. Apparently there are overlaps among those three.
In both cases, with certain scalings λ ◦ D failed to form a subdivision of

λ ◦Q = λ1Q1 + λ2Q2. The main reason is the subdivision D of S = (S1, S2)
does not satisfy the condition (d2).

Remark 6.11. The condition (d2) was absent when the “mixed subdivi-
sion” was originally defined in [42]. It first appeared in [22].

As shown in the above example, the condition (d2) is crucial to ensure
a mixed subdivision transforms properly under mixed scaling in the sense of
Proposition 6.9. The condition (d1), on the other hand, relates the volume
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Voln(λ1Q1 + · · ·+ λnQn) directly to the volumes of individual cells of a
mixed subdivision:

Proposition 6.12. If D is a mixed subdivision, then for a cell C ∈ D of
type (t1, . . . , tn),

(6.11) Voln(conv(λ ◦ C)) = λt11 · · ·λtnn Voln(convC).

(See [18] for a detailed proof.)

Combining Propositions 6.9 and 6.12 yields the important theorem which
links the mixed volume to the mixed cells of type (1, . . . , 1).

Theorem 6.13. Let D be a mixed subdivision of S = (S1, . . . , Sn), then

(6.12) M(Q1, . . . , Qn) =
∑
C∈D

typeC=(1,...,1)

Voln(convC)

where Qj = convSj for each j = 1, . . . , n.

Proof. Note that for each cell C ∈ D of type (t1, . . . , tn), condition (d1) in
the definition of a mixed subdivision requires t1 + · · ·+ tn to be exactly
n. Therefore, by (6.11), each term in the polynomial Voln(λ1Q1 + · · ·+
λnQn) in the variables λ1, . . . , λn has total degree n and hence this poly-
nomial is homogeneous of degree n. By definition, the mixed volume of
Q = (Q1, . . . , Qn) is the coefficient of the monomial λ1 × · · · × λn in this
polynomial, thus, the mixed volume is the sum of volumes of those type
(1, . . . , 1) cells in D because of (6.11). �

In general, the volume of a cell may still be difficult to compute. However,
if D is a fine mixed subdivision, then a cell C ∈ D of type (1, . . . , 1) is nec-
essarily of the form C = ({a1,a

′
1}, . . . , {an,a′n}) with {aj ,a′j} ⊆ Sj for j =

1, . . . , n since each of its component must contain exactly 1 + 1 = 2 points by
condition (e). The implication is convC = conv{a1,a

′
1}+ · · ·+ conv{an,a′n}

becomes a Minkowski sum of n affinely independent line segments which is
an n-dimensional parallelepiped. Its volume can be computed as follows:

(6.13) Voln(C) =

∣∣∣∣∣∣∣det

a>1 − a′>1
...

a>n − a′>n


∣∣∣∣∣∣∣ .

The above construction reveals a clear strategy for computing mixed vol-
ume: With the construction of a fine mixed subdivision of S = (S1, . . . , Sn),
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if one can systematically enumerate all the mixed cells of type (1, . . . , 1),
then the sum of the volume of all these cells as given in (6.13) is precisely
the mixed volume M(Q1, . . . , Qn).

6.3. Mixed subdivisions induced by generic lifting

In this section we discuss a procedure, developed in [11, 42], with which a
fine mixed subdivision of S = (S1, . . . , Sn) can be constructed.

For each j = 1, . . . , n, let ωj : Sj → R be a function that assigns each
point in Sj a real number. The function ω := (ω1, . . . , ωn) is known as
a lifting function on S = (S1, . . . , Sn). We say ωj lifts Sj to its graph
Ŝj = {(a, ωj(a)) : a ∈ Sj} ⊂ Rn+1 for each j = 1, . . . , n,. This notation can
be extended in the obvious way: Ŝ = (Ŝ1, . . . , Ŝn), Q̂j =conv(Ŝj), Q̂ = Q̂1 +
· · ·+ Q̂n, etc. The lifting function ω = (ω1, . . . , ωn) is known as a generic lift-
ing in the sense given below. Let π : Rn+1 → Rn be the projection by erasing
the last coordinate. So, π(Ŝj) = Sj for each j = 1, . . . , n, and π(conv Ŝ) =
conv S.

Consider the polytope conv Ŝ, now in Rn+1. We are interested in its
“lower hull” with respect to the projection π: A vector α̂ ∈ Rn+1 is said to
be upward pointing if its last coordinate is positive. Without loss, we assume
the last coordinate of an upward pointing α̂ is 1, that is, α̂ = (α, 1) ∈ Rn+1.
A face F̂ of conv Ŝ is called a lower face if its inner normal is upward
pointing, namely, there exists an α̂ = (α, 1) ∈ Rn+1 such that

F̂ = (conv Ŝ)α̂ :=

{
x ∈ conv Ŝ | 〈α̂,x〉 = min

y∈conv Ŝ
〈α̂,y〉

}
.

It is important to note that for a lower face F̂ of conv Ŝ, one can show that

F̂ = (conv Ŝ)α̂ = (conv Ŝ1)α̂ + · · ·+ (conv Ŝn)α̂

for some upward pointing inner normal α̂. In other words, a lower face of
conv Ŝ is necessarily a Minkowski sum of n faces of conv Ŝ1, . . . , conv Ŝn
respectively, they share a common inner normal of the form α̂ = (α, 1). The
lower hull of conv Ŝ is the collection of all its n-dimensional lower facets.

We shall impose a “genericity” condition on the lifting function. To
facilitate the discussion, the following notation will be used: Fix any j ∈
{1, . . . , n} and a subset Xj = {xj,1, . . . ,xj,mj

} ⊆ Sj , containing mj points
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for some mj > 0, define

V (Xj) =


x>j,2 − x>j,1
x>j,3 − x>j,1

...
x>j,mj

− x>j,1

 and Ω(Xj)=


ωj(xj,1)− ωj(xj,2)
ωj(xj,1)− ωj(xj,2)

...
ωj(xj,1)− ωj(xj,mj

)

 .(6.14)

Definition 6.14. A lifting function ω = (ω1, . . . , ωn) for S = (S1, . . . , Sn)
is said to be generic if for any choice of n (possibly empty) subsets Xj =
{xj,1, . . . ,xj,mj

} ⊆ Sj for j = 1, . . . , n with mj ≥ 0 the linear system

(6.15)


V (X1)
V (X2)

...
V (Xn)

 ·α =


Ω(X1)
Ω(X2)

...
Ω(Xn)


in α has a solution only when the rank of the matrix on the left equals the
number of its rows. Note that if the subset Xj is empty, the blocks V (Xj)
and Ω(Xj) will not appear in the above equation.

Remark 6.15. By this definition, almost all liftings are generic, justifying
the choice of the terminology. More precisely, for each j = 1, . . . , n, we can
identify ωj : Sj → R with its images and regard ωj as an element in RNj
where Nj = #Sj . Similarly, we may consider ω = (ω1, . . . , ωn) as an element
in RN where N = N1 + · · ·+Nn. If ω is not generic, then there exists a
choice of n (possibly empty) subsets {xj,1, . . . ,xj,mj

} ⊆ Sj for j = 1, . . . , n
with mj > 0 for which the rank of the matrix on the left hand side of the
linear system (6.15) is less than the number of its rows but the system
has a solution. This condition forces ω to be in an affine subspace of lower
dimension. Since there are only finite many ways of choosing subsets of
S1, . . . , Sn, the set of non-generic lifting is hence contained in a finite union
of lower dimensional affine subspaces of RN determined by points in S. This
set is necessarily of measure zero. Indeed, it is closed and nowhere dense. This
is of great practical importance: one can choose a lifting at random, which
would be generic with probability one. Moreover, under this interpretation
of the genericity, it is reasonable to choose rational lifting values only. Since
the set of “non-generic” rational lifting is also contained in a finite union
of lower dimensional affine subspace of QN , with any reasonable probability
distribution one imposes on QN , the probability of picking a “non-generic”
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rational lifting should also be zero. This fact will become important in the
construction of polyhedral homotopy to be discussed in §7.

Proposition 6.16 (Induced fine mixed subdivision). Let ω = (ω1, . . . ,
ωn) be a generic lifting for S = (S1, . . . , Sn), and let D̂ω be the collection of
all Ĉ = (Ĉ1, . . . , Ĉn) with Ĉj ⊆ Ŝj for each j = 1, . . . , n such that

1) conv Ĉj is a lower face of conv Ŝj for each j = 1, . . . , n;

2) Those n lower faces conv Ĉj of conv Ŝj for j = 1, . . . , n respectively
share a common inner normal of the form α̂ = (α, 1) where α ∈ Rn;
and

3) dim(conv Ĉ1) + · · ·+ dim(conv Ĉn) = n.

Then the projections of all cells in D̂ω

Dω = {(π(Ĉ1), . . . , π(Ĉn)) | Ĉ = (Ĉ1, . . . , Ĉn) ∈ D̂ω}

form a fine mixed subdivision of S = (S1, . . . , Sn). It is called the subdivi-
sion induced by the lifting function ω = (ω1, . . . , ωn).

(See [18] for a detailed proof.)

The subdivision I in Figure 12 for system (6.1) is, in fact, induced by
the lifting ω = ((0, 1, 1, 1), (0, 0, 0)), that is

Ŝ = ({(a, 0), (b, 1), (c, 1), (d, 1)}, {(e, 0), (f, 0), (g, 0)}).

7. Polyhedral homotopy

In finding all isolated zeros of a given polynomial system P (x1, . . . , xn) =
P (x) = (p1(x), . . . , pn(x)) in Cn, we wish to take advantage of generically
much tighter bound of the root count, mixed volume, as discussed in previous
sections.

In light of Theorems 5.5 and 6.5, to find all isolated zeros of a polynomial
system P (x) = (p1(x), . . . , pn(x)) in Cn with support S = (S1, . . . , Sn), we
first augment the system by appending the monomial x0 = x0

1 · · ·x0
n = 1 to

those pj ’s in P (x) which do not have constant terms. Then generic coeffi-
cients are assigned for all the monomials. The resulting new system Q(x)
has supports S′1, . . . , S

′
n with S′j = Sj ∪ {0} for j = 1, . . . , n. We shall solve

Q(x) = 0 in the first place. After Q(x) = 0 is solved, consider the linear
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homotopy

(7.1) H(x, t) = (1− t) cQ(x) + t P (x) = 0 for generic c ∈ C∗.

By Theorem 5.5, Properties 1 and 2 (Smoothness and Accessibility) hold
for this homotopy, and because all the isolated solutions of Q(x) = 0 are
known, Property 0 (triviality) also holds. Therefore, every isolated zero of
P (x) lies at the end of a homotopy path defined by H(x, t) = 0, emanating
from an isolated solution of Q(x) = 0.

To solve Q(x) = 0, write

(7.2) Q(x) =



q1(x) =
∑
a∈S′1

c̄1,ax
a,

...

qn(x) =
∑
a∈S′n

c̄n,ax
a.

From Remark 6.2, there exists a polynomial G(c) in the variables c =
(cj,a)j=1,...,n,a∈S′j of the coefficients in (7.2) such that Q is in general position
when G(c) 6= 0. Since all those coefficients c̄j,a for a ∈ S′j and j = 1, ..., n are
chosen randomly, with probability one, this system is in general position.
Namely, the root count of Q(x) is exactly the BKK bound.

Let t be a new complex variable and consider the polynomial system
Q̂(x, t) = (q̂1(x, t), ..., q̂n(x, t)) in the n+ 1 variables (x, t) given by

(7.3) Q̂(x, t) =



q̂1(x, t) =
∑
a∈S′1

c̄1,ax
a tω1(a),

...

q̂n(x, t) =
∑
a∈S′n

c̄n,ax
a tωn(a),

where each ωj : S′j → Q for j = 1, . . . , n is a function with generically chosen
rational numbers as its images. For a fixed t0, we rewrite the system in (7.3)
as

Q̂(x, t0) =



q̂1(x, t0) =
∑
a∈S′1

(c̄1,a t
ω1(a)
0 ) xa,

...

q̂n(x, t0) =
∑
a∈S′n

(c̄n,a t
ωn(a)
0 ) xa.
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This system is in general position if for the polynomial G(c) mentioned
above

T (t0) := G((c̄j,at
ωj(a)
0 )j=1,...,n,a∈S′j ) 6= 0.

The equation T (t) = 0 can have at most finitely many solutions, since T (t)
is not identically zero because T (1) = G(c̄j,a) 6= 0. Let

t1 = r1e
iθ1 , . . . , tk = rke

iθk

be the solutions of T (t) = 0. Then, for any θ 6= θl for l = 1, . . . , k, the systems
Q̄(x, t) = (q̄1(x, t), . . . , q̄n(x, t)) given by

Q̄(x, t) =



q̄1(x, t) =
∑
a∈S′1

(c̄1,ae
iω1(a)θ)xatω1(a)

...

q̄n(x, t) =
∑
a∈S′n

(c̄n,ae
iωn(a)θ)xatωn(a),

are in general position for all t > 0 because

c̄j,ae
iωj(a)θtωj(a) = c̄j,a(teiθ)ωj(a)

and

G(c̄j,a(teiθ)ωj(a)) = T (teiθ) 6= 0.

Therefore, without loss of generality, (by choosing an angle θ at random and
change the coefficients c̄j,a to c̄j,ae

iωj(a)θ if necessary) we may assume the
systems Q̂(x, t) in (7.3) are in general position for all t > 0. By Lemma 6.1,
the systems Q̂(x, t) in (7.3) have the same number of isolated zeros in (C∗)n
for all t > 0 and this number equals the mixed volume M(S′1, . . . , S

′
n) =: k.

We now regard Q̂(x, t) = 0 as a homotopy, commonly known as the poly-
hedral homotopy , defined on (C∗)n × [0, 1] with target system Q̂(x, 1) =
Q(x). The zero set of this homotopy is made up of k homotopy paths
x(1)(t), . . . ,x(k)(t). Since each q̂j(x, t) has nonzero constant term for all
j = 1, . . . , n, by a standard application of generalized Sard’s Theorem , all
those homotopy paths are smooth with no bifurcations. Therefore, both
Property 1 (Smoothness) and Property 2 (Accessibility) given in §5 hold
for this homotopy. However, at t = 0, Q̂(x, 0) ≡ 0, or undefined, see Fig-
ure 13. Consequently, those homotopy paths can not get started because
their starting points x(1)(0), . . . ,x(k)(0) can not be identified. This problem
can be resolved by the following design.
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t = 0 t = 1

Figure 13. The starting point of the homotopy Q̂(x, t) at t = 0 cannot be
identified.

The function ω = (ω1, . . . , ωn) with ωj : S′j → Q, for j = 1, . . . , n, may
be considered as a generic lifting on the support S′ = (S′1, . . . , S

′
n) of Q(x)

which lifts S′j to its graph

Ŝ′j = {â = (a, ωj(a)) | a ∈ S′j}, j = 1, . . . , n.

Let α̂ = (α, 1) where α = (α1, . . . , αn) ∈ Qn satisfies the following condi-
tion:

(A)

There exists a collection of pairs {a1,a
′
1} ⊆ S′1, . . . , {an,a′n} ⊆ S′n,

such that {a1 − a′1, . . . ,an − a′n} is linearly independent and for j =
1, . . . , n,

〈âj , α̂〉 =
〈
â′j , α̂

〉
〈â, α̂〉 > 〈âj , α̂〉 for a ∈ S′j\{aj ,a′j}.

For such α̂ = (α, 1), let y = t−αx where y = (y1, . . . , yn) and

(7.4)

y1 = t−α1x1,

...

yn = t−αnxn.
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With this transformation and a = (a1, . . . , an) ∈ Nn0 ,

xa = xa1

1 · · ·xann ,(7.5)

= (y1t
α1)a1 · · · (yntαn)an

= ya1

1 · · · yann tα1a1+···+αnan

= yat〈a,α〉,

and q̂j(yt
α, t) of Q̂(x, t) in (7.3) becomes,

q̂j(yt
α, t) =

∑
a∈S′j

c̄j,ay
at〈a,α〉tωj(a)(7.6)

=
∑
a∈S′j

c̄j,ay
at〈(a,wj(a)),(α,1))〉

=
∑
a∈S′j

c̄j,ay
at〈â,α̂〉.

Let

(7.7) βj = min
a∈S′j
〈â, α̂〉 for j = 1, . . . , n,

and consider the homotopy

(7.8) Hα(y, t) = (hα1 (y, t), . . . , hαn (y, t)) = 0

on (C∗)n × [0, 1] where for j = 1, . . . , n

hαj (y, t) = t−βj q̂j(yt
α, t)(7.9)

=
∑
a∈S′j

c̄j,a ya t〈â,α̂〉−βj

=
∑
a∈S′j
〈â,α̂〉=βj

c̄j,ay
a +

∑
a∈S′j
〈â,α̂〉>βj

c̄j,ay
at〈â,α̂〉−βj .

This homotopy retains most of the properties of the homotopy Q̂(x, t) = 0;
in particular, both Properties 1 (Smoothness) and 2 (Accessibility) remain
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valid and

(7.10) Hα(y, 1) = Q̂(y, 1) = Q(y).

From condition (A), for each j = 1, . . . , n, 〈âj , α̂〉 =
〈
â′j , α̂

〉
= βj and

〈â, α̂〉 > βj for a ∈ S′j\{aj ,a′j}, hence,

(7.11) Hα(y, 0) =



hα1 (y, 0) =
∑
a∈S′1
〈â,α̂〉=β1

c̄1,ay
a = c̄1,a1

ya1 + c1,a′1y
a′1 = 0,

...

hαn (y, 0) =
∑
a∈S′n
〈â,α̂〉=βn

c̄n,ay
a = c̄n,any

an + cn,a′ny
a′n = 0.

Such system is known as the binomial system, and its isolated solutions in
(C∗)n are constructively available as shown in the proof of the following

Proposition 7.1. Under condition (A), the binomial system

(7.12)

c̄1,a1
ya1 + c̄1,a′1y

a′1 = 0,

...

c̄n,any
an + c̄n,a′ny

a′n = 0,

has

(7.13) kα :=

∣∣∣∣∣∣∣det

a>1 − a′>1
...

a>n − a′>n


∣∣∣∣∣∣∣

nonsingular isolated solutions in (C∗)n.

Proof. For j = 1, . . . , n, let vj = aj − a′j . Since y ∈ (C∗)n, we may rewrite
the system (7.12) as

(7.14)

yv1 = b1,

...

yvn = bn,
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where bj = −
c̄j,a′

j

c̄j,aj
for j = 1, . . . , n. Let

(7.15) V =
[

v1

∣∣∣ v2

∣∣∣ · · · ∣∣∣ vn

]
and b = (b1, . . . , bn). Then, (7.14) becomes

(7.16) yV = b.

Now, when the matrix V in (7.15) is an upper triangular matrix, known as
the Hermite Normal Form,1

V =


v11 v12 · · · v1n

0 v22 · · · v2n
...

. . .
. . .

...
0 · · · 0 vnn

 ,
then, the equations in (7.16) become

(7.17)

yv111 = b1,

yv121 yv222 = b2,

...

yv1n1 yv2n2 · · · yvnnn = bn.

By forward substitutions, all the solutions of the system (7.17) in (C∗)n
can be found, and the total number of solutions is |v11| × · · · × |vnn| =
|detV |.

When V is a general matrix, we may upper triangularize it by the fol-
lowing process. Recall that the greatest common divisor d of two nonzero
integers a and b, denoted by gcd(a, b), can be written as

d = gcd(a, b) = ra+ lb,

for certain nonzero integers r and l. Let

M =

 r l

− b
d

a

d

 ,
1Usually the definition of Hermite Normal Form requires the diagonal entries to

be positive and any nondiagonal entries to have absolute values that are strictly
smaller than the diagonal entry in the same column. This restriction, though ben-
eficial from a computational point of view, is not enforced here.
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then det(M) = 1, and

M

[
a
b

]
=

 r l

− b
d

a

d

[ a
b

]
=

[
d
0

]
.

Similar to using Givens rotation to produce zeros in a matrix for its QR
factorization, the matrix M can be used to upper triangularize V as follows.
For v ∈ Zn, let a and b be its i-th and j-th (nonzero) components where
i < j, that is,

v =



...
a
...
b
...


→ i-th

→ j-th.

With d = gcd(a, b), let

(7.18) U(i, j) =

1
. . .

1

r l

1
. . .

1

− b
d

a
d

1 . . .

1





ith

jth

ith jth
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in which all empty entries are zero. Clearly, U(i, j) is an integer matrix with
|det(U(i, j))| = 1 and

U(i, j)v =



...
d
...
0
...


i-th

j-th
.

Thus multiplication on the left by a series of matrices in the form of U(i, j)
in (7.18) can successively produce zeros in the lower triangular part of the
matrix V , resulting in an upper triangular matrix. Let U be the product of
all those U(i, j)’s. Then with |detU | = 1, and since UV is upper triangular,
we may solve the system

(7.19) (zU )V = zUV = b

in (C∗)n by forward substitutions. And the total number of solutions in
(C∗)n is

| det(UV )| = |det(U)| · | det(V )| = |det(V )|.

By letting y = zU for each solution z of (7.19) in (C∗)n, we obtain |det(V )|
number of solutions of the system (7.12) in (C∗)n. One can show that all
those solutions are nonsingular. �

Now, by (7.10), following paths y(t) of the homotopy Hα(y, t) = 0
in (7.8) that emanate from kα, as in (7.13), isolated zeros in (C∗)n of the
binomial start system Hα(y, 0) = 0 in (7.11), yields kα isolated zeros of the
system Q(x) in (7.2) when t = 1. Moreover, a different α̂ = (α, 1) ∈ Qn+1

associated with its corresponding collection of pairs that satisfy condition
(A) will induce a different homotopies Hα(y, t) = 0 in (7.9). Following cor-
responding solution paths of those different homotopy equations will reach
different sets of isolated zeros of Q(x). Those different sets of isolated zeros
of Q(x) are actually disjoint from each other, and they hence provide

∑
α kα

isolated zeros of Q(x) in total. To see they are disjoint, let paths yα
(1)

(t)

of Hα(1)

(y, t) = 0 and yα
(2)

(t) of Hα(2)

(y, t) = 0 for α(1) = (α
(1)
1 , . . . , α

(1)
n )

and α(2) = (α
(2)
1 , . . . , α

(2)
n ) ∈ Qn reach the same point at t = 1, then their

corresponding homotopy paths x(t) = y(t)tα of Q̂(x, t) = 0 are the same
since zeros of the system Q(x) = Q̂(x, 1) are isolated and nonsingular. Thus,
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x(t) = yα
(1)

(t)tα
(1)

= yα
(2)

(t)tα
(2)

implies

(7.20) 1 = lim
t→0

yα
(1)

j (t)

yα
(2)

j (t)
tα

(1)
j −α

(2)
j , for each j = 1, . . . , n,

and therefore, α
(1)
j = α

(2)
j for all j = 1, . . . , n.

On the other hand, when ω = (ω1, . . . , ωn) is a generic lifting, by Propo-
sition 6.16, it induces a fine mixed subdivision S′ω of S′ = (S′1, ..., S

′
n). It

is easy to see that the collection of pairs Cα = ({a1,a
′
1}, . . . , {an,a′n}) with

{aj ,a′j} ⊂ S′j for each j = 1, . . . , n satisfies condition (A) with (α, 1) ∈ Qn+1

if and only if it is a cell of type (1, . . . , 1) in S′ω, and, by (6.13),

(7.21) Voln(Cα) =

∣∣∣∣∣∣∣det

a>1 − a′>1
...

a>n − a′>n


∣∣∣∣∣∣∣ =: κα.

By Theorem 6.13, the mixed volumeM(S′1, . . . , S
′
n), the root count of Q(x)

in (C∗)n, is the sum of the volume of all cells Cα. That is,

M(S′1, . . . , S
′
n) =

∑
α

kα.

In other words, each isolated zero of Q(x) lies at the end of certain homotopy
path of the homotopy Hα(y, t) = 0 induced by certain α̂ = (α, 1) ∈ Qn+1

along with its corresponding collection of pairs that satisfy condition (A).
A key step in the procedure described above for solving system Q(x)

is the search for all those vectors α̂ = (α, 1) ∈ Qn+1 as well as their associ-
ated cells Cα = ({a1,a

′
1}, . . . , {an,a′n}) that satisfy condition (A). This step

turns out to be the main bottleneck in the polyhedral homotopy method for
solving polynomial systems. We shall address this important issue in the
next section.

In conclusion, we list the polyhedral homotopy procedure.

Polyhedral Homotopy Procedure

Given polynomial system P (x) = (p1(x), . . . , pn(x)) with support S =
(S1, . . . , Sn), let S′ = (S′1, . . . , S

′
n) where S′j = Sj ∪ {0} for j = 1, . . . , n.
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Step 0. Initialization: Choose polynomial system Q(x) = (q1(x), . . . ,
qn(x)) having support S′ = (S′1, . . . , S

′
n) and generically chosen coeffi-

cients. Write

qj(x) =
∑
a∈S′j

cj,ax
a, j = 1, . . . , n.

Step 1. Solve: Q(x) = 0
Step 1.1: Construct the functions ωj : S′j → Q, j = 1, . . . , n, with

generic images.
Step 1.2: Find all the cells Cα = ({a1,a

′
1}, . . . , {an,a′n}) of type

(1, . . . , 1) with α ∈ Qn and {aj ,a′j} ⊂ S′j , j = 1, . . . , n, in the fine
mixed subdivision Sω of S′ = (S′1, . . . , S

′
n) induced by ω = (ω1, . . . ,

ωn). (The algorithm for this step will be described in detail in §8)
Step 1.3: For each α ∈ Qn and its associated cell Cα obtained in

Step 1.2.
Step 1.3.1: Solve the binomial system

cj,ajy
aj + cj,a′jy

a′j = 0, j = 1, . . . , n

in (C∗)n. Let the solution set be X∗α.
Step 1.3.2: Follow homotopy paths y(t) of the homotopy equa-

tion Hα(y, t) = (hα1 (y, t), . . . , hαn (y, t)) = 0 with

hαj (y, t) =
∑
a∈S′j

cj,ay
at〈â,α̂〉−βj , j = 1, . . . , n,

where βj = 〈âj , α̂〉, starting from the solutions in X∗α. Collect
all the points of y(1) as a subset of isolated zeros of Q(x).

Step 2: Solve P (x) = 0
Follow homotopy paths of the homotopy

H(x, t) = (1− t)cQ(x) + tP (x) = 0 for generic c ∈ C∗

starting from the solutions of Q(x) = 0 obtained in Step 1 to reach all
isolated solutions of P (x) = 0 at t = 1.

Remark 7.2. As we can see in the above procedure, in order to find all
isolated zeros of P (x) in Cn, there are k =M(S′1, . . . , S

′
n) homotopy paths

need to be followed in both Step 1.3 and Step 2, hence 2k paths in total.
This work may be reduced in half by the following strategy:
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For

pj(x) =
∑
a∈S′j

c̄j,ax
a, j = 1, . . . , n,

we select the coefficients cj,a’s of qj(x), j = 1, . . . , n at Step 0 to be c̄j,a +
εj,a, where εj,a’s are generically chosen small numbers to ensure each qj(x)
is in general position. And at Step 1.3.2, we follow homotopy paths of the
homotopy equation H̄α(y, t) = (h̄α1 (y, t), . . . , h̄αn (y, t)) = 0, where

(7.22) h̄αj (y, t) =
∑
a∈S′j

[c̄j,a + (1− t)εj,a]yat〈â,α̂〉−βj , j = 1, . . . , n.

It can be shown that the starting system H̄α(y, 0) = 0 of this homotopy
retain the same binomial system as before which was solved at Step 1.3.1
(with different coefficients of course). Most importantly, since H̄α(y, 1) =
H̄α(x, 1) = P (x), Step 2 in the above procedure is no longer necessary and
we only need to follow k paths.

However, in following the solution paths of H̄α(y, t) = 0 by the
prediction-correction method, the first step of the predictor at t = 0 can-
not be taken if a power of t in H̄α(y, t) is less than one, since H̄α

t (y, t)
would then be undefined at t = 0. If the minimum power of t in (7.22) is,
say, t0.01 then changing variables with T = t0.01 would solve the immediate
problem. But it would replace numerical stability and computational effi-
ciency if large powers of t, such as t1,000, were also contained in H̄α(y, t).
Then the tangent vector ẏ = (H̄α

y )−1 ∗ H̄α
t would contain the terms in the

order of 100, 000 ∗ t99,999 which, if evaluated at any t ∈ [0, 1), would give
0. Close to 1, however, the tangent vector would become extremely steep,
and step sizes for following the homotopy path must be correspondingly
minuscule. Actually, while these sorts of problems already exist when “the
polyhedral step” and “the linear step” are split as implemented earlier, they
become multiply amplified when the combined polyhedral-linear homotopy
is used. Ironically, notwithstanding the number of paths needed to be fol-
lowed was cut in half by combining the polyhedral and linear steps, the
difference between the computing times of the two approaches is almost
negligible most of the time.

This problem was successfully addressed in [53] by applying the transfor-
mation s=ln t in (7.22), resulting in the homotopy H̄α(y, s)=(h̄α1 (y, s), . . . ,
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h̄αn (y, s)) = 0, s ∈ (−∞, 0] where

(7.23) h̄αj (y, s) =
∑
a∈S′j

[c̄j,a + (1− es)εj,a]yaes∗(〈â,α̂〉−βj), j = 1, . . . , n.

We now need to follow the solution paths of H̄α(y, s) = 0 from s = −∞ to
0. For this purpose, a crucial observation here is, by a simple computation,
one can show that for a solution path y(s) of H̄α(y, s) = 0

lim
s→−∞

dy

ds
= 0.

Hence, the values of y(s) stay close to constant for negative s of large
magnitude. Please see [53] for details.

Combining linear and nonlinear homotopies to reduce the number of
solution paths needed to be followed in the polyhedral homotopy method
by half was originally suggested back in [58]. However this idea was not
successfully implemented earlier because of the involved numerical stability
and efficiency problems. Addressing those difficulties by the transformation
s = ln t and parameterizing the solution path by s ∈ (−∞, 0] [53], a substan-
tial improvement in algorithmic efficiency and stability has been achieved as
evidenced by the results of intensive numerical experiments. This combina-
tion strategy is particularly important when the polyhedral homotopies are
used to solve large problems where mixed volumes of the systems are more
than millions.

8. Mixed cell enumeration algorithm

Having discussed in the last section, a key step in the polyhedral homotopy
for solving polynomial system P (x) = (p1(x), . . . , pn(x)) in Cn with support
S = (S1, . . . , Sn) is the identification of all the vectors α̂ = (α, 1) ∈ Qn+1 as
well as their associate pairs ({a1,a

′
1}, . . . , {an,a′n}) that satisfy condition

(A). For simplicity, we now assume all p′js have constant terms, namely
Sj = Sj ∪ {0} for j = 1, . . . , n:

As mentioned before, those pairs {a1,a
′
1}, . . . , {an,a′n} with α̂ = (α, 1) ∈

Qn+1 in condition (A), denoted by Cα = (C1, . . . , Cn) with Cj = {aj ,a′j} ⊂
Sj for j = 1, . . . , n, is actually a fine mixed cell of type (1, . . . , 1) in the sub-
division Sω of S = (S1, . . . , Sn) induced by the lifting ω = (ω1, . . . , ωn). On
the other hand, by (6.13), the volume of Cα is
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Voln(Cα) =

∣∣∣∣∣∣∣det

a′>1 − a>1
...

a′>n − a>n


∣∣∣∣∣∣∣ .

Moreover, by Theorem 6.13, the mixed volumeM(S1, . . . , Sn) of S=(S1, . . . ,
Sn) is the sum of the volumes of all mixed cells Cα of type (1, . . . , 1) in
Sω. Therefore, when all those mixed cells are available, the mixed volume
M(S1, . . . , Sn) can be assembled with little extra computational effort. Here,
let us reemphasize the critical role those pairs {a1,a

′
1}, . . . , {an,a′n} play in

the construction of the polyhedral homotopy as we have seen in the last
section.

There is a substantial body of works devoted to the problem of enumer-
ating all the mixed cells (e.g. [16, 18, 29, 30, 52, 59, 71, 77, 78, 106, 109]) In
this section, we shall present an algorithm given in [59] for finding all those
important mixed cells and their associated vectors α̂ = (α, 1) ∈ Qn+1.

In detail, a mixed cell of type (1, . . . , 1) in the subdivision Sω of S =

(S1, . . . , Sn) induced by the lifting ω=(ω1, . . . , ωn) is an n-tuple ({a(1)
1 ,a

(1)
2 },

. . . , {a(n)
1 ,a

(n)
2 }) with {a(j)

1 ,a
(j)
2 } ⊂ Sj , j = 1, . . . , n, for which there exists a

vector α̂ = (α, 1) ∈ Qn+1 such that

(8.1)


〈â(1)

1 , α̂〉 = 〈â(1)
2 , α̂〉 < 〈â, α̂〉 for all a ∈ S1\{a(1)

1 ,a
(1)
2 }

...
...

〈â(n)
1 , α̂〉 = 〈â(n)

2 , α̂〉 < 〈â, α̂〉 for all a ∈ Sn\{a(n)
1 ,a

(n)
2 }

where for each a ∈ Sj , â = (a, ωj(a)) ∈ Ŝj is its “lifted” version in Rn+1.
One of the most efficient class of algorithms for enumerating mixed cells

is developed from the idea of systematic “extension of subfaces”. In the
following, the concept of “subfaces” and their extensions will be defined
first. A computational procedure, known as the “one-point test”, for test-
ing the possibilities of subface extensions will then be elaborated in detail
in §8.2. Using one-point test as the basic building block, a mixed cell enu-
meration algorithm can then be constructed. At this stage, the algorithm is
quite straightforward, and is far from computational efficiency. Four crucially
important techniques provided in §8.3, §8.4, §8.5, §8.6 substantially accel-
erate the process. §9 generalizes the algorithm to handle the “semi-mixed”
cases.
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8.1. Enumeration via extensions of subfaces

Instead of finding n-tuples ({a(1)
1 ,a

(1)
2 }, . . . , {a

(n)
1 ,a

(n)
2 }) with {a(j)

1 ,a
(j)
2 } ⊂

Sj , j = 1, . . . , n, to satisfy (8.1) directly, the scheme of our enumeration
constructs the mixed cells by adding one point at a time. The idea is, one
first focuses on the first lifted support Ŝ1 and locates all its lower vertices,

that is, collecting every a
(1)
1 ∈ S1 for which there exists an α ∈ Qn such that

〈â(1)
1 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1

where α̂ = (α, 1). Then for each of these points, one continues to search for

a
(1)
2 ∈ S1 \ {a(1)

1 } for which there exists an α ∈ Qn such that

〈â(1)
1 , α̂〉 = 〈â(1)

2 , α̂〉 < 〈â, α̂〉 for all a ∈ S1 \ {a(1)
1 ,a

(1)
2 } .

This “extends” a lower vertex of Ŝ1 to a lower edge of Ŝ1. To proceed, each
of these possibilities of lower edges of Ŝ1, in turn, allows for the search of an

additional point a
(2)
1 ∈ S2 such that

〈â(1)
1 , α̂〉 = 〈â(1)

2 , α̂〉 < 〈â, α̂〉 for all a ∈ S1 \ {a(1)
1 ,a

(1)
2 }

〈â(2)
1 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ S2.

.

This search, again, corresponds to the geometric action of pairing a lower
edge of Ŝ1 and a lower vertex of Ŝ2 so that the two may share a common
upward pointing inner normal vector in Rn+1. Similarly, for each of the
resulting positive possibilities further search attempts will be carried out
to extend them to a pair of lower edges of Ŝ1 and Ŝ2, and they share a
common upward pointing inner normal vector in Rn+1. This self-sustaining
process can proceed until one reaches all the possible n-tuples of lower edges
of Ŝ1, . . . , Ŝn that share a common upward pointing inner normal vector in
Rn+1 which are exactly the lifted set of all mixed cells of type (1, . . . , 1).

To formalize the above description, we first define, for k ≥ 0, a k-
dimensional lower face of conv Ŝ1, or simply a lower k-face, to be an affinely

independent set of k + 1 points {â(1)
0 , . . . , â

(1)
k } in Ŝ1 for which there exists

an α̂ = (α, 1) ∈ Qn+1 such that{
〈â(1)

0 , α̂〉 = 〈â(1)
j , α̂〉 for j = 1, . . . , k

〈â(1)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1 \ {a(1)

0 , . . . ,a
(1)
k }.
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Extending this notion to two supports, we define a (k1, k2)-subface of (Ŝ1, Ŝ2)
(a special case of the more general Definition 8.1 given below) to be a pair

of affinely independent subsets ({â(1)
0 , . . . , â

(1)
k1
}, {â(2)

0 , . . . , â
(2)
k2
}) of Ŝ1 and

Ŝ2 respectively for which there exists an α̂ = (α, 1) ∈ Qn+1 such that

〈â(1)
0 , α̂〉 = 〈â(1)

j , α̂〉 for j = 1, . . . , k1

〈â(1)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1 \ {a(1)

0 , . . . ,a
(1)
k1
}.

〈â(2)
0 , α̂〉 = 〈â(2)

j , α̂〉 for j = 1, . . . , k2

〈â(2)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ S2 \ {a(2)

0 , . . . ,a
(2)
k2
}.

Such a (k1, k2)-subface actually identifies a pair of k1-dimension and k2-
dimension lower faces of conv Ŝ1 and conv Ŝ2 respectively that share a com-
mon upward pointing inner normal in Rn+1 .

More generally, we may define a (k1, . . . , kr)-subface of (Ŝ1, . . . , Ŝr), for
some r ≤ n, in a similar fashion:

Definition 8.1. A (k1, . . . , kr)-subface of (Ŝ1, . . . , Ŝr) is a r-tuple of affinely
independent sets of the form( {

â
(1)
0 , . . . , â

(1)
k1

}
, . . . ,

{
â

(r)
0 , . . . , â

(r)
kr

} )
with each â

(i)
j ∈ Ŝi for which there exists an α̂ = (α, 1) ∈ Qn+1 such that

for each i = 1, . . . , r,

(8.2)

{
〈â(i)

0 , α̂〉 = 〈â(i)
j , α̂〉 for j = 1, . . . , ki

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ Si \ {a(i)

0 , . . . ,a
(i)
ki
}

(where the equality only appears if ki ≥ 1). Furthermore, we say a subface
extends another subface if the former one can be obtained by joining the
latter with a single point.

Remark 8.2. In this section, we focus on searching for mixed cells of type
(1, . . . , 1). Thus, ki = 1 for all i = 1, . . . , n in the above definition. However,
for later use, k′is are allowed to be 0 or bigger then 1.

Interpreted geometrically, a (k1, . . . , kr)-subface of (Ŝ1, . . . , Ŝr) consists
of r lower faces of conv Ŝ1, . . . , conv Ŝr having dimensions k1, . . . , kr respec-
tively which share a common upward pointing inner normal. In particular,
a (k)-subface of Ŝ1 defines a lower k-face of conv Ŝ1.
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An observation of great importance is that since each point in a subface
corresponds to an additional equality constraint in (8.2) algebraically, a
subset of a subface must also be a subface. After all, a solution α̂ of (8.2)
would still be a solution if certain equality constraints were removed. We
state the essence of this observation as a proposition.

Proposition 8.3. Given a subface (F1, . . . , Fr) of (Ŝ1, . . . , Ŝr), any k-tuple
(F ′1, . . . , F

′
k) of sets such that k ≤ r and F ′1 ⊆ F1, . . . , F

′
k ⊆ Fk is a subface

of (Ŝ1, . . . , Ŝk).

With the notion of subfaces, the basic scheme for searching mixed cells
can then be stated as the systematic extension of (0)-subfaces to (1)-subfaces
and then to (1, 0)-subfaces, etc. The process terminates when one reaches
all the (1, . . . , 1)-subfaces of (Ŝ1, . . . , Ŝn) which are precisely the mixed cells
of type (1, . . . , 1) in lifted form.

8.2. Extension of subfaces via one point test

In this subsection, we will elaborate a technique, known as the “one-point
test”, for testing the possibilities of subface extensions. It is the basic tool
for our mixed cell enumeration algorithm. Originally developed in [59], this
simple procedure has since been adopted by most software packages for
mixed cell enumerations.

First, a simple transformation of (8.2) will greatly simplify the following
discussions: Consider the system of inequalities

〈â0, α̂〉 = 〈â1, α̂〉
〈â0, α̂〉 ≤ 〈â2, α̂〉 .

By introducing a new variable h to represent the common values of 〈â0, α̂〉
and 〈â1, α̂〉, then the above system becomes

h = 〈â0, α̂〉 = 〈a0,α〉+ ω(a0)

h = 〈â1, α̂〉 = 〈a1,α〉+ ω(a1)

h ≤ 〈â2, α̂〉 = 〈a2,α〉+ ω(a2)

or

〈−a0,α〉+ h = ω(a0)

〈−a1,α〉+ h = ω(a1)

〈−a2,α〉+ h ≤ ω(a2)

in which the new unknowns (α, h) = (α1, . . . , αn, h) appear only on the left-
hand-side. This is a more preferred form in discussing systems of inequali-
ties. With a similar transformation, (8.2) can also be put into such forms:

For affinely independent sets F1 = {â(1)
0 , . . . , â

(1)
k1
}, . . . , Fr = {â(r)

0 , . . . , â
(r)
kr
}
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where â
(i)
j ∈ Ŝi for each j = 0, . . . , ki, we associate a system of inequalities

in the variables (α1, . . . , αn, h1, . . . , hr) ∈ Qn+r:

(8.3) I (F1, . . . , Fr) :



〈
−a

(1)
j ,α

〉
+ h1 = ω1(a

(1)
j ) for j = 0, . . . , k1〈

−a(1),α
〉

+ h1 ≤ ω1(a(1)) for all a(1) ∈ S1

...
...〈

−a
(r)
j ,α

〉
+ hr = ωr(a

(r)
j ) for j = 0, . . . , kr〈

−a(r),α
〉

+ hr ≤ ωr(a(r)) for all a(r) ∈ Sr.

With α̂ = (α, 1) = (α1, . . . , αn, 1) ∈ Rn+1, this system is equivalent to (8.2),
and therefore, (F1, . . . , Fr) is a subface if and only if I (F1, . . . , Fr) has
a solution. Namely, (F1, . . . , Fr) is a (k1, . . . , kr)-subface of (Ŝ1, . . . , Ŝr) is
equivalent to the feasibility of the system I (F1, . . . , Fr). Notice that this
formulation makes it possible to consider cases where Fj = { }, an empty
set, for some j, indicating there is no equality constraints in the correspond-
ing blocks in (8.3).

With this setup, the possibility of extending a lower subface by a single
point can then be determined by solving a linear programming problem
known as a “one-point test”.

Definition 8.4 (One-point test). Given affinely independent sets F1, . . . ,

Fr with each Fi = {â(i)
0 , . . . , â

(i)
ki
} ⊆ Ŝi (possibly empty) for which I(F1, . . . ,

Fr) is feasible, and a point b̂ ∈ Ŝr \ Fr, the one-point test of b with respect
to (F1, . . . , Fr) is the linear programming problem

(8.4)

Maximize 〈−b,α〉+ hr

subject to



〈−a
(1)
j ,α〉+ h1 = ω1(a

(1)
j ) for j = 0, . . . , k1

〈−a(1),α〉+ h1 ≤ ω1(a(1)) for all a(1) ∈ S1

...
...

〈−a
(r)
j ,α〉+ hr = ωr(a

(r)
j ) for j = 0, . . . , kr

〈−a(r),α〉+ hr ≤ ωr(a(r)) for all a(r) ∈ Sr

which will be denoted by LP (F1, . . . , Fr ; b̂).
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Clearly, if the maximum of this problem agrees with ωr(b), then the
equality

〈−b,α〉+ hr = ωr(b)

is valid in addition to the above constraints. Accordingly, the (k1, . . . , kr)-
subface (F1, . . . , Fr) can be extended to (k1, . . . , kr+1)-subface (F1, . . . , Fr∪
{b̂}). On the other hand, if the maximum is strictly less than ωr(b), then
I(F1, . . . , Fr ∪ {b̂}) is infeasible, hence (F1, . . . , Fr ∪ {b̂}) fails to extend
(F1, . . . , Fr).

Remark 8.5. For the efficiency in actual implementations, the auxiliary
variables h1, . . . , hr can be eliminated by substitution. For example, using

the equality 〈−a(1)
j ,α〉+h1 =ω1(a

(1)
j ), or h1 =ω1(a

(1)
j )+〈a(1)

j α〉, all appear-
ances of the auxiliary variable h1 in the rest of the system can be replaced

by ω1(a
(1)
j ) + 〈a(1)

j α〉, and hence being eliminated.

To demonstrate the subface extension using one-point tests, let ({â1, â2},
{b̂1}) be a subface of (Ŝ1, Ŝ2) and b̂2 ∈ Ŝ2, the one-point test of b̂2 with
respect to this subface is the linear programming (LP) problem LP ({â1, â2},
{b̂1}; b̂2) in the unknowns (α1, . . . , αn, h1, h2) given by

Maximize 〈−b2,α〉+ h2

subject to



〈−a1,α〉+ h1 = ω1(a1)

〈−a2,α〉+ h1 = ω1(a2)

〈−a,α〉+ h1 ≤ ω1(a) for all a ∈ S1

〈−b1,α〉+ h2 = ω2(b1)

〈−b,α〉+ h2 ≤ ω2(b) for all b ∈ S2.

Note that the constraints of this LP problem restrict the objective function
〈−b2,α〉+ h2 to be bounded above by ω2(b2). When the maximum reaches
this upper bound, then I({â1, â2}, {b̂1, b̂2}) is also feasible, and the subface
({â1, â2}, {b̂1}) can be extended to ({â1, â2}, {b̂1, b̂2}). Similarly, additional
one point tests can also be carried out to extend this newly obtained subface
to other subfaces. Using such one-point test as the basic building tool, the
algorithm for mixed cell enumeration via systematic extension of subfaces
of Ŝ1, . . . , Ŝn can be constructed. We summarize this basic algorithm here:

Step 1: Starting from supports S1, . . . , Sn, one assigns lifting functions
ωk : Sk → Q for k = 1, . . . , n with random images.
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Step 2: A (0)-subface is obtained by solving the so-called phase-one
problem (will be discussed in §8.3.2). This can be achieved by solving
an augmented LP problem (8.8).

Step 3: Continue from the 0-subfaces, one proceeds to enumerate (1)-
subfaces by solving one-point test problems of the form (8.4). The
resulting (1)-subfaces, if any, are saved in a pool.

Step 4a: For each (

r−1︷ ︸︸ ︷
1, . . . , 1, 0)-subface in the pool involving points in

S1, . . . , Sr, further one-point tests are attempted using points in Sr to

extend it to an (

r︷ ︸︸ ︷
1, . . . , 1, 1)-subface. If successful, the resulting subfaces

are saved in the pool. If r = n, then the new subfaces are mixed cells.

Step 4b: For each (

r︷ ︸︸ ︷
1, . . . , 1)-subface in the pool with r < n, further one-

point tests are attempted using points from the next support to extend

it to a (

r︷ ︸︸ ︷
1, . . . , 1, 0)-subface. If successful, the resulting subfaces are also

saved in the pool.

Step 4a and 4b are repeated until all subfaces in the pool have been
extended, at this stage all mixed cells have been located.

However, algorithms employing one-point tests for subface extensions in
a straightforward manner may become quite inefficient. At the first sight,
there are so many one-point tests need to be carried out, especially when
the system is large. Fortunately, by the development of more advanced tech-
niques, not all one-point test problems need to be solved in the subface
extension algorithms. Those will be the subjects of the following subsec-
tions. All these techniques have been proven to be indispensable in efficient
implementation of our mixed cell enumeration algorithms.

8.3. Accelerated extension via simplex method

As mentioned above, for a subface (F1, . . . , Fr) with Fi = {â(i)
0 , . . . , â

(i)
ki
} ⊆

Ŝi and b̂ ∈ Ŝr \ Fr the one-point test of b̂ with respect to (F1, . . . , Fr) is a
linear programming problem LP (F1, . . . , Fr ; b̂) (8.4) of the form
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Maximize 〈−b,α〉+ hr

subject to



〈−a
(1)
j ,α〉+ h1 = ω1(a

(1)
j ) for j = 0, . . . , k1

〈−a(1),α〉+ h1 ≤ ω1(a(1)) for all a(1) ∈ S1

...
...

〈−a
(r)
j ,α〉+ hr = ωr(a

(r)
j ) for j = 0, . . . , kr

〈−a(r),α〉+ hr ≤ ωr(a(r)) for all a(r) ∈ Sr.

While such linear programming problems can be solved by various methods,
in our cases the classical simplex method offers a great advantage because
the rich information generated by “pivoting process” in the simplex method
enables the discovery of solutions to many other related one-point test prob-
lems without actually solving them.

8.3.1. Simplex method. The simplex method in the context of one-
point test is briefly reviewed below, and the details can be found in stan-
dard texts, e.g., [10]. For simplicity, for some fixed k, we consider the linear
programming problems of the form

(8.5)

Maximize 〈f,x〉+ f0

subject to

{
〈cj ,x〉 ≤ αj , for j = 1, . . . ,m

〈qj ,x〉 = γj , for j = 1, . . . , `

in the variables x = (x1, . . . , xk) ∈ Qk where f ∈ Qk defines the objective
function and {cj}, {qj} ⊂ Qk are the constraints. Here we allow ` to be zero
in which case there are no equality constraints.

In the context of one-point tests (8.4), the equality constraints q1, . . . ,q`
correspond to the points in the subfaces while the inequality constraints
c1, . . . , cm correspond to the remaining points in the supports involved. The
objective function corresponds to the point being tested. Note that since
the objective function also appears as one of the inequality constraints, this
problem, if feasible, must be bounded.

When the simplex method is used to solve the linear programming prob-
lem (8.5), it is customary, for historical as well as practical reasons, to convert
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the problem into the “standard form”

Minimize 〈d,y〉

subject to

Ay = b

y ≥ 0

for some vector d and some n× (m+ `) matrix A with n < m+ `. However,
for our needs, it is critically important to solve the problem in the form given
in (8.5) directly as described in §8.3.2, §8.3.3 and §8.3.4 which utilize special
features of this formulation.

The set R of all points x ∈ Rk satisfying the constraints of (8.5) is called
the feasible region of the LP problem, and the problem is said to be infeasible
if its feasible region is empty. For a feasible LP problem, the simplex method
is a particular way to move within the feasible region that will maximize the
objective function: It jumps from one vertex to another vertex along edges
in the direction that increases the objective function until the optimum is
reached. See the illustration in Figure 14.

Feasible reg.

x∗

x′

Figure 14. The simplex method jumps from one basic feasible solution to
another basic feasible solution on the boundary of the feasible region.

We now translate this geometric procedure back to algebraic terms: at a
feasible point x ∈ R, a constraint in (8.5) is said to be active if the equality
holds. A basic feasible solution of R is a point in R where exactly k con-
straints are active and these constraints are linearly independent. They are
the vertices of R. The basic matrix at a basic feasible solution is the k × k
matrix whose rows are the active constraints, therefore the basic matrix must
be nonsingular. A basic feasible solution, i.e., a vertex, is a point where at
least k edges meet. We shall see the directions of these k edges are given by
the columns of the inverse of the basic matrix at this point.

Remark 8.6. In general, it is certainly possible for more than k edges
to meet at a vertex. However, in the current context, it is easy to check
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under the assumption that the lifting values are generic in the sense of
Definition 6.14, exactly k edges meet at each vertex.

Feasible reg.

x∗

−d2−d1

Figure 15. Columns −d1 and −d2 in −D = −B−1 point to the direction of
the edges leaving x∗ while staying inside R.

For a basic feasible solution x∗ of (8.5) let

B =

 b1
...

bk


be the basic matrix at x∗ where {bj}kj=1 ⊂ {cj}mj=1 ∪ {qj}`j=1 are the active
constraints (equalities in the system). Also, let βj be the entry in {αj}mj=1 ∪
{γj}`j=1 corresponding to bj (the right-hand-side of the corresponding con-
straint in (8.5)). Then x∗ is the unique solution of the nonsingular linear
system

〈b1,x
∗〉 = β1

...

〈bk,x∗〉 = βk.

LetD = [d1, . . . ,dk] = B−1, then by definition 〈bi,dj〉 = 0 for any i 6= j. Fix
any j in {1, . . . , k}, and consider the ray x∗ − tdj for t > 0 that originate at
x∗ and points to the direction of −dj . Clearly, for any i 6= j,

〈bi , x∗ − tdj〉 = 〈bi , x∗〉 − t 〈bi , dj〉 = 〈bi , x∗〉 − t · 0 = βi.

That is, any point on this ray still satisfies all but the j-th equation in the
above linear system. Moreover,

〈bj , x∗ − tdj〉 = 〈bj , x∗〉 − t 〈bj , dj〉 = βj − t.
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That is, the j-th active constraint becomes inactive (but is still valid). Geo-
metrically, this ray pointing to the −dj direction leaves the j-th active con-
straint at x∗ while maintaining the rest of the active constraints. See, for
example, the two-dimensional illustration in Figure 15.

Clearly, to stay inside the feasible region, movement is only allowed in
the direction dj corresponding to an inequality constraint among c1, . . . , cm.
Along each of these directions dj , the objective function becomes

〈f,x∗ − tdj〉+ f0 = 〈f,x∗〉 − t 〈f,dj〉+ f0

which we intend to maximize. It increases for t > 0 when 〈f,dj〉 < 0. If
〈f,dj〉 ≥ 0 for all dj corresponding to the inequality constraints among
c1, . . . , cm, then x∗ is an optimal solution of (8.5). Otherwise, the simplex
method moves along one of these directions which increase the objective
function to an adjacent basic feasible solution. This maneuver is commonly
known as pivoting. While having multiple directions along which the objec-
tive function could increase is possible, it is sufficient to choose the direction
with the largest per unit increment with respect to the increment of t.

To reach the adjacent basic feasible solution, the step size along the ray
x∗ − tdj is chosen to be the minimum t > 0 for which another previously
inactive constraint becomes active, namely,

(8.6) ∆t = min

{〈ci,x∗〉 − αi
〈ci,−dj〉

∣∣∣∣ ci is inactive and 〈ci,dj〉 < 0

}
.

This minimum step size always exists in the context of one-point tests (cer-
tainly not in general linear programming problems), since the objective func-
tions in problems of the form (8.4) are bounded above. With this chosen step
size, a new basic feasible solution x′ := xj(∆t) = x∗ −∆tdj is produced with
an increased value of the objective function, and this process can be repeated
until an optimal solution is reached.

8.3.2. Solving the phase-one problem. In the above, we described the
simplex method for solving linear programming problem of the form (8.4) by
jumping from one basic feasible solution to another basic feasible solution
until an optimum solution is reached. This part is known as the “phase
two” of the simplex method. To bootstrap this process, one must determine
the feasibility of the problem in the first place, and if it is indeed feasible,
one must locate a basic feasible solution to start the phase two process.
This bootstrapping step is generally referred to as the “phase one” of the
simplex method. While, in general, solving the phase one problem can be
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very costly [10], the phase one problems for one-point test problems are
somewhat straightforward due to their special structure.

Consider first a one-point test of the form LP ( { }; b̂) which is the start-
ing point of the mixed cell enumeration process via extensions of subfaces.
It is a linear programming problem

(8.7)
Maximize 〈−b,α〉+ h1

subject to 〈−a,α〉+ h1 ≤ ω1(a) for all a ∈ S1

for some b ∈ S1.

Feasible reg.

x0

Figure 16. The initial solution with dashed lines representing artificial con-
straints.

This problem is always feasible, since by choosing an arbitrary M ∈ Q
with M < ω1(a) for all a ∈ S1, (α, h1) = (0,M) is obviously a feasible point
of this linear programming problem.

For simplicity, we assume the feasible region to be full-dimensional, since
the method discussed here can be trivially extended to cases where the
feasible region is contained in a affine space of lower dimension by simply
restricting all the pivoting procedures to within that affine space.

To find a basic feasible solution to start the pivoting process, notice that
the feasible solution x0 = (α, h1) = (0,M) is not a basic feasible solution
since none of the equalities hold. However, we may look at the following
problem instead

(8.8)

Max 〈−b,α〉+ h1

subject to



〈−a,α〉+ h1 ≤ ω1(a) for a ∈ S1

α1 = 0

α2 = 0

...

αn = 0

h1 = M.
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where the last n+ 1 constraints are artificially imposed. Clearly, x0 is a basic
feasible solution of this augmented problem since exactly n+ 1 equalities
hold. The pivoting process can now be used on (8.8) to remove the artificially
imposed constraints one at a time until a basic feasible solution of (8.7) is
reached. Therefore, the phase one problem can be solved by exactly n+ 1
pivots.

Feasible reg.

Figure 17. Solving the phase one problem by leaving the artificial constraints
one at a time.

From the geometric standpoint, this process first moves the initial solu-
tion x0 from the interior of the feasible region to an n-dimensional (co-
dimension 1) face on the boundary of the feasible region by leaving an
artificial constraint, say α1 = 0, and then to an (n− 1)-dimensional (co-
dimension 2) face on the boundary by leaving another artificial constraint,
say α2 = 0, etc. Since we have assumed the feasible region to be full-
dimensional, eventually this process will reach a vertex on the boundary
at which all n+ 1 artificially imposed constraints are removed. Figure 17 is
a 2-dimensional illustration of this process.

For general one-point tests, when the maximum for LP (F1, . . . , Fr; b̂)
agrees with ωr(b), then the basic feasible solution that reaches the optimum
of this problem is also a basic feasible solution of LP (F1, . . . , Fr ∪ {b}; b′)
for any b′ ∈ Sr. In simple terms, the optimum solution of the one-point
test that produces a new subface successfully is a basic feasible solution of
all one-point tests with respect to this subface involving the same set of
supports.

For one-point tests involving different supports, their phase one prob-
lem is still easy to solve. Let (α∗, h∗1, . . . , h

∗
r) be a basic feasible solution

of I(F1, . . . , Fr) resulted from other one-point test. There are exactly n+ r
equalities hold in I(F1, . . . , Fr) at this point. Let

h∗r+1 = min {ωr+1(b)− 〈−b,α〉 | b ∈ Sr+1}
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then one equality holds among

〈−b,α∗〉+ h∗r+1 ≤ ωr+1(b)

for all b ∈ Sr+1. Therefore, the point x′ = (α∗, h∗1, . . . , h
∗
r , h
∗
r+1) is a basic

feasible solution of LP (F1, . . . , Fr ; b̂r+1) for any br+1 ∈ Sr+1 since exactly
n+ r + 1 equalities hold at this point, matching the number of unknowns.

The combined cascade effects ensure that through extensions, a basic
feasible solution for any one-point test can always be obtained easily from an
optimum solution of an “upstream” one-point test in the extension process.

8.3.3. Harvesting information generated in simplex method. A
big advantage in adopting the above simplex method is when the one-point
test problem (8.4) is solved by this method, rich information generated by
the pivoting process is particularly fruitful.

To illustrate this, we begin with the simplest case: Let the one-point test
LP ( { } ; â′) on a′ ∈ S1 (the starting points of the mixed cell enumeration
procedure) be given by

Maximize
〈
−a′,α

〉
+ h1

subject to 〈−a,α〉+ h1 ≤ ω1(a) for all a ∈ S1.

Let x∗ = (α∗, h∗1) ∈ Rn+1 be a basic feasible solution (not necessarily opti-
mal) visited during the pivoting process in the simplex method (e.g. a vertex
in Figure 14). By definition, there are exactly n+ 1 equalities hold. Sup-
pose a0, . . . ,an are the points in S1 correspond to those equalities. Then
x∗ = (α∗, h∗1) satisfies

〈−a0,α
∗〉+ h∗1 = ω1(a0)

...

〈−an,α
∗〉+ h∗1 = ω1(an)

〈−a,α∗〉+ h∗1 ≤ ω1(a) for all a ∈ S1.

Evidently, it also satisfies I({â0}) given by

〈−a0,α
∗〉+ h∗1 = ω1(a0)

〈−a,α∗〉+ h∗1 ≤ ω1(a) for all a ∈ S1

since the feasible region of this system contains the feasible region of the pre-
vious system. Thus, without any additional computation, I({â0}) is feasible.
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Similarly, I({â1}), . . . , I({ân}) are all feasible. Furthermore, x∗ = (α∗, h∗1)
satisfies

〈−a0,α
∗〉+ h∗1 = ω1(a0)

〈−a1,α
∗〉+ h∗1 = ω1(a1)

〈−a,α∗〉+ h∗1 ≤ ω1(a) for all a ∈ S1.

Therefore I({â0, â1}) is also feasible. Indeed, by the same reasoning, for
any subset F ⊆ {â0, . . . , ân}, I(F ) is always feasible and hence produces the
subface F of Ŝ1. Thus the need for performing corresponding one-point tests
is completely eliminated. It is important to note that all these eliminations
are due virtually to the information generated by a single vertex.

In general, when the above simplex method is used to solve the one-
point test LP (F1, . . . , Fr; b̂) for some b ∈ Sr, every basic feasible solution
visited in the pivoting process could potentially reveal the existence of a
large number of subfaces: Suppose x∗ = (α∗, h∗1, . . . , h

∗
r) is a basic feasi-

ble solution of LP (F1, . . . , Fr; b̂) and b1, . . . ,bm ∈ Sr are the points cor-
responds to the equalities that hold at x∗ within the block for Sr. Then for
any F ′ ⊆ {b̂1, . . . , b̂m} \ Fr, the system I(F1, . . . , Fr ∪ F ′) must be feasible,
indicating the existence of the subface (F1, . . . , Fr ∪ F ′).

Since much of this section is focusing on the algorithms for finding mixed
cells of type (1, . . . , 1), therefore only subfaces of the form (F1, . . . , {b̂j , b̂k})
where bj ,bk ∈ {b1, . . . ,bm} would be of interest. However, the great value
of utilizing combinations of the equalities at a basic feasible solution would
become apparent in §9 where general types of mixed cells are needed.

8.3.4. Removal of extraneous constraints. In solving one-point test
problems via the simplex method described above, a significant portion of
computation lies in the step (8.6) which goes through each constraint to
find the appropriate step size for moving from one basic feasible solution to
another. Indeed, when the number of points in the supports is large, this step
generally dictates the overall cost of this approach. An important resolution
is the possibility of removing a substantial amount of constraints in (8.4),
without affecting the final result of course.

If it is known a priori that certain constraints will never become active
during the pivoting process, then the solution remains the same when those
constraints are removed. In the mixed cell enumeration process, if a one-
point test LP (F1, . . . , Fr ; b̂) fails, then there are no points in the feasi-
ble region of LP (F1, . . . , Fr ; b̂) which satisfy 〈−b,α〉+ hr = ωr(b). This
can only occur when the entire feasible region lies in the interior of {α :
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Feasible reg.

Figure 18. An extraneous constraint having no intersection with the feasible
region.

〈−b,α〉+ hr < ωr(b)}. See Figure 18 for a simple two-dimensional illus-
tration. Consequently, the constraint 〈−b,α〉+ hr ≤ ωr(b) cannot become
active in any linear programming problems having the same feasible region
and therefore can be removed from one-point tests LP (F1, . . . , Fr ; b̂′) for
any b′. In other words, each failed one-point test LP (F1, . . . , Fr ; b̂) (in the
sense that it does not produce an extension) of b̂ with respect to the sub-
face (F1, . . . , Fr) can eliminate the constraint corresponding to b from all
one-point tests with respect to the same subface. Furthermore, since the
extension of subfaces essentially amounts to imposing additional constraints
to the system of equalities (8.3) resulting in the restriction of their feasible
regions, so the constraint 〈−b,α〉+ hr ≤ ωr(b) can also be removed from
one-point tests with respect to any subfaces containing (F1, . . . , Fr).

The removal of extraneous constraints of this sort cumulatively yields a
substantial reduction in the amount of computation. Other way of remov-
ing extraneous constraints is further exploited by the construction of the
“relation table” to be discussed in §8.5.

Remark 8.7. Since the simplex method solves linear programming prob-
lems by visiting vertices of the feasible region, the removal of such extraneous
constraints which can never be active has no effect on the important tech-
nique for harvesting information generated by the pivoting process described
in §8.3.3.

8.4. Quick eliminations of extensions

As formulated in (8.3), in the systematic extensions of lower subfaces, the
main event is the testing of the feasibilities of systems of inequalities of the
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form

I (F1, . . . , Fr) :



〈−a
(1)
j ,α〉+ h1 = ω1(a

(1)
j ) for j = 1, . . . , k1

〈−a
(1)
j ,α〉+ h1 ≤ ω1(a

(1)
j ) for all a ∈ S1

...
...

〈−a
(r)
j ,α〉+ hr = ωr(a

(r)
j ) for j = 1, . . . , kr

〈−a
(r)
j ,α〉+ hr ≤ ωr(a(r)

j ) for all a ∈ Sr

in the unknowns (α, h1, h2, . . . , hr) ∈ Qn+r. Recall that after a (1)-subface
F1 of (Ŝ1) is obtained, the extension process continues as systematic attempts
of extending a solution of I(F1) to a solution of I(F1, {b̂}) for some b ∈ S2.
If it is successful, further attempts are made to extend the solution to
I(F1, {b̂, b̂′}). This self-sustaining process continues until all the mixed cells
are obtained.

In the context of the above system of inequalities, each extension step is
the inclusion of an additional group of constraints. An important observation
is that certain extensions that will fail can sometimes be detected without
executing the corresponding one-point tests, and hence avoiding a great
deal of computations. This section gives a geometric interpretation of this
observation. Originally introduced in [78], it has inspired several variations
which are adopted by DECiMs[77], MixedVol-2.0[52], and MixedVol-3.0[16].

C x ≤ ω

x∗

Figure 19. The feasible region of the original system of inequalities C x ≤ b
together with a feasible solution for which two equalities hold.

8.4.1. The effect of adding a single constraint. We first look at a
simplified scenario where a single new constraint is added to a system of
inequalities known to be feasible. That is, for a system of inequalities C x ≤
ω in the variables x = (x1, . . . , xm) for some fixed integer m > 1 having a
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C x ≤ ω

γ> x ≤ δ

(a) (Infeasible) With the
new constraint, the system
becomes infeasible.

γ>x ≤ δ

C x ≤ ω

(b) (Feasible & inactive)
With the new constraint,
the system is still feasible
but the new constraint can
never be active.

C x ≤ ω

γ> x ≤ δ

(c) (Feasible & active) With
the new constraint, the sys-
tem is still feasible, and the
new constraint may become
active.

Figure 20. Three possible ways an additional constraint can change the fea-
sibility of a system of inequalities that is known to be feasible.

vertex x∗ in its feasible region (solution set), we shall investigate the possible
solution to the extended system

(8.9)

[
C
γ>

]
x ≤

[
ω
δ

]
where γ ∈ Rm, δ ∈ R, and γ>x ≤ δ represents a single new constraint.

The addition of the new constraint can change the feasibility in three
different ways:

Infeasible: With the new constraint added, the new system of inequal-
ities may become infeasible if the feasible region of C x ≤ ω has no
intersection with that of γ> x ≤ δ. Figure 20a is a depiction of this
case.

Feasible, but never active: If the entire feasible region of C x ≤ ω is
strictly contained in the feasible region of the new constraint γ> x ≤
δ and does not intersect with the hyperplane defined by γ> x = δ,
then the new system is still feasible, but the new constraint can never
become active. See Figure 20b for a two-dimensional illustration of the
situation.

Feasible, and possibly active: Finally, if the feasible region of C x ≤
ω intersects with the hyperplane defined by γ> x = δ, then the new
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system is still feasible and the new constraint may become active at
some basic-feasible-solution of the new system.

Of the most importances are the first two cases (infeasible and feasible-
but-never-active), since they signify that certain extensions are impossible.
Therefore if those two cases can be simply detected, then one can immedi-
ately eliminate the need to carry out the actual extension attempts, avoid-
ing the most computationally intensive part of the mixed cells enumeration
algorithm.

8.4.2. Detecting the infeasible case. Consider the first case where
inclusion of the new constraint renders the extended system (8.9) infea-
sible. Note that a vertex x∗ = (x∗1, . . . , x

∗
m) of the feasible region defined by

Cx ≤ ω is a point in that region where the equality holds for at least m
linearly independent constraints. The basic matrix at this point is then the
m rows of C corresponding to those constraints. Let B be the basic matrix
at the vertex x∗, and let D = [d1, . . . ,dm] = B−1. Then each of the vectors
−d1, . . . ,−dm points to a direction one can move within the feasible region
and keep all but one equalities unchanged. With this understanding, if x∗ is
not in the feasible region of the new system of inequalities and each possible
direction one may follow to leave x∗ points away from the feasible region
of the new constraint γ> x ≤ δ, then the new system must be infeasible, as
illustrated by the example in Figure 21. Algebraically, if

1) γ> x∗ > δ, and

2) 〈γ,−di〉 > 0,

C x ≤ ω

x∗

−d2−d1

γ> x ≤ δ

Figure 21. The feasible region of the original system of inequalities C x ≤ ω
together with a feasible solution for which two equalities hold.



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 223 — #105 i
i

i
i

i
i

Homotopy continuation method 223

then the new system (8.9) is infeasible. This can be verified very quickly and
only local information at a basic-feasible-solution x∗ of Cx ≤ ω is used.

8.4.3. Detecting the feasible-but-never-active case. Similarly, with
B being the basic matrix of Cx ≤ ω at the basic feasible solution x∗ and
D = [d1, . . . ,dm] = B−1, then each of the vectors −d1, . . . ,−dm points to
a direction one can move within the feasible region and keep all but one
equalities unchanged. If x∗ is already in the interior of the new constraint
γ>x ≤ δ, then the extended system (8.9) is feasible since x∗ is already a
feasible solution (actually a basic-feasible-solution).

Additionally, if each possible direction one is allowed to leave x∗ points
into the interior of the feasible region of the new constraint γ> x ≤ δ, then
this new constraint can never become active, that is, the equality γ> x = δ
can never hold within the feasible region of (8.9). Figure 22 shows a two
dimensional illustration of this case.

Algebraically, if

1) γ> x∗ ≤ δ, and

2) 〈γ,−di〉 ≤ 0 for each i = 1, . . . ,m,

then the new system (8.9) is feasible, but the new constraint γ>x ≤ δ will
never become active.

C x ≤ ω

x∗

−d2−d1

γ> x ≤ δ

Figure 22. The feasible region of the original system of inequalities C x ≤ ω
together with a feasible solution for which two equalities hold.

8.5. Relation tables

A simple yet effective data structure that can reinforce the technique dis-
cussed in §8.3.3 on quickly eliminating lower subfaces that cannot exist from
the extension process is known as the relation table.

In the construction of (8.3), each point imposes an additional con-
straint. Therefore, for two tuples (F1, . . . , Fr) and (F ′1, . . . , F

′
r) with r ≤
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T (1, 1)

T (1, 2)

T (1, 3)

T (2, 2)

T (2, 3) T (3, 3)

...
...

...

T (1, n) T (2, n) T (3, n)

. . .

· · · T (n, n)

Figure 23. Relation table

n and Fi, F
′
i ⊆ Ŝi, if F ′i ⊇ Fi for each i, then the system of inequalities

I(F ′1, . . . , F
′
r) is a restriction of I(F1, . . . , Fr) in the sense that the feasible

region of I(F ′1, . . . , F
′
r), if nonempty, is contained in the feasible region of

I(F1, . . . , Fr). Consequently, if I(F1, . . . , Fr) is not feasible, nor is I(F ′1, . . . ,
F ′r).

In particular, for a pair of points a ∈ Si and b ∈ Sj , if I({â}, {b̂}) (or

I({â, b̂}) when i = j) is infeasible, then no lower subfaces containing both
points can exist. Subsequently, this information directly eliminates a large
number of candidates for one-point tests and greatly reduces the amount
of computation. The relation table is the data structure that encodes this
pairwise relation between points. It consists of pairwise relation subtables
T (i, j) between supports Si and Sj for all 1 ≤ i ≤ j ≤ n as shown in Fig-
ure 23. Each subtable T (i, j), in turn, encodes the pairwise relationships
between points of Si and Sj in the following sense:

Definition 8.8. Given two points a and a′ in the same support Si for
some i, we say these two points are related if the system of inequalities
I({â, â′}), defined in (8.3), is feasible, namely, if {â, â′} defines a lower edge
of Ŝi. Similarly, given points a ∈ Si and a′ ∈ Sj for i 6= j, we say these two
points are related if the system of inequalities I({â}, {â′}) is feasible, that
is if ({â}, {â′}) is a lower (0, 0)-subface of (Ŝi, Ŝj).
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[a1,a2]

[a1,a3]

[a1,a4]

[a2,a3]

[a2,a4] [a3,a4]

...
...

...

[a1,ami ] [a2,ami ] [a3,ami ]

. . .

· · · [ami ,ami ]

(a) A example of diagonal subtable
T (i, i) of the relation table

[a
(i)
1 ,a

(j)
1 ]

[a
(i)
1 ,a

(j)
2 ]

[a
(i)
2 ,a

(j)
1 ]

[a
(i)
2 ,a

(j)
2 ]

[a
(i)
3 ,a

(j)
1 ]

[a
(i)
3 ,a

(j)
2 ]

· · ·

· · ·

· · ·

...
...

...
...

[a
(i)
mi ,a

(j)
1 ]

[a
(i)
mi ,a

(j)
2 ]

[a
(i)
1 ,a

(j)
mj ][a

(i)
2 ,a

(j)
mj ][a

(i)
3 ,a

(j)
mj ] [a

(i)
mi ,a

(j)
mj ]

. . .

(b) A example of non-diagonal subtable
T (i, j) of the relation table

Figure 24. Examples of subtables of the relation table

The subtable T (i, j) has rows corresponding to points in Si and columns
corresponding to points in Sj . Denote the entry on table T (i, j) located

at the row containing a
(i)
l and column containing a

(j)
m by [a

(i)
l ,a

(j)
m ]. Set

[a
(i)
l ,a

(j)
m ] = 1 if a

(i)
l and a

(j)
m are related and [a

(i)
l ,a

(j)
m ] = 0 otherwise.

As noted in §8.2, the feasibility of systems of the form I({â, â′}) as
well as I({â}, {â′}) can be determined via one-point tests. In particular, for
the subtables T (i, i) on the diagonal of the whole relation table, the entry

[a
(i)
l ,a

(i)
m ] can be determined by solving the linear programming problem

LP ({â(i)
l } ; â

(i)
m ):

Maximize 〈−a(i)
m ,α〉+ h

subject to


〈
−a

(i)
l ,α

〉
+ h = ωi(a

(i)
l )

〈−a,α〉+ h ≤ ωi(a) for all a ∈ Si.

If the maximum reaches ωi(a
(i)), then [a

(i)
l ,a

(i)
m ] = 1, otherwise [a

(i)
l ,a

(i)
m ] =

0. Similarly, for subtables T (i, j) with i 6= j, the entry [a
(i)
l ,a

(j)
m ] can be

determined by solving the linear programming problem LP ({â(i)
l } ; â

(j)
m ):
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Maximize 〈−a(j)
m ,α〉+ h2

subject to


〈−a

(i)
l ,α〉+ h1 = ωi(a

(i)
l )

〈−a,α〉+ h1 ≤ ωi(a) for all a ∈ Si
〈−a,α〉+ h2 ≤ ωj(a) for all a ∈ Sj .

Note that one-point tests of this type involve two supports and therefore the
technique described in §8.4 can be used to quickly eliminate a large number
of such extensions and thus filling in 0 entries in the relation table without
actually performing one-point tests. Conversely, the important technique
described in §8.3 for quickly revealing positive extensions in the process of
solving the one-point test problem also applies here. It can fill in many 1’s
in the relation table without solving the corresponding one-point test prob-
lems. Actually, most entries in T (i, j) are known by these two techniques;
therefore, the relation table can usually be filled out relatively fast even
having a large number of entries. Moreover, as noted in §8.3.2, the poten-
tially costly “phase one” aspect of these linear programming problems can
be avoided in most cases. In fact, the phase one problems only need to be
solved once. (See §8.3.2 for details.)

Once filled, the relation table is a great data structure for significantly
reducing the computation cost in the following three ways. First, the pair-
wise relation enables the elimination of a substantial number of one-point

tests. As a simple example, let ({â(1)
1 , â

(2)
1 }) be a (1)-subface of Ŝ1. If a

point b ∈ S2 has either [a
(1)
1 ,b] = 0 or [a

(1)
2 ,b] = 0, then the one-point test

LP ({â(1)
1 , â

(2)
1 } ; b̂) will be bound to fail, since by Proposition 8.3, if ({â(1)

1 },
{b̂}) or ({â(1)

2 }, {b̂}) are not subfaces, the tuple ({â(1)
1 , â

(1)
2 }, {b̂}) can never

be a subface. In general, for a subface (F1, . . . , Fr), a point b in one of the
remaining supports Sr+1, . . . , Sn having [a(i),b] = 0 for any â(i) ∈ Fi, i =
1, . . . , r can be eliminated from the extension process as it is impossible
to have an extension containing both (F1, . . . , Fr) and b̂. This event alone
greatly reduces the number of one-point tests expected to be carried out.
Secondly, as explained in §8.3.4, in solving each one-point test problem
LP (F1, . . . , Fr ; b̂), we can remove all constraints corresponding to those

points a
(`)
m ∈ S` for ` = 1, . . . , r whose relations with any â

(i)
k ∈ Fi are known

to be negative, that is, [a
(`)
m ,a

(i)
k ] = 0. Finally, for a given subface (F1, . . . , Fr),

if there is a support S` in which the number of points having positive relation
with all points in F1, . . . , Fr is less than 2, then the progressive extensions on
this subface will eventually terminates, and therefore all extension attempts
start from this subface can be eliminated.
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8.6. Support ordering

The mixed volume is clearly independent of the ordering of the supports.
That is, for any permutation (S′1, . . . , S

′
n) of (S1, . . . , Sn),

M(S′1, . . . , S
′
n) =M(S1, . . . , Sn).

Similarly, the permutation of components of mixed cells gives rise to mixed
cells of the permuted supports. More precisely, if D is a fine mixed subdivi-
sion of the supports (S1, . . . , Sn), then for any permutation σ of n objects,
{σ(C1, . . . , Cn) | (C1, . . . , Cn) ∈ D} is a fine mixed subdivision of σ(S1, . . . ,
Sn). It follows that any support ordering can be used in the mixed cell
emulation via the process of subface extensions discussed above.

However, from a computational standpoint, because the possibility of
further extensions of subfaces can be eliminated at any (especially early)
stage of the extension process, the ordering of the supports generally has a
profound effect in the overall cost of the computation.

Normally, it is beneficial to choose the support ordering so that there
are a smallest number of starting points for the extension process.2 This can
be achieved by examining the relation table. Before the attempts to extend
a (k1, . . . , kr)-subface to a (k1, . . . , kr, 0)-subface, a potentially large number
of points in Sr+1, . . . , Sn can be removed from consideration by information
provided by the relation table, as explained in §8.5. Complementing this with
the techniques described in §8.4 which can instantly eliminate even more
extension possibilities in Sr+1, . . . , Sn will greatly reduce the number of one-
point tests in most practical problems. Consequently, a much refined tally
of potential candidates for further extensions from each of the remaining
supports Sr+1, . . . , Sn is available. A novel idea, initiated in [77, 78], was the
realization that at this stage the optimal choice for the next support would
be the support with the least amount of remaining potential candidates for
successful extension attempts from the current subface. Similar decisions

2The opposite choice may be useful in other contexts. In [16] which focuses on
performing mixed cell enumeration on computer clusters with potentially a large
number of processors, the support with the largest number of (1)-subface (which are
the starting point of the extension process) is often chosen to be the first support
S′
1 to maximize the initial parallelism. This is of particular importance in cases

where some support has a small number of possible (1)-subfaces. For example, if
the first support is chosen so that there are only two (1)-subfaces then using these
two subfaces as starting points, the all but two processors (in a computer cluster)
must stay idle, wasting CPU-time, until more possibility for extension has been
discovered.
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are made at every stage of the extension process whenever a new support
is needed. In this way, the support ordering is chosen dynamically at a
subface level, and different route in the extension can use different support
orderings. As reported in [52] and [77], such a dynamic ordering of the
supports has a remarkable effect in the overall efficiency, it substantially
reduces the total amount of one-point tests needed in the mixed volume
computation. This idea has been incorporated into MixedVol-2.0 [52] as well
as many implementations after that (e.g. [16] and [15]).

9. Mixed volume and mixed cells of semi-mixed systems

A polynomial system P (x) = (p1(x), . . . , pn(x)) with x = (x1, . . . , xn) and
support S = (S1, . . . , Sn) is called semi-mixed of type (k1, . . . , km) when
the supports Sj ’s are not all distinct, but they are equal within m blocks of
sizes k1, . . . , km, i.e., there are m sets S(1), . . . , S(m) ⊂ Nn0 such that S(i) =
Si1 = · · · = Siki where

Sil ∈ {S1, . . . , Sn} for 1 ≤ i ≤ m, 1 ≤ l ≤ ki,

and k1 + · · ·+ km = n. P (x) is called unmixed if m = 1, that is, all the S′js
are identical, and fully mixed if m = n, that is, all the S′js are distinct. We

abbreviate S = (S(1), k1;S(2), k2; . . . ; S(m), km), and Q = (Q(1), k1;Q(2), k2;
. . . ;Q(m), km), with Q(i) = convS(i) for i = 1, . . . ,m. Let P (i)(x) be the
subsystem of polynomials in P (x) = (p1(x), . . . , pn(x)) having support S(i).
Namely, each polynomial of P (i)(x) can be written as

(9.1) pil(x) =
∑

a∈S(i)

cilax
a for 1 ≤ i ≤ m, 1 ≤ l ≤ ki.

For further abbreviation, when no ambiguities exist, we write S = (S(1), . . . ,
S(m)) and P (x) = (P (1)(x), . . . , P (m)(x)) at times.

We may, of course, solve a semi-mixed polynomial system P (x) =
(P (1)(x), . . . , P (m)(x)) in Cn by employing the standard polyhedral homo-
topy procedure in §7 without taking the semi-mixed structure of its supports
into account. However, if a special attention is paid to this particular struc-
ture, a revised polyhedral homotopy procedure can be developed with a great
reduction in the amount of computation, especially when P (x) is unmixed,
such as the 9-point problem in mechanism design [114].

To calculate the mixed volume of a semi-mixed system with support
S = (S(1), k1; S(2), k2; . . . ;S(m), km) alternatively, recall that with Q(i) =
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convS(i) for i = 1, . . . ,m the mixed volume M(Q(1), k1;Q(2), k2; . . . ;
Q(m), km) is the coefficient of

∏k1
j=1 λ1,j · · ·

∏km
j=1 λm,j in the expansion of

the homogeneous polynomial

Voln

 m∑
i=1

ki∑
j=1

λijQ
(i)

 = Voln

 m∑
i=1

 ki∑
j=1

λij

Q(i)

 .

Let

βi =

ki∑
j=1

λi,j for i = 1, . . . ,m,

then the above expression becomes

R(β1, . . . , βm) := Voln(β1Q
(1) + β2Q

(2) + · · ·+ βmQ
(m))

which is a homogeneous polynomial of degree n in the βi’s. Notice that by
the multinomial expansion,

βki =

 ki∑
j=1

λij

k

=
∑

t1+···+tki=k

k!

t1! · · · tki !

ki∏
j=1

λ
tj
ij .

Therefore a monomial in βi’s can be expanded as

βr11 · · ·βrmm =

m∏
i=1

 ∑
ti1+···+tiri=ri

ri!

ti1! · · · tiki !

ki∏
j=1

λ
tij
ij

 .

Clearly, such an expansion involves the monomial
∏m
i=1

∏ki
j=1 λi,j precisely

when ti,j = 1 for all i = 1, . . . ,m and j = 1, . . . , ki which yields ri =
∑ki

j=1 ti,j

=
∑ki

j=1 1 = ki. Therefore in

R(β1, . . . , βm) = R

 k1∑
j=1

λ1,j

 , . . . ,

 km∑
j=1

λm,j

 ,

only the monomial βk11 · · ·βkmm involves
∏m
i=1

∏ki
j=1 λi,j and it appears with

coefficient k1! · · · km!. We thus have the following:

Proposition 9.1. For semi-mixed system P (x) = (P (1)(x), . . . , P (m)(x))
with support S = (S(1), k1;S(2), k2; . . . ;S(m), km), the mixed volume
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M(Q(1), k1; Q(2), k2; . . . ;Q(m), km) is the coefficient of βk11 · · ·βkmm in the
polynomial

Voln(β1Q
(1) + β2Q

(2) + · · ·+ βmQ
(m))

multiplied by k1! · · · km!.

To utilize this knowledge in mixed volume computation, we shall slightly
extend the framework of cells in which the mixed subdivision is defined for
the Minkowski sum of polytopes in previous sections. With S(j) being a
finite subset of Nn0 for j = 1, . . . ,m, and m ≤ n, a cell of the m-tuple S =
(S(1), . . . , S(m)) is now an m-tuple C = (C1, . . . , Cm) of nonempty subsets
Cj ⊆ S(j), for j = 1, . . . ,m. With similar notations

typeC = (dim (convC1), . . . ,dim (convCm))

convC = convC1 + · · ·+ convCm

VolnC = Voln(convC),

it follows the definition:

Definition 9.2 (Fine semi-mixed subdivision). A fine semi-mixed
subdivision D of the m-tuple S = (S(1), . . . , S(m)) is a collection of cells
C = (C1, . . . , Cm) of S = (S(1), . . . , S(m)) such that

(a): dim(convC) = n for all C ∈ D;

(b): For a distinct pair A,B ∈ D, if (convA) ∩ (convB) is nonempty,
then it is a common face of both;

(c):
⋃
C∈D convC = convS1 + · · ·+ convSm;

(d1): For each cell C = (C1, . . . , Cm) ∈ D,
∑m

j=1 dim (convCj) = n

(d2): For distinct pair of cells A = (A1, . . . , Am), B = (B1, . . . Bm) ∈ D,

(convA) ∩ (convB) =

m∑
j=1

(convAj ∩ convBj);

(e): For each cell C = (C1, . . . , Cm) ∈ D, convCj is a simplex of dimen-
sion #Cj − 1 for j = 1, . . . ,m.

Notice that replacing all the m’s in the above definition by n yields
exactly the same fine mixed subdivision in Definition 6.8 for a fully mixed
system. Most importantly, the properties of fine mixed subdivisions proved
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in §6.2 can be preserved with minor adjustments. In particular, the scaling
invariance of a fine semi-mixed subdivision remains valid:

Proposition 9.3. If D is a fine semi-mixed subdivision of the m-tuple
S = (S(1), . . . , S(m)), and β = (β1, . . . , βm) ∈ (R+)m, the set

β ◦ D := {β ◦ C := (β1C1, . . . , βmCm) : C = (C1, . . . , Cm) ∈ D}

forms a fine semi-mixed subdivision of β ◦ S := (β1S
(1), . . . , βmS

(m)).

Also, similar to (6.11), the volume of β1Q
(1) + β2Q

(2) + · · ·+ βmQ
(m)

can be expressed in terms of volumes of individual cells of a fine semi-mixed
subdivision:

Proposition 9.4. If D is a fine semi-mixed subdivision of the m-tuple S =
(S(1), . . . , S(m)), and β = (β1, . . . , βm) ∈ (R+)m,

(9.2) Voln(β1Q
(1) + · · ·+ βmQ

(m)) =
∑
C∈D

βr11 · · ·βrmm Voln (convC)

where (r1, . . . , rm) denotes the type of C = (C1, . . . , Cm) ∈ D.

For a mixed cell C = (C1, . . . , Cm) in the fine semi-mixed subdivision D
of the m-tuple S = (S(1), . . . , S(m)) with type C = (r1, . . . , rm), where rj =
dim(convCj), we have, by definition, r1 + · · ·+ rm = n, and each convCj
is a simplex of dimension rj = #Cj − 1. Write Cj = {aj0, . . . ,ajrj} for each
j = 1, . . . ,m, and define the n× rj (empty when rj = 0) matrix

(9.3) V (Cj) :=
[
aj1 − aj0 · · · ajrj − aj0

]
,

and combining them to construct the block matrix

(9.4) V (C) =
[
V (C1) · · · V (Cm)

]
.

with size n× (r1 + · · ·+ rm) = n× n in which the block V (Cj) will not
appear if #Cj = 1. When D is a fine semi-mixed subdivision, similar to
(6.13), the volume of a cell C = (C1, . . . , Cm) ∈ D with type C = (r1, . . . , rm),
can be computed via the formula

Voln(C) =
1

r1! · · · rm!
| detV (C)|.

This yields the expression of the mixed volume of a semi-mixed system as a
generalization of (6.13):
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Proposition 9.5. Let D be a fine semi-mixed subdivision of the support
S = (S(1), k1; . . . ; S(m), km) of a semi-mixed system P (x) = (P (1)(x), . . . ,
P (m)(x)). The mixed volume M(Q(1), k1; . . . ; Q(m), km) of this system is

(9.5) M(Q(1), k1;Q(2), k2; . . . ;Q(m), km) =
∑
C∈D

typeC=(k1,...,km)

| detV (C)|,

with V (C) as defined in (9.4).

Moreover, similar to inducing a fine mixed subdivision for a fully mixed
system S = (S1, . . . , Sn) by a generic lifting function as described in §6.3,
the same procedure can be followed almost line by line to induce a fine
semi-mixed subdivision by a generic lifting function for the semi-mixed sup-
port S = (S(1), k1; . . . ; S(m), km) of a semi-mixed polynomial system. Hence
Proposition 6.16 can be generalized to the semi-mixed system:

Proposition 9.6 (Induced fine semi-mixed subdivision). Let ω =
(ω1, . . . , ωm) be a generic lifting function for the m-tuple S = (S(1), . . . , S(m)).
Define

Ŝ(j) := {(a, ωj(a)) : a ∈ S(j)}
for each j = 1, . . . ,m. Let D̂ω be the collection of all Ĉ = (Ĉ1, . . . , Ĉm) with
Ĉj ⊆ Ŝ(j) for each j = 1, . . . ,m such that

1) conv Ĉj is a lower face of conv Ŝ(j) for each j = 1, . . . ,m;

2) The m lower faces conv Ĉj of conv Ŝ(j) for j = 1, . . . ,m respectively
share a common inner normal of the form α̂ = (α, 1) with α = (α1, . . . ,
αn) ∈ Rn; and

3) dim (conv Ĉ1) + · · ·+ dim (conv Ĉm) = n.

Then the projections of those cells

Dω = {(π(Ĉ1), . . . , π(Ĉm))) : (Ĉ1, . . . , Ĉm) ∈ D̂ω}

form a fine semi-mixed subdivision of S = (S(1), . . . , S(m)), and it is called
the fine semi-mixed subdivision induced by the lifting function ω =
(ω1, . . . , ωm).

For cell C = (C1, . . . , Cm) ∈ Dω, the vectorα = (α1, . . . , αn) ∈ Rn above
will also be referred to as its inner normal. To emphasize their connection,
we write Cα = (C1, . . . , Cm) at times.
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For P (x) = (p1(x), . . . , pn(x)) with support S = (S1, . . . , Sn) in general
position, again we assume, for simplicity, all the pj ’s have constant terms,
namely, Sj = S′j = Sj

⋃{0} for j = 1, . . . , n. Recall that at the beginning of
the polyhedral homotopy procedure, we first assign, in Step 1.2, a generic
lifting ω = (ω1, . . . , ωn) on S = (S1, . . . , Sn). Now for semi-mixed system
P (x) = (P (1)(x), . . . , P (m)(x)) with support S = (S(1), k1; . . . ;S(m), km) and
generic cila ∈ C∗ as given in (9.1), we choose generic lifting ω = (ω1, . . . ,
ωm) on S = (S(1), . . . , S(m)) where ωj : S(j) → Q for j = 1, . . . ,m and look
at the homotopy Q(x, t) = (Q(1)(x, t), . . . , Q(m)(x, t)) = 0 where equations
in Q(j)(x, t) = 0 for 1 ≤ j ≤ m are

(9.6) qjl(x, t) =
∑

a∈S(j)

cjlax
atωj(a) = 0, 1 ≤ l ≤ kj .

Immediately, Q(x, 1) = P (x). Let Dω be the fine semi-mixed subdivision of
S = (S(1), . . . , S(m)) induced by the lifting function ω = (ω1, . . . , ωm), and
let Cα = (C1, . . . , Cm) be a cell of type (k1, . . . , km) in Dω having inner
normal α = (α1, . . . , αn) ∈ Qn. With α̂ = (α, 1) and â = (a, ωj(a)) for a ∈
S(j), the cell Cα = (C1, . . . , Cm) where Cj = {aj0, . . . ,ajkj} ⊂ S

(j) for j =
1, . . . ,m must satisfy the following condition:

(A’)

For 1 ≤ j ≤ m
〈âjl , α̂〉 = 〈âjl′ , α̂〉 for 0 ≤ l, l′ ≤ kj

and 〈â, α̂〉 > 〈âjl , α̂〉 for 0 ≤ l ≤ kj and a ∈ S(j)\Cj .

With coordinate transformation y = t−αx where yi = t−αixi for i =
1, . . . , n, equations in (9.6) becomes

qjl(yt
α, t) =

∑
a∈S(j)

cjlay
at〈â,α̂〉, 1 ≤ j ≤ m, 1 ≤ l ≤ kj .

Let

βj = min
a∈S(j)

〈â, α̂〉, j = 1, . . . ,m,

and consider the homotopy

(9.7) Hα(y, t) = (Hα
1 (y, t), . . . ,Hα

m(y, t)) = 0
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on (C∗)n × [0, 1] where for 1 ≤ j ≤ m equations in Hα
j (y, t) = 0 are

hαjl(y, t) = t−βjqjl(yt
α, t)

=
∑

a∈S(j)

cjlay
at〈â,α̂〉−βj

=
∑

a∈S(j)

〈â,α̂〉=βj

cjlay
a +

∑
a∈S(j)

〈â,α̂〉>βj

cjlay
at〈â,α̂〉−βj = 0, 1 ≤ l ≤ kj .

When t = 0, equations in Hα
j (y, 0) = 0 become, by condition (A’),

(9.8) hαjl(y, 0) =
∑

a∈Cj={aj0,...,a
j
kj
}

cjlay
a = 0, 1 ≤ l ≤ kj .

For each 1 ≤ j ≤ m, the above system consists of kj equations, each one has

the same kj + 1 monomials {yaj0 , . . . ,y
ajkj }. By applying Gaussian elimina-

tion to its kj × (kj + 1)-coefficient matrix (cjla), we can replace Hα
j (y, 0) =

0 by an equivalent binomial system

c′j11y
aj1 + c′j10y

aj0 = 0

...

c′jkj1y
ajkj + c′jkj0y

aj0 = 0.

Write

V (Cj) :=
[
aj1 − aj0 · · · ajkj − aj0

]
.

Repeating this process for each Hα
j (y, 0) = 0, j = 1, . . . ,m, and com-

bining all those binomial equations, a system of k1 + · · ·+ km = n binomial
equations in n variables is produced. This binomial system is equivalent
to the start system Hα(y, 0) = 0 of the homotopy Hα(y, t) = 0 in (9.7),
which admits |detV (Cα)| nonsingular isolated zeros in (C∗)n as shown in
Lemma 4.1 where

V (Cα) =
[
V (C1) · · · V (Cm)

]
.

Following solution paths of Hα(y, t) = 0 emanating from those isolated
zeros, we will reach |detV (Cα)| isolated zeros of P (x).
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As in Proposition 9.5, the mixed volume M(S(1), k1; . . . ;S(m), km), the
total root count of P (x) in (C∗)n, is equal to

M(S(1), k1; . . . ;S(m), km) =
∑

Cα∈Dω
type(Cα)=(k1,...,km)

| det V (C(α)) |,

Therefore, we may obtain all isolated zeros of P (x) by repeating the above
process for all cells of type (k1, . . . , km) in Dω, the fine semi-mixed subdivi-
sion of S = (S(1), . . . , S(m)) induced by the lifting function ω = (ω1, . . . , ωm).

Remark 9.7. The above procedure for the special case of m = 1 (known
as the unmixed systems) will be elaborated in §13.3 in more details.

10. Finding isolated zeros in Cn via stable cells

As remarked in the end of §4, in order to reach all isolated zeros of a polyno-
mial system P (x) = (p1(x), . . . , pn(x)) with support S = (S1, . . . , Sn) in Cn,
we need to follow k =M(S′1, . . . , S

′
n) homotopy paths, where S′j = Sj ∪ {0},

j = 1, . . . , n. By Theorem 6.5, the number k represents an upper bound for
the root count of the system P (x) in Cn. However, as shown in [43], this
bound may not be exact, and in [43] a tighter upper bound for the root count
in Cn of the system P (x) = (p1(x), . . . , pn(x)) was given. Based on this root
count, one may employ alternative algorithms to approximate all isolated
zeros of P (x) in Cn by following fewer homotopy paths. For simplicity, we
only focus on fully mixed polynomial systems.

For a given generic lifting ω = (ω1, . . . , ωn) on S′ = (S′1, . . . , S
′
n), we

write â = (a, ωj(a)) for a ∈ S′j and Ĉj = {â | a ∈ Cj} for Cj ⊂ S′j . Let α =
(α1, . . . , αn) ∈ Qn be the inner normal of cell C = (C1, . . . , Cn) in the sub-
division Dω of S = (S′1, . . . , S

′
n) induced by ω = (ω1, . . . , ωn). Such cell C =

(C1, . . . , Cn) is denoted by Cα as mentioned before. When α = (α1, . . . , αn)
is nonnegative, i.e., αj ≥ 0 for all j = 1, . . . , n, we call Cα a stable cell of
S′ = (S′, . . . , S′n) with respect to the lifting ω. The term stable cell alone,
without specification of its corresponding lifting, is reserved for stable cells
with respect to the particular lifting ω1

0 = (ω01
1 , . . . , ω

01
n ) where ω01

j : S′j → Q
for j = 1, . . . , n is defined as:

ω01
j (0) = 1 if 0 6∈ Sj
ω01
j (a) = 0 for a ∈ Sj .



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 236 — #118 i
i

i
i

i
i

236 T.-R. Chen and T.-Y. Li

Obviously, S = (S, . . . , Sn) itself is a stable cell with inner normal α =
(0, . . . , 0) (with respect to the particular lifting ω1

0 = (ω01
1 , . . . , ω

01
n )).

Definition 10.1. The stable mixed volume of S = (S, . . . , Sn), denoted
by SM(S1, . . . , Sn), is the sum of mixed volumes of all stable cells of S =
(S, . . . , Sn).

With this definition, a tighter bound for the root count of P (x) in Cn is
given in the following

Theorem 10.2 ([43]). For polynomial system P (x) = (p1(x), . . . , pn(x))
with support S = (S, . . . , Sn), the stable mixed volume SM(S1, . . . , Sn) sat-
isfies:

(10.1) M(S1, . . . , Sn) ≤ SM(S1, . . . , Sn) ≤M(S1 ∪ {0}, . . . , Sn ∪ {0}).

Moreover, it provides an upper bound for the root count of P (x) in Cn.

Based on the derivation of Theorem 10.2, it was suggested in [43] that one
may find all isolated zeros of polynomial system P (x) = (p1(x), . . . , pn(x) in
Cn with support (S1, . . . , Sn) where

pj(x) =
∑
a∈Sj

cj,ax
a, j = 1, . . . , n

by the following procedure:

Step 1: Identify all stable cells Cα = (C1, . . . , Cn) of (S1, . . . , Sn).

Step 2: For each stable cell Cα = (C1, . . . , Cn) with inner normal α =
(α1, . . . , αn) ≥ 0, find all isolated zeros in (C∗)n of the support system
Pα(x) = (pα1 (x), . . . , pαn (x)) where for j = 1, . . . , n,

(10.2) pαj (x) =
∑

a∈Cj∩Sj

cj,ax
a + εj

here, εj = 0 if 0 ∈ Sj , otherwise it is an arbitrary nonzero number.

Step 3: For each isolated zero z = (z1, . . . , zn) of Pα(x) in (C∗)n, let
z̄ = (z̄1, . . . , z̄n) where for j = 1, . . . , n,

z̄j = zj if αj = 0

z̄j = 0 if αj 6= 0.

Then z̄ is an isolated zero of P (x) = (p1(x), . . . , pn(x)).
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Inevitably, zeros z = (z1, . . . , zn) of Pα(x) will depend on ε = (ε1, . . . , εn).
However, it can be shown [43] that the transition from z to z̄ given above
actually eliminates this dependency.

In Step 2 above, when polyhedral homotopy is used to find all isolated
zeros in (C∗)n of the support system Pα(x) corresponding to the stable
cell Cα = (C1, . . . , Cn), one followsM(C1, . . . , Cn) homotopy paths. Accord-
ingly, the total number of homotopy paths one needs to follow to reach all iso-
lated zeros of P (x) in Cn equals to the stable mixed volume SM(S1, . . . , Sn),
which is strictly fewer thanM(S1 ∪ {0}, . . . , Sn ∪ {0}) in general, therefore
admitting less extraneous paths.

However, there are difficulties to implement this procedure efficiently.
First of all, types of those stable cells are undetermined. They may not
be mixed cells, cells of type (1, . . . , 1) with respect to the lifting ω1

0 =
(ω01

1 , . . . , ω
01
n ), which invalidates the algorithm we developed in §8 for find-

ing mixed cells. This makes their identification in Step 1 rather difficult.
Secondly, when polyhedral homotopy is used in Step 2 to solve Pα(x) = 0
in (C∗)n, one must find all mixed cells of a subdivision of Cα = (C1, . . . , Cn)
induced by a further generic lifting on Cα in the first place. This accumu-
lated work for all the stable cells can be very costly, which may not be
more favorable compared to solving P (x) = 0 in Cn by following the poly-
hedral homotopy procedure given in §7 directly with a generic lifting on
S′ = (S′1, . . . , S

′
n) permitting some of the homotopy paths be extraneous.

A revision of the above procedure appeared in [31]. To begin, for k ≥ 0,
let ωk0 = (ω0k

1 , . . . , ω0k
n ), be the lifting on S′ = (S′1, . . . , S

′
n) where for j =

1, . . . , n,

(10.3)
ω0k
j (0) = k if 0 6∈ Sj
ω0k
j (a) = 0 for a ∈ Sj .

It is easy to see that the set of stable cells with respect to ωk0 remains invari-
ant for different k’s. For instance, if C = (C1, . . . , Cn) is a stable cell with
respect to the lifting ωk10 with inner normal α ≥ 0, then C = (C1, . . . , Cn) is
also a stable cell with respect to the lifting ωk20 with inner normal k2k1α ≥ 0.
Denote this set of stable cells by T . Let ω = (ω1, . . . , ωn) be a generic lifting
on S′ = (S′1, . . . , S

′
n) where for j = 1, . . . , n,

(10.4)
ωj(0) = k for 0 6∈ Sj

ωj(a) = a generic number in (0, 1) for a ∈ Sj .
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For a cell C = (C1, . . . , Cn) in the subdivision of S′ = (S′1, . . . , S
′
n) induced

by the lifting ωk0 = (ω0k
1 , . . . , ω0k

n ), let ωC be the restriction of ω = (ω1, . . . ,
ωn) on C, which can, of course, be considered as a generic lifting on C =
(C1, . . . , Cn). It was shown in [31] that if k is sufficiently large, mixed cell
D = (D1, . . . , Dn) of subdivision Sω of S′ = (S′1, . . . , S

′
n) induced by the lift-

ing ω = (ω1, . . . , ωn) is also a mixed cell of subdivision SωC of certain cell
C = (C1, . . . , Cn) of Sω induced by the lifting ωC . In this situation, stable
cell C = (C1, . . . , Cn) in T can be assembled by grouping a collection of
proper cells in Sω, and consequently, mixed cells in this collection provides
all the mixed cells of subdivision SωC of C = (C1, . . . , Cn). To be more pre-
cise, when k ≥ n(n+ 1)dn [31] where d = max1≤j≤n deg pj(x), any mixed
cell D = (D1, . . . , Dn) in the subdivision Sω induced by the lifting ω =
(ω1, . . . , ωn) on S′ = (S′1, . . . , S

′
n) given in (10.4) is a mixed cell of subdivision

SωC induced by the lifting ωC of certain cell C = (C1, . . . , Cn) in the sub-
division Sωko induced by the lifting ωk0 = (ω0k

1 , . . . , ω0k
n ) on S′ = (S′1, . . . , S

′
n)

given in (10.3).
Let D∗ = (D1, . . . , Dn) be any cell in the subdivision Sω which may or

may not be of type (1, . . . , 1). Let

Dj = {aj0, . . . ,ajkj}, j = 1, . . . , n,

where k1+· · ·+kn=n. For j=1, . . . , n and a∈S′j , write â(k)=(a, ω0k
j (a)).

Let D̂j(k)={â(k) | a ∈ Dj} for j=1, . . . , n and D̂∗(k)=(D̂1(k), . . . , D̂n(k)).
Apparently, the n× (n+ 1) matrix

V (D̂∗(k)) =



â>11(k)− â>10(k)
...

â>1k1(k)− â>10(k)
...

â>n1(k)− â>n0(k)
...

â>nkn(k)− â>n0(k)


is of rank n. Let α ∈ Qn be the unique vector where α̂ = (α, 1) is in the
kernel of V (D̂∗(k)). This α is the inner normal of D∗ with respect to ωk0. Let
T (α) be the collection of all mixed cells in Sω with the same nonnegative
inner normal α with respect to ωk0 and let D = ({a10,a11}, . . . , {an0,an1})
where {aj0,aj1} ⊂ S′j for j = 1, . . . , n be any mixed cell in T (α). Let C =
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(C1, . . . , Cn) where

Cj = {a ∈ S′j | 〈â(k), α̂〉 = 〈âj0(k), α̂〉}, j = 1, . . . , n,

This cell satisfies, for j = 1, . . . , n,

〈â(k), α̂〉 = 〈b̂(k), α̂〉 for a,b ∈ Cj
〈â(k), α̂〉 < 〈d̂(k), α̂〉 for a ∈ Cj , d ∈ S′j\Cj .

It is therefore a stable cell with respect to ωk0 with inner normal α, which, as
mentioned above, is also a stable cell with respect to ω1

0 with inner normal
1
kα. In the meantime, the cells in the collection T (α) gives all the mixed
cells in the subdivision SωC of C = (C1, . . . , Cn) induced by the lifting ωC .

From what we have discussed above, the previously listed procedure
for solving system P (x) = (p1(x), . . . , pn(x)) with S = (S1, . . . , Sn) in Cn
suggested in [43] may now be revised as follows:

Step 0: Let d = max1≤i≤n deg pi(x). Choose a real number k > n(n+
1)dn at random.

Step 1: Lift the support S′ = (S′1, . . . , S
′
n) by a random lifting ω = (ω1,

. . . , ωn) as defined in (10.4) where for j = 1, . . . , n,

ωj(0) = k if 0 6∈ Sj ,
ωj(a) = a randomly chosen number in (0,1) if a ∈ Sj .

Find cells of type (1, . . . , 1) in the induced fine mixed subdivision Sω
of S′ = (S′1, . . . , S

′
n).

Step 2: For cell D = ({a10,a11}, . . . , {an0,an1}) of type (1, . . . , 1) in Sω,
let âji(k) = (aji, l) where for j = 1, . . . , n, and i = 0, 1,

l = k if aji = 0 6∈ Sj
l = 0 if aji ∈ Sj .

Form the n× (n+ 1) matrix

V =

â>11(k)− â>10(k)
...

â>n1(k)− â>n0(k)

 ,
and find the unique vector α = (α1, . . . , αn) where α̂ = (α, 1) is in the
kernel of V . This α is the inner normal of D with respect to ωk0. Let
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T (α) be the collection of all cells of type (1, . . . , 1) in Sω with the
same nonnegative inner normal α = (α1, . . . , αn) with respect to ωk0.

Step 3: (a) Choose any mixed cell D = ({a10,a11}, . . . , {an0,an1}) from
T (α), let

Cj = {a ∈ S′j | 〈â(k), α̂〉 = 〈âj0(k), α̂〉}, j = 1, . . . , n,

where â(k) = (a, l) with

l = k if a = 0 6∈ Sj
l = 0 if a ∈ Sj .

Then C = (C1, . . . , Cn) is a stable mixed cell of S′ = (S′1, . . . , S
′
n) with

respect to the inner normal α in Sωk0 . Notice that

SωC = {(D1, . . . , Dn) ∈ Sω | Dj ⊆ Cj for all 1 ≤ j ≤ n}

is the fine mixed subdivision of C induced by ωC , the restriction of ω
on C, and T (α) provides all the mixed cells of type (1, . . . , 1) in SωC .

(b) Find all the isolated zeros of the system

(10.5) Pα(x) = (pα1 (x), . . . , pαn (x),

where

pαj (x) =
∑

α∈Cj∩Sj

cj,ax
a + εj , j = 1, . . . , n,

and
εj = 0 if 0 ∈ Sj ,
εj = 1 if 0 6∈ Sj

in (C∗)n by employing the polyhedral homotopy procedure with lift-
ing ωC .

(c) For zeros e = (e1, . . . , en) of Pα(x) found in (b), let

ēj = ei if αj = 0,
ēj = 0 if αj 6= 0.

Then ē = (ē1, . . . , ēn) is a zero of P (x) in Cn.

Step 4: Repeat Step 3 for all T (α) with α ≥ 0.
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Remark 10.3. For dj = deg pj(x), j = 1, . . . , n, we may assume, without
loss, d1 ≤ d2 ≤ · · · ≤ dn. It was mentioned in [31], in Step 0 of the above
procedure, d may be replaced by d2 × · · · × dn × dn which usually results in
a much smaller number.

Remark 10.4. It is commonly known that when the polyhedral homo-
topy method is used to solve polynomial systems, large differences between
the powers of parameter t in the polyhedral homotopies may cause com-
putational instability when homotopy curves are followed. In the algorithm
above, the point 0 often receives very large lifting value k, compared to the
rest of the lifting values in (0, 1). It was shown in [31] that the stability of
the algorithm is independent of the large lifting value k when polyhedral
homotopies are used in Step 3(b).

The revised procedure listed above has been successfully implemented
in [31] with remarkable numerical results.

11. Solving nonsquare systems polynomial system
by randomization technique

By this time our discussions have been restricted to the “square” polynomial
systems where the number of variables and equations are the same. However,
nonsquare polynomial systems of the form

P (x) =


p1(x1, . . . , xn) = 0

...

pm(x1, . . . , xn) = 0

where m 6= n arise naturally in many applications. If m > n, then the num-
ber of equations is greater than the number of variables, and the system is
said to be overdetermined. If m < n, the number of equations is less than
the number of variables, the system is said to be underdetermined.

For an underdetermined system, it is commonly known that the solutions
of the system, if exist, cannot be isolated. The study of such “nonisolated”
(a.k.a. positive dimensional) solutions is the main subject of §12. In this
section, we shall only focus on overdetermined systems. In particular, one
of our main goals is to find isolated solutions, if exist, of an overdetermined
system. Among a range of different techniques, the “randomization” tech-
nique, introduced in [102], fits nicely in the “probability one” framework of
the homotopy continuation methods. A comprehensive list of the variations
on this scheme can be found in [103].
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Consider the overdetermined polynomial system P (x1, . . . , xn) = (p1(x1,
. . . , xn), . . . , pm(x1, . . . , xn)) as a column vector of m entries. A formal prod-
uct of this column vector with an n×m matrix A = (aij) with full row rank
(rankA = n)

A · P (x) =

a11 · · · a1m
...

. . .
...

an1 · · · anm


p1

...
pm

 =

a11p1 + · · ·+ a1mpm
...

an1p1 + · · ·+ anmpm


results in a vector of n entries, giving rise to a new square system of equations

(A · P )(x) :=


a11p1(x) + · · ·+ a1mpm(x)

...

an1p1(x) + · · ·+ anmpm(x)

known as a randomization of P (x).
Obviously, every solution of P (x) = 0 is also a solution of A · P (x) = 0.

Moreover, it can be shown that for generic choice of the matrix A, every
isolated nonsingular solution of the original system P (x) = 0 is an isolated
nonsingular solution of the randomization system A · P (x) = 0. One can
therefore solve the square system A · P (x) = 0 by using the homotopy con-
tinuation methods discussed in the previous sections and locate all the iso-
lated nonsingular solutions of the original system.

However, it is possible that the randomization induces extraneous solu-
tions. In particular, any x ∈ Cn for which P (x) ∈ KerA \ {0} would be a
solution of the randomized system A · P (x) = 0 but not the original system
P (x) = 0. The technique of randomization therefore transforms an overde-
termined system into a square system at the cost of introducing extraneous
solutions. These extraneous solutions can generally be filtered out easily.
Thus the handling of overdetermined system can be summarized as the fol-
lowing simple procedures:

Step 1: Choose a random (full row rank) n×m matrix and form the
square system A · P (x) of n equations in n variables.

Step 2: Solve the randomization system (A · P )(x) = 0 and collect all
the isolated nonsingular solutions.

Step 3: Filter out the extraneous solutions by checking if P (x) = 0 for
each isolated nonsingular solution x obtained in Step 2.
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12. Positive dimensional solutions

A solution x = x̂ ∈ Cn of a polynomial system P (x) = (p1(x), . . . , pm(x)) =
0 is said to be isolated if there is a neighborhood of x̂ in which x = x̂ is
the only solution of P (x) = 0. The collection of all nonisolated solutions
is known as the positive dimensional solution set of P (x) = 0. Actually,
our discussions on solving polynomial systems have only focused on finding
isolated solutions by this time.

The existence of positive dimensional solution set of P (x) = 0 is a com-
mon occurrence in application. Sometimes they are unpleasant side shows
[102] that happen with a system generated using a model for which only
the isolated regular solutions are of interest; and sometimes, the positive
dimensional solution set is of primary interest. In either case, dealing with
positive dimensional solution set is usually computationally difficult. Ini-
tiated in [102], the computation of positive dimensional solution set via
homotopy methods has been developed into a rich and active field known as
Numerical Algebraic Geometry. This section provides an overview of certain
basic concepts and techniques in Numerical Algebraic Geometry, but defer
to references for the technical detail. Readers are encouraged to consult the
books [103] and [8].

The solution set of P (x) = (p1(x), . . . , pm(x)) = 0 in Cn is known as
an algebraic set. An algebraic set can always be decomposed into a finite
union of irreducible components which are the algebraic sets that cannot
be further decomposed into nontrivial unions of other algebraic sets. Each
irreducible component has its well defined dimension and degree.3 We delay
the slightly more technical explanation of “degree” to §12.1. The concept of
“dimension”, leaving aside the formal definition, has an intuitive meaning:
It can be shown that near almost all points in an irreducible component,
the component locally looks like a neighborhood of a smooth manifold of a
fixed dimension.This dimension is the dimension of the component, and the
collection of all such points is known as the smooth part of the component.
To understand the decomposition as well as the dimension and degree of
each component via numerical methods, especially homotopy-based, is the
main object of this section.

3From the point of view of modern algebraic geometric where algebraic sets are
treat as geometric objects independent from equations describing them, the degree
of an irreducible component of an algebraic set is not an intrinsic invariant; rather,
it is a property of how the set is embedded in Cn (or projective spaces). However,
in applications, the degree is often a useful piece of information in describing and
classifying the algebraic sets.
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At first, one must be reminded of the meaning of “reduced” solution
components of P (x) = 0. In the case of an isolated solution, the “nonre-
ducedness” manifests itself as its multiplicity structure. For positive dimen-
sional solution sets, the situation is much more complex. For example, the
two equations xy = 0 and xy2 = 0 clearly define the same algebraic set in
C2, i.e., the union of two axes x = 0 and y = 0. However, this set is a nonre-
duced solution set of the equation xy2 = 0 as the x-axis, in a naive sense,
should have “multiplicity” 2 as a solution component. By and large, reduced
is synonymous with multiplicity-one, while nonreduced implies a multiplic-
ity greater than one [39, 103]. From the standpoint of numerical compu-
tation, the “nonreducedness” will significantly complicate the environment.
For simplicity, this section will focus solely on “generically reduced” posi-
tive dimensional solution sets which are solution sets that locally look like
a reduced one near all but a nowhere dense closed subset.

The discussion in this section is guided by three main questions:

• First of all, on a global scale, the question is whether there exists a
positive dimensional solution set of P (x) = 0 ? If there is, can one
obtain some sample points from each component? These are discussed
in §12.1.

• Secondly, given a solution x = x̂ ∈ Cn of the polynomial system P (x) =
0, is x̂ an isolated solution? or does it belong to a positive dimensional
solution component? This question is the subject of §12.2.

• Finally, can the global structure of the solution set of a polynomial
system (ignoring the nonreduced structure) be studied via “numerical
irreducible decomposition”? This will be discussed in §12.3.

Interestingly, the development of techniques for detecting and studying
positive dimensional solution sets has contributed new ideas to the problem
of finding isolated solutions. Of the particular importance are the Diagonal
Homotopy [101] and the Regeneration Homotopy [40] which can be used for
finding isolated solutions.

12.1. Global sampling via linear slicing

The main subject of this section is the “global sampling” of an algebraic set;
meaning, we wish to get at least one sample point on each irreducible compo-
nent. An important technique in this regard is the “linear slicing” developed
in [102]. This technique has now become one of the basic building blocks of
the emerging subject Numerical Algebraic Geometry. Geometrically, it is
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the procedure of intersecting an irreducible component with an affine space
of complimentary dimension, yielding isolated intersection points as sample
points of the component.

One of the theoretical results supports this technique is the Noether’s
Normalization Lemma [39, 95]. It essentially states that any d-dimensional
irreducible algebraic set in Cn can be realized as a “finite branched cover”
over Cd via a linear projection.

Restricted to curves (1-dimensional algebraic set), this is a familiar tech-
nique: When studying a space curve in C3, for instance, it is common to
project the curve to one of the coordinates axis, say x-axis via π(x, y, z) = x.
This projection is a “finite-to-one” surjective map, or more precisely, π−1(x)
consists of finitely many points on the curve for all x. More abstractly, via
the projection π, the curve is realized as a finite branched cover over C. In
this setup, by fixing an x value and solving the equation π(p) = x for points
p on the curve, one obtains a “cross-section” of the curve. Indeed, for almost
all choices of x, the number of complex points in π−1(x) is a fixed number,
called the degree of the curve.

Clearly, this procedure would fail if the entire curve is contained in a
plane perpendicular to the x-axis, as the projection would map the entire
curve to a single point on the x-axis while the fiber over any other point
would be empty. One important consequence of the Noether’s Normalization
Lemma is that this can happen via a projection onto some one-dimensional
subspace of C3. In fact, with projections π : C3 → C of the form

π(x, y, z) = a1x+ a2y + a3z

where a1, a2, a3 ∈ C, one can show that for generic choices of a1, a2, a3, the
map π, when restricted to the curve in question is a surjective finite-to-one
map.

This procedure can be generalized to higher dimension. For a d-
dimensional irreducible algebraic set X ⊂ Cn, we shall take similar linear
projections of X to a d-dimensional subspace: For a d× n matrix A = (aij)
of full row rank, let the linear map π : Cn → Cd be given by

(12.1) π(x) = Ax.

We are interested in the restriction π|X : X → Cd which projects X to Cd.
For a point b ∈ Cd, (π|X)−1(b) is called a linear slicing of X.

By the Noether’s Normalization Lemma, for generic choices of the matrix
A and a point b ∈ Cd, (π|X)−1(b) consists of a finite number of points in
the smooth part Xreg of X. Moreover, for almost all b ∈ Cd, the number of
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points in (π|X)−1(b) is a fixed number, called the degree of X, denoted by
degX. In such occasions, the linear slicing (π|X)−1(b) is said to be generic
with respect to X. Notice that (π|X)−1(b) is the set of intersection points
between X and the (n− d)-dimensional affine space defined by Ax = b, and
is called a generic linear slicing of X.

Algebraically, if X is an irreducible component of the solution set of the
polynomial system P (x) = 0, then (π|X)−1(b) is a subset of the solution set
of the augmented system (P (x), Ax− b), that is,

(12.2)



p1(x1, . . . , xn) = 0

...

pm(x1, . . . , xn) = 0

a11x1 + · · ·+ a1nxn = b1

...

ad1x1 + · · ·+ adnxn = bd.

Since the generic linear slicing intersects each irreducible d-dimensional com-
ponent of the zero set of P (x) = 0, among the zero-dimensional solution
set of (12.2), there is at least one point on each d-dimensional irreducible
component. It is, of course, possible for the system (12.2) to have positive
dimensional solution set. But for generic choice of A and b, these point will
not belong to any d-dimensional irreducible components. Therefore, after
solving (12.2) via homotopy methods described in the previous sections,
local dimension tests (§12.2) must be performed to filter out all nonisolated
solutions.

This procedure essentially provides the solution to the global sampling
problem: to find at least one sample point on each irreducible component of
a given dimension, and it can be summarized as the following steps:

Step 1: For the given target dimension d, pick a random d× n matrix
A ∈Md×n(C) and a random vector b ∈ Cd. With these, one constructs
the augmented “linear slicing” system (12.2).

Step 2: Solve (12.2) via numerical homotopy methods, possibly in con-
junction with randomization techniques discussed in §11 if (12.2) is
not square.

Step 3: Apply local dimension test techniques to the solutions of (12.2)
obtained and filter out nonisolated solutions. The remaining solutions
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contain at least one point on each irreducible d-dimensional component
of the solution set of the original system P (x) = 0.

Additional sample points can be generated by moving the linear slicing.
That is, one could consider the one-parameter family of linear slicings given
by At x = bt where A0 and b0 represents the linear slicing in (12.2) and the
homotopy

(12.3) H(x, t) :=

{
P (x)

At x− bt.

Then the sample points obtained by solving (12.2) are isolated nonsingular
solutions of H(x, 0) = 0 and can thus be used as the starting points of the
homotopy paths of this homotopy. As long as the linear slicing represented
by At and bt remains generic with respect to the irreducible components
for each t ∈ [0, 1], path tracking algorithms discussed in previous sections
can then be used to generate additional sample points. This technique of
“moving linear slicing” is also used for other purposes. §12.3 describes its
use in Numerical Irreducible Decomposition.

12.2. Local dimension test

Let P (x) = (p1(x), . . . , pm(x)) be a system of m polynomial equations in
the n unknowns x = (x1, . . . , xn). For simplicity, we assume m ≥ n. When a
numerical solution x0 of P (x) = 0 is obtained, we want to determine whether
x0 is an isolated solution of P (x) = 0 in the first place.

In theory, x0 distinguishes itself as an isolated nonsingular solution of
P (x) = 0 when none of the singular values of the Jacobian of P (x), denoted
by DP (x), at x0 vanish. In practical computation, one would commonly
admit x0 as an isolated nonsingular solution if the smallest singular value of
DP (x0) is not too small. When DP (x0) allows very small singular values, x0

may lie on a solution component of P (x) = 0 of positive dimension or it may
still be an isolated solution with multiplicity no less than 2. In this subsec-
tion, we give a brief discussion of a method that is capable of differentiating
those cases. More generally, the method determines the dimension of the
solution component X of P (x) = 0 to which x0 belongs. When dimX = 0,
x0 is of course an isolated solution of P (x) = 0.

The main strategy of the method can be briefly described as follows. As
noted above, when the Jacobian DP (x0) has no small singular values, then
x0 can be classified as an isolated nonsingular solution. If it permits only
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one singular value that appears very small and if x0 is not geometrically
isolated, then x0 must lie on a one dimensional solution path of P (x) =
0. We will begin to trace this path to a substantial length by a special
designed path following scheme. If this attempt fails, no such solution path
may exist and x0 will be classified as an isolated solution of P (x) = 0. When
DP (x0) has k > 1 very small singular values, we augment P (x) = 0 with
k − 1 generic hyperplanes aHi (x− x0) = 0, i = 1, . . . , k − 1, at x0. It follows
from the linear slicing elaborated in the last section, with minor adjustment,
the enlarged system

P̄ (x) =


P (x) = 0
aH1 (x− x0) = 0

...
aHk−1(x− x0) = 0

(12.4)

will produce a one dimensional solution component X̄ of P̄ (x) = 0 at x0 if
the solution component X of P (x) = 0 to which x0 belongs is of dimension
k. Thus the assertion dimX = k is accurate only if we can identify X̄ by
tracing X̄ to a satisfactory length. If this path following can not be carried
out successfully, such component X̄ may not exist. We will then remove
hyperplane aHk−1(x− x0) = 0 in (12.4) and restart our effort to identify the

one dimensional solution component ¯̄X produced by the system

¯̄P (x) =


P (x) = 0
aH1 (x− x0) = 0

...
aHk−2(x− x0) = 0.

(12.5)

The existence of such component ¯̄X implies the solution component X of
P (x) = 0 is of dimension k − 1. If it fails, the process may be continued
in the same manner and the dimension of X will ultimately (very soon in
practice) be determined. For details of the specially designed “path following
scheme”, please see [49].

The above algorithm is particularly valuable when the homotopy contin-
uation method is used to solve polynomial systems. The homotopy method
follows homotopy paths emanating from solutions of known systems and
solutions of target system lie at the end of those paths. It was widely believed
that it is non-generic for the repeated appearances of the same solution to
occur on a solution component with a positive dimension. Consequently,
a solution that repeats itself at the end of different paths will always be
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taken as a multiple isolated solution if no apparent curve jumpings exist.
It turns out the results of the algorithm show that this sort of repeated
appearances actually happens in positive dimensional solution components
frequently. For a simple example, the cyclic-4 problem [7, 107] has no iso-
lated solutions. But, by polyhedral homotopy, all 16 (= the mixed volume
of the system) homotopy paths converge to 8 particular solutions repeat-
edly, twice for each one, regardless of what starting systems were used, and
our algorithm accurately determined the correct dimension of the solution
components on each individual case.

Remark 12.1. An inevitable part of this method to determine the dimen-
sion of a solution component is the rank revealing of the Jacobian matrix
DP (x0) at the solution point x0. This can normally be achieved by comput-
ing the SVD (Singular Value Decomposition) of DP (x0) and deciding which
singular values are significantly nonzero. However, in our context the rank
deficiency of DP (x0) is usually small compared to its size. It is therefore
unnecessary to compute the full SVD which is quite expensive. One could
adopt the rank revealing technique developed in [56] which computes singu-
lar values and their associate singular vectors in ascending order from the
smallest one. By which, it needs only compute those singular values which
are smaller than the given threshold to determine the rank of DP (x0).

12.3. Numerical irreducible decomposition via
monodromy

As noted previously, the algebraic set V(P ) = {x ∈ Cn | P (x) = 0} can be
decomposed into a finite union of irreducible components each having a well
defined dimension. In other words, there is an irreducible decomposition of
the form

(12.6) V(P ) =

n⋃
d=0

Vd =

n⋃
d=0

⋃
i∈Id

Vd,i

where each Vd is the union of all d-dimensional components, each Vd,i is
an irreducible component of dimension d, and the index sets Id are finite
and possibly empty. Notice that the set of isolated zeros of P appears in
the above decomposition as the zero-dimensional components V0 with each
point being a component. The main goal here is to find a numerical irre-
ducible decomposition that mirrors the irreducible decomposition of (12.6).
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Encapsulating this process is the foundation of the new subject Numerical
Algebraic Geometry.

We shall first focus on the case of pure dimensional algebraic sets,
say Vd, in which all components have the same dimension d. We wish to
decompose Vd into the union of all d-dimensional components Vd =

⋃
i∈Id Vd,i

numerically, and expect, with the same process, other cases can be handled
dimension-by-dimension.

Since positive dimensional components contain infinitely many solution
points, a finite encoding of the components suitable for numerical computa-
tion is therefore required. The linear slicing discussed in §12.1 turns out to
be a great way to construct such an encoding which will be called “witness
sets”.

In §12.1, to answer the global sampling problem (finding at least one
point in each component), a generic linear slicing represented by L(x) =
Ax− b where A ∈M(n−d)×n and b ∈ Cn−d are used to select generic sample
points from the d-dimensional components. Let χ be the set of all isolated
nonsingular points in the linear slicing V(P (x)) ∩ V(L(x)), then for generic
choice of the slicing, χ ⊂ Vd and, among finitely many points in χ there are at
least one point on each irreducible component of Vd. Moreover, the number
of points of χ on each irreducible component is precisely the degree of the
component. The data structure W := (χ,L, P ) is called a witness set of Vd,
and it is the numerical representation of Vd. Here, the witness set W carries
extra information beyond the finite set χ. In particular, it depends on the
systems L and P . Evidently for generic choices of L, each point in W belongs
to precisely one irreducible component in Vd =

⋃
i∈Id Vd,i. To partition the

points in W by the components to attain a grouping W =
⋃
i∈IdWi so that

Wi ⊂ Vd,i, a basic tool is the monodromy technique developed in [99].
The main structure that enables this tool is the smooth part of each pos-

itive dimensional irreducible component is path connected while the smooth
parts of different components are disjoint. The monodromy technique can be
understood as a tool to achieve the partitioning of W via the construction of
paths within the smooth parts of the components joining different witness
points in the same components respectively.

For simplicity, consider a one parameter family of linear slicing L̂z of
Vd parametrized by a single complex variable z together with the family of
witness set Wz it defines. L̂z can be constructed so that for generic choices
of z ∈ C, L̂z(x) represents a linear slicing generic with respect to Vd (as
discussed in §12.1). That is, let U ⊆ C be the collection of all choices of
z for which L̂z is a linear slicing generic with respect to (the components
of) Vd, then U is open and dense in C. As z move continuously within U ,
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points in the corresponding witness sets Wz simply move accordingly while
remaining on the smooth parts of the components. Outside U , however, there
still can be a set of isolated “branch points”: as z moves across a branch
point, certain witness points in Wz may collide.

Central to the monodromy technique is the phenomenon known as non-
trivial monodromy action: As z moves along a simple loop parametrized by
γ : [0, 1]→ C with γ(0) = γ(1) that contains a branch point in its interior,
the movement of a particular witness point in Wγ(0) may trace out a path
that reaches another witness point in the same witness set Wγ(0) = Wγ(1).

Example 12.2. Consider a simple yet illuminating example of the equation
P (x, y) = x2 − y = 0 which defines a quadratic curve — a parabola — in C2.
Using the linear slicing Lz(x, y) = y − z = 0 yields the combined system

x2 − y = 0

y − z = 0.

Apparently, for any fixed value of z ∈ C and z 6= 0, there are precisely two
witness points given by (x, y) = (±√z, z) where

√
z is any branch of the

square root of z. As z → 0, the two witness points would collide, making
z = 0 a branch point.

The monodromy technique in this setting essentially lets z run in a
loop around the branch point at z = 0. Consider, for example, a small
circle of radius 1 centered at z = 0 which is parametrized by z = γ(t) =
ei 2πt with γ(0) = γ(1) = 1 (i.e., a closed loop). At t = 0, the two witness
points, as defined by (P,Lγ(0)) = (0, 0) are (x(1)(0), y(1)(0)) = (1, 1) and

(x(2)(0), y(2)(0)) = (−1, 1) respectively. As t varies from 0 to 1, the corre-
sponding witness points trace out two smooth curves which can be expressed
as

x(1)(t) = eiπt x(2)(t) = −eiπt = eiπt+π

y(1)(t) = ei2πt y(2)(t) = ei2πt.

An interesting phenomenon is that when t reaches 1, while the image of
γ(t) returns to its starting point closing the loop, the two curves traced out
by the corresponding witness points do not return to their starting points.
Indeed, x(1)(1) = x(2)(0) and x(2)(1) = x(1)(0). That is, as γ(t) (and hence
the linear slicing Lγ(t)) completes a circle around the branch point, the first
witness point (1, 1) moves accordingly and reach the second witness point
(−1, 1). Moreover, it is easy to check that for all t ∈ [0, 1], the solutions of
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(P,Lγ(t)) = (0, 0) are smooth points of V(P ) and they form a smooth curve.
This curve that connects the two witness points while staying inside the
smooth part shows that they belong to the same irreducible component.

Described formally, let W0 = Wγ(0) which consists of isolated regular

common zeros of P (x) and L̂γ(0)(x). For a witness point x(0) ∈W0, we con-

sider the path x(t) where x(0) = x(0) and

P (x(t)) = 0

L̂γ(t)(x(t)) = 0

for all t ∈ [0, 1]. Since γ(0) = γ(1), the end point x(1) must be in Wγ(1) =
W0. Note that since γ(t) ∈ U for all t ∈ [0, 1], the path x(t) is contained in
the smooth part of a irreducible component. However, if x(1) 6= x(0) then
the path x(t) connecting them (through the smooth part of a component)
provides a definitive proof that the two witness points are inside the same
irreducible component.

The monodromy technique can be summarized as the following numeri-
cally implementable steps centered around the path tracking:

Step 1: For a fixed dimension d, let W0 be the witness set of Vd in (12.6)
obtained by solving (12.2) using homotopy methods.

Step 2: A one-parameter family of linear slicings L̂z(x) : Cn → Cd, z ∈
C is constructed with the property that for a generic choice of z,
L(x) := L̂z(x) defines a linear slicing that is generic with respect to
the components of Vd. Within the set of “generic choices”, a simple
loop γ : [0, 1]→ C is chosen.

Step 3: Using witness points in W0 as starting points, one tracks the
solution paths defined by

H(x, t) :=

{
P (x) = 0

L̂γ(t)(x) = 0

for t from 0 to 1. The end points of these solution paths are necessarily
inside the same witness set W0. Most importantly, when a solution
path joining two different witness points, then these two points must
be in the same irreducible components.

Step 2 and 3 can be repeated with a different family of slicings and
potentially reveal the connectedness (via solution paths) between other
witness points. The trace test [100] can be used as a stopping criteria.
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It is certainly possible for all solution paths tracked in Step 3 to come back
to their respective starting point, that is, x(0) = x(1) leading to a “trivial
monodromy action”. Such paths, of course, provide no information concern-
ing the proper subdivision of the witness points. How to generate loops (and
family of linear slicings) that will give rise to nontrivial monodromy actions
(and produce useful information for grouping witness points) is still an open
problem (See [8, 103]).

A simple yet useful choice of loop of linear slicings can be constructed
based on a technique known as the gamma-trick [103]: For two linear slicings
L(0)(x) and L(1)(x), one constructs the one parameter family

(12.7) Lz(x) = (1− z)L(0)(x) + z L(1)(x).

Within this family, we choose the loop γ : [0, 1]→ C

(12.8) z = γ(t) =

2t for 0 ≤ t ≤ 1/2

2eiθ(t− 1)

2(eiθ − 1)(t− 1)− 1
for t > 1/2

where θ 6= 0 is a randomly chosen real number.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

Figure 25. The loop γ(t) within the one parameter family of linear slicings

Clearly, Lγ(t) form a closed loop in the space of linear slicings as t varies
from 0 to 1. Despite the somewhat complicated formula, the loop is geo-
metrically simple: On the first leg of the trip when t ∈ [0, 1/2], γ(t) simply
moves along the real axis on the complex plane from 0 to 1. The remainder

of the loop takes the form of a Mobius transformation 2eiθ(t−1)
2(eiθ−1)(t−1)−1 that

maps the line segment [1/2, 1] on the complex plane to an arc, as depicted in
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Figure 25. Since Lz(x) in (12.7) is linear in z, after substituting z(t) in (12.8)
into Lz, one can clear the denominators and obtain the simpler formulation

Lt(x) =

{
(1− 2t)L(0)(x) + 2tL(1)(x) for 0 ≤ t ≤ 1/2

(2t− 1)L(0)(x) + 2eiθ(1− t)L(1)(x) for t > 1/2.

Extensive experiences within the community of Numerical Algebraic Geom-
etry seem to suggest that this construction is sufficient in many situations
for discovering all the nontrivial monodromy actions necessary for numerical
irreducible decompositions.

13. Positive dimensional C∗-solution sets of
systems of binomial equations

The above discussion summarized the general techniques for studying posi-
tive dimensional solution sets of polynomial systems. This section highlights
special techniques for computing the positive dimensional solution set of
a subclass of polynomial systems — binomial systems. The reason behind
singling out binomial systems is threefold: First, the binomial systems arise
naturally in many applications and theoretical studies (e.g. in the context of
toric varieties). Second, specialized techniques allow much efficient handling
of large binomial systems. Finally, the description of these techniques unites
several seemingly unrelated topics discussed in previous sections which high-
lights the integral nature of this subject.

In §7 we have provided tools for finding isolated solutions of a square
binomial equations in which the number of equations matches the number
of variables in (C∗)n. This section will elaborate the techniques for studying
the positive dimensional solution set of a system of binomial equations that
may or may not be a square system.

13.1. Structure of positive dimensional C∗-solution sets of
Laurent binomial systems

We shall reuse many of the notations and concepts in §7: For positive integers
m and n, Mn×m(Z) denotes the set of all n×m matrices with integer entries.
A square integer matrix is said to be unimodular if its determinant is
±1. Note that such a matrix A ∈Mn×n(Z) has a unique inverse A−1 =

1
detA adjA which is also in Mn×n(Z), where adjA is the adjugate matrix of A.
The n× n identity matrix in Mn×n(Z) is denoted by In as usual. Just like in
§7, the theory of binomial systems is more naturally developed in the context
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of the generalized “Laurent binomial systems” where negative exponents are
allowed. For variables x = (x1, . . . , xn), a Laurent monomial in x is an
expression of the form xα1

1 · · ·xαnn where α1, . . . , αn are integers (which may
be zero or negative). For a vector α = (α1, . . . , αn)> ∈ Zn, we still use the
notation

xα := (x1, . . . , xn)

 α1

...
αn


= xα1

1 · · · xαnn .

As before, for a matrix A ∈Mn×m(Z) with columns α(1), . . . ,α(m) ∈ Zn,

(13.1) xA = x[α(1) ··· α(m) ] := (xα
(1)

, . . . ,xα
(m)

).

With this notation, the familiar identities xIn = x and (xA)B = xAB are
still valid. Since the exponents here may be negative, it is only meaningful
to deal with the function x 7→ xA when each xi is restricted to be nonzero.
Hence, throughout this section, we shall let xi ∈ C∗ for each i = 1, . . . , n. In
this situation, each matrix A ∈Mn×m(Z) induces a function from (C∗)n to
(C∗)m via x 7→ xA. Of particular importance is the function induced by a
unimodular matrix A ∈Mn×n(Z), since, in this case, A−1 is also inMn×n(Z).
Thus functions x 7→ xA and x 7→ xA

−1

are inverses to each other ((xA)A
−1

=
xAA

−1

= xIn = x).
A Laurent binomial is an expression of the form c1x

α + c2x
β for some

c1, c2 ∈ C∗ and α,β ∈ Zn. It is just a linear combination of two Laurent
monomials. This section will focus on the structure of positive dimensional
solution set of a system of Laurent binomial equations, or simply Laurent
binomial systems. We shall restrict our attention to the portion of the
solution set inside (C∗)n which, in a sense, is the natural setting for studying
binomial systems. That is, given exponent vectors α(1), . . . ,α(m),β(1), . . . ,
β(m) ∈ Zn and the coefficients ci,j ∈ C∗, our goal is to describe the set of all
x ∈ (C∗)n that satisfy the system of equations

c1,1x
α(1)

+ c1,2x
β(1)

= 0

...

cm,1x
α(m)

+ cm,2x
β(m)

= 0.

Since only the solutions in (C∗)n are in concern, this system is clearly equiv-
alent to

(xα
(1)−β(1)

, . . . ,xα
(m)−β(m)

) = (−c1,2/c1,1, . . . ,−cm,2/cm,1)
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which can simply be written as

(13.2) xA = b or equivalently xA − b = 0

where A ∈Mn×m(Z), having columns α(1) − β(1), . . . ,α(m) − β(m), repre-
sents the exponents appeared in the Laurent monomials and the vector
b = (−c1,2/c1,1, . . . ,−cm,2/cm,1) collects all the coefficients. Its solution set
in (C∗)n will be denoted by

(13.3) V∗(xA − b) := { x ∈ (C∗)n | xA − b = 0 }.

In §7, we discussed a special case of this setup where A is a nonsingular
square matrix and xA − b = 0 is a system of n Laurent binomial equations
in n variables. In the following we shall deal with the general cases.

In the first place, we briefly review some basic facts about the C∗-solution
set of a Laurent binomial system which usually fall under the subject of
toric algebraic geometry and combinatorial commutative algebra. For more
details, we refer to standard references such as [23, 26, 27, 75, 105] for
comprehensive discussions of the theoretical aspects. Certain computational
aspects have been studied in [45, 46]. Recent developments in the aspect of
parallel numerical computation have been presented in the article [17, 20].

In §7, the Hermite Normal Form of the matrix A has been used to
solve for the isolated solutions of a square binomial system in (C∗)n. To
understand the structure of the positive dimensional solution set of a gen-
eral Laurent binomial system, a stronger form known as the Smith Normal
Form is needed. It is known that there are unimodular square matrices
P ∈Mn×n(Z) and Q ∈Mm×m(Z) such that

(13.4) P A Q =

d1
. . .

dr

0
. . .

0




r

n− r

r m− r

with nonzero integers d1 | d2 | · · · | dr for r = rankA, unique up to the signs.
Here, a | b means a divides b as usual. The matrix on the right hand side
of (13.4) is the Smith Normal Form of A. This decomposition of the matrix
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A provides important topological information about V∗(xA − b) ⊂ (C∗)n
summarized in the following proposition:

Proposition 13.1 (Topological description [26]). If V∗(xA − b) in
(C∗)n is not empty, then it consists of a finite number of connected com-
ponents. Furthermore,

1) the number of components is exactly
∣∣∣∏r

j=1 dj

∣∣∣.
2) each solution component has codimension equal to rankA = r.

This description can be strengthened significantly. For P and Q in the
Smith Normal Form decomposition of A in (13.4), let Pr ∈Mr×n(Z) and
P0 ∈M(n−r)×n(Z) be the top r rows and remaining n− r rows of P respec-
tively; and, in the mean time, let Qr ∈Mm×r(Z) and Q0 ∈Mm×(m−r)(Z)
be the left r columns and remaining m− r columns of Q respectively. With
these notations, the equation in (13.4) becomes

(13.5)

(
Pr
P0

)
A
(
Qr Q0

)
=

(
D 0
0 0

)
with D = diag(d1, . . . , dr) ∈Mr×r(Z) and 0’s representing zero block matri-
ces of appropriate sizes. Consequently, the binomial system xA = b can
be translated into a form from which more detailed information can be
extracted.

Since P and Q are both unimodular the maps z 7→ zP and y 7→ yQ are
both bijections on (C∗)n and (C∗)m respectively. Therefore, as regard to the
solution set in (C∗)n, the original system xA = b is equivalent to (xA)Q =
xAQ = bQ. Similarly, solution sets remain equivalent after change of vari-
ables x = zP , and

(zP )AQ = zPAQ = z

(
D 0
0 0

)
= (z

(
D
0

)
, z(00 )) = bQ = (bQr ,bQ0) .

Since D = diag(d1, . . . , dr) ∈Mr×r(Z), the original system xA = b can now
be decomposed into a combined system

(z1, . . . , zr)

 d1
. . .

dr


= bQr(13.6)

1 = bQ0(13.7)

zr+1, . . . , zn : free(13.8)
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in which (13.7) appears when r < m where 1 = (1, . . . , 1) ∈ (C∗)m−r, and
(13.8) appears when r < n. The word “free” in (13.8) means the system
imposes no constraints on the n− r variables zr+1, . . . , zn.

From the above decomposed system, we can see that if r < m, then the
system is inconsistent unless 1 = bQ0 . If the system is consistent (namely,
(13.7) holds), then the solutions to (13.6) are exactly

(13.9)


z1 = e2k1π/d1ζ1 for k1 = 0, . . . , d1 − 1

z2 = e2k2π/d2ζ2 for k2 = 0, . . . , d2 − 1
...

...

zr = e2krπ/drζr for kr = 0, . . . , dr − 1

where each ζj is a fixed choice of the dj-th root of j-th coordinate of
bQ. Clearly, all of them are isolated and the total number of these solu-
tions is |∏r

j=1 dj | = | detD|. If r < n, then the solution set of the decom-
posed system (13.6)–(13.8) in (C∗)n breaks into “components” of the form
{(e2k1π/d1ζ1, . . . , e

2krπ/drζr, zr+1, . . . , zn) : (zr+1, . . . , zn) ∈ (C∗)n−r}, and
they are in one-to-one correspondence with solutions in (13.9). Since each
component is parametrized by the n− r free variables zr+1, . . . , zn, it is
smooth and of dimension n− r. Furthermore, they are disjoint, because
these components have distinct z1, . . . , zr coordinates.

To translate the above description of the (C∗)n-solution set of the decom-
posed system (in z) into a description of the original solution set V∗(xA − b),
one may simply apply the change of variables x = zP . Note that this map
and its inverse z = xP

−1

are both given by monomials (bi-regular maps [39]),
the basic properties of the solution set, such as, the number of solution
components, their dimensions, and smoothness are therefore preserved. To
summarize, the above elaborations assert the following proposition.

Proposition 13.2 (Global parametrization [26, 45, 105]). For the
solution set V∗(xA − b) in (C∗)n, let P,Q,Q0 and D be those matrices
appeared in the decompositions of A in (13.4) and (13.5), and let r = rankA.

If 1 6= bQ0 then the binomial system is inconsistent, and hence its solu-
tion set in (C∗)n is empty.

If 1 = bQ0 then the solution set of xA = b in (C∗)n consists of |∏r
j=1 dj |

= |detD| connected components Vk1,...,kr for k1 ∈ {0, . . . , d1 − 1}, . . . , kr ∈
{0, . . . , dr − 1}. Each component Vk1,...,kr is smooth of dimension n− r, and
it is parametrized by the smooth global parametrization φk1,...,kr : (C∗)(n−r) →



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 259 — #141 i
i

i
i

i
i

Homotopy continuation method 259

Vk1,...,kr given by

(13.10) φk1,...,kr(t1, . . . , tn−r) = (e2k1π/d1ζ1, . . . , e
2krπ/drζr, t1, . . . , tn−r)

P

where each ζj is a fixed choice of the dj-th root of the j-th coordinate of bQ.

Note that, as mentioned earlier, when r = n, the solution set V∗(xA − b)
is of dimension n− r = 0. Thus, V∗(xA − b) consists of isolated points. In
such situations, the “parametrizations” φk1,...,kr are understood as constants
each describes a single isolated point.

Remark 13.3. While the Smith Normal Form
[
D 0
0 0

]
is unique up to a

change of signs of the diagonal entries d1, . . . , dr in D (as long as the require-
ment d1 | d2 | · · · | dr is satisfied), the transformation matrices P and Q are
generally not unique. For a simple example, let A = [ 2

3 ] with Smith Nor-
mal Form [ 1

0 ] which is unique up to a change of sign. However, different
transformation matrices can be used. Indeed for any k ∈ Z,[

−1 + 3k 1− 2k
−3 2

] [
2
3

] [
1
]

=

[
1
0

]
.

Meaning, there are infinitely many different transformation matrices.

Suppose there is a different pair of unimodular matrices P̃ =
[
P̃r
P̃0

]
∈

Mn×n(Z) where P̃r ∈Mr×n(Z) and P̃0 ∈M(n−r)×n(Z) along with Q̃ =

(Q̃r Q̃0) ∈Mm×m(Z) where Q̃r ∈Mm×r(Z) and Q̃0 ∈Mm×(m−r)(Z) such
that [

P̃r
P̃0

]
A
(
Q̃r Q̃0

)
=

[
D 0
0 0

]
.

Then since A = P−1
[
D 0
0 0

]
Q−1,

P̃0A = P̃0P
−1

(
D 0
0 0

)
Q−1 =

[
0 0

]
.

It follows that P̃0P
−1 =

[
0 G

]
for some matrix G ∈M(n−r)×(n−r)(Z), and

hence

P̃0 =
[
0 G

]
P =

[
0 G

] [Pr
P0

]
= GP0.

Moreover, since P̃0 consists of the n− r rows of the unimodular matrix P̃ ,
the matrix G must also be unimodular. In other words, columns of P̃0 must



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 260 — #142 i
i

i
i

i
i

260 T.-R. Chen and T.-Y. Li

be the images of columns of P0 under the linear transformation given by the
unimodular matrix G.

Now the Smith Normal Form of A via P̃AQ̃ yields, according to Propo-
sition 13.2, the parametrization

φ̃k1,...,kr(t1, . . . , tn−r) = (e2k1π/d1ζ1, . . . , e
2krπ/drζr, t1, . . . , tn−r)

P̃

= (e2k1π/d1ζ1, . . . , e
2krπ/drζr)

P̃r ◦ (t1, . . . , tn−r)
P̃0

= (e2k1π/d1ζ1, . . . , e
2krπ/drζr)

P̃r ◦ ((t1, . . . , tn−r)
G)P0

where “◦” denotes the component-wise multiplication. Therefore while dif-
ferent transformation matrices induce different parametrization, each par-
ametrization is related to all others via nonsingular bijective transformations
of the form t 7→ tG for some unimodular matrix G.

As indicated in Proposition 13.2, for a consistent Laurent binomial sys-
tem xA = b where A ∈Mn×m(Z) with r = rank(A) < n, each component of
the solution set in (C∗)n will be of dimension n− r > 0. In this situation,
for both theoretical interest and demand from concrete applications, one
often wishes to identify another important property: the degree of the com-
ponents. As discussed in §12, the degree of a component can be understood
geometrically as the number of its intersections point with a generic affine
space of complimentary dimension. That is, for a component V = Vk1,...,kr of
V∗(xA − b) for some fixed choice of k1, . . . , kr as given in Proposition 13.2,
the number of isolated intersection point between V and a “generic” affine
space of complementary dimension is a fixed number, and this number is
the degree of V , denoted by deg V .

From the computational standpoint, such a generic linear slicing can be
represented by the solution set of a system of d := n− r linear equations
with generic coefficients. Therefore deg V is precisely the number of points
x = (x1, . . . , xn) ∈ V that satisfies the system of linear equations

(13.11)


c11x1 + c12x2 + · · ·+ c1nxn = c10

c21x1 + c22x2 + · · ·+ c2nxn = c20

...

cd1x1 + cd2x2 + · · ·+ cdnxn = cd0.

where cij for i = 1, . . . , d and j = 0, . . . , n are generic complex numbers. But
the set V = Vk1,...,kr is precisely the image of the injective map

φk1,...,kr(t1, . . . , td) = (e2k1π/d1ζ1, . . . , e
2krπ/drζr, t1, . . . , td)

P
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in Proposition 13.2. If we let ξ = (e2k1π/d1ζ1, . . . , e
2krπ/drζr) and t = (t1, . . . ,

td) then

φk1,...,kr(t) = (ξ, t)

(
Pr
P0

)
= ( ξp

(1)
r tp

(1)
0 , . . . , ξp

(n)
r tp

(n)
0 )

where for each j = 1, . . . , n, p
(j)
r and p

(j)
0 are the j-th columns of Pr and P0

respectively. In other words, V has the global parametrization xi = ξp
(i)
r tp

(i)
0

for i = 1, . . . , n. Therefore the intersections between V and the generic affine
space defined by (13.11) are precisely the solutions of the polynomial system

c11 ξ
p(1)
r tp

(1)
0 + c12 ξ

p(2)
r tp

(2)
0 + · · ·+ c1n ξ

p(n)
r tp

(n)
0 = c10

c21 ξ
p(1)
r tp

(1)
0 + c22 ξ

p(2)
r tp

(2)
0 + · · ·+ c2n ξ

p(n)
r tp

(n)
0 = c20

...

cd1 ξ
p(1)
r tp

(1)
0 + cd2 ξ

p(2)
r tp

(2)
0 + · · ·+ cdn ξ

p(n)
r tp

(n)
0 = cd0.

By letting c′ij := cijξ
p(j)
r ∈ C and c′i0 = ci0 for each i = 1, . . . , d and j =

1, . . . , n, the system above is a system of d polynomial equations in the
variables t = (t1, . . . , td) with generic complex coefficients c′ij and same set

of monomials tp
(j)
0 :

(13.12)


c′11t

p
(1)
0 + c′12t

p
(2)
0 + · · ·+ c′1nt

p
(n)
0 = c10

...

c′d1t
p

(1)
0 + c′d2t

p
(2)
0 + · · ·+ c′dnt

p
(n)
0 = cd0.

This derivation equates the degree of V and the number of nonzero solutions
of the above system, and this fact is summarized in the following proposition.

Proposition 13.4 (Degree via affine space cut). If r < n and V∗(xA −
b) 6= ∅, then the degree of each component V of V∗(xA − b) agrees with
the number of solutions t ∈ (C∗)d of the system of d Laurent polynomial
equations

(13.13)


c11t

p
(1)
0 + c12t

p
(2)
0 + · · ·+ c1nt

p
(n)
0 = c10

...

cd1t
p

(1)
0 + cd2t

p
(2)
0 + · · ·+ cdnt

p
(n)
0 = cd0

for generic complex coefficients cij ∈ C.
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The “unmixed” case of Bernshtein’s Theorem (Theorem 6.4) applies
here: for generic coefficients, the number of isolated C∗-solutions is the nor-
malized volume of the Newton polytope:

Proposition 13.5 (Degree as volume).

(13.14) deg V = d ! ·Vold(conv{p(1)
0 , . . . ,p

(n)
0 ,0})

where 0 = (0, . . . , 0)> ∈ Rd and columns p
(1)
0 , . . . ,p

(n)
0 of the matrix P0 are

considered as points in Rd.

Remark 13.6. Even though the transformation matrices with which the
Smith Normal Form of A (13.4) is constituted are not unique, as asserted in
Remark 13.3, for a different pair of unimodular transformation matrices P̃ =[
P̃r
P̃0

]
∈Mn×n(Z) where P̃0 ∈M(n−r)×n(Z) and Q̃ ∈Mm×m(Z) for which

P̃AQ̃ = PAQ =

[
D 0
0 0

]

we must have P̃0 = GP0 for some unimodular matrix G ∈M(n−r)×(n−r)(Z).

Therefore the columns of P̃0 are vectors Gp
(1)
0 , . . . , Gp

(n)
0 . Since G is uni-

modular, as a linear transformation it preserves the volume, and therefore

Vold(conv{Gp
(1)
0 , . . . , Gp

(n)
0 ,0}) = Vold(conv{p(1)

0 , . . . ,p
(n)
0 ,0}).

In other words, while the formulation of (13.14) depends on the choice of
the transformation matrices in the Smith Normal Form decomposition of A,
the actual value is nonetheless invariant.

13.2. Smith Normal Form computation

As summarized in Proposition 13.2, the key to finding the dimension, num-
ber of components, and global parametrization of the C∗-solution set V∗(xA−
b) ⊂ (C∗)n is the Smith Normal Form (13.4) of the exponent matrix A. In
this section, we will list a procedure for efficiently computing the Smith
Normal Form of an integer matrix.
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To illustrate the main idea behind this procedure, we start with the
simplest case of an integer matrix

A =

[
a11 a12

a21 a22

]
where a11 6= 0. As in the computation of Hermite Normal Form discussed
in §7, there exist, by the Bézout’s identity, integers u and v such that d′1 :=
gcd(a11, a21) = u a11 + v a21. Let

P1 =

 u v

−a21

d′1

a11

d′1

 , then detP1 =
ua11 + va21

d′1
=
d′1
d′1

= 1,

and thus P1 is unimodular. This can provide a row reduction:

P1A =

 u v

−a21

d′1

a11

d′1

[a11 a12

a21 a22

]
=

d′1 ua12 + va22

0 −a21a12

d′1
+
a11a22

d′1

 =

[
d′1 a′12

0 ∗

]
.

However, our goal is to diagonalize A, hence further column reduction is
needed. Similar to row reduction, there exist integers x and y such that
d1 := gcd(d′1, a

′
12) = x d′1 + y a′12. Let

Q1 =


x −a

′
12

d1

y
d′1
d1

 , then det Q =
xd′1 + ya′12

d1
=
d1

d1
= 1,

and Q1 is also unimodular. As desired, it gives column reduction

A1 := P1AQ1 =

[
d1 0
∗ ∗

]
.

While the progress made by the row reduction P1A seems to be demolished
by this column reduction, it is important to note that the new upper left
corner entry d1 divides the original entry a11 (indeed, d1 | d′1 | a11).

Similar row and column reductions can be applied to produce A2 :=
P2A1Q2, A3 = P3A2Q3, . . . . But if di is the upper left corner entry of Ai,
then we must have 0 6= di | di−1 | · · · | d2 | d1 | a11. Consequently, there must
be an iteration, say k-th iteration, for which dk+1 = dk. It follows that dk
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must divide entries on both its row and column. That is, Ak has the form[
dk s dk
t dk ∗

]
for some s, t ∈ Z. At this point further multiplications by unimodular matri-
ces [

1 0
−t 1

] [
dk s dk
t dk ∗

] [
1 −s
0 1

]
=

[
dk 0
0 ∗

]
provides the desired diagonal form.

In general, n× n and m×m version of the above matrices P and Q
can be constructed to perform row and column reduction respectively for an
n×m integer matrix.

After repeated such row and column reduction together with poten-
tial row and column permutations one can construct unimodular matrices
P (1), . . . , P (k) ∈Mn×n(Z) and Q(1), . . . , Q(`) ∈Mm×m(Z) such that

P (k) · · ·P (1)A Q(1) · · ·Q(`) =


d1

. . .
dr

0
. . .

0


with r = rankA and d1, . . . , dr are nonzeros. As noted in standard references
such as [34], employing further reductions can ensure d1 | d2 | · · · | dr, but
for the purpose of solving binomial systems, this property does not seem
necessary.

13.3. Degree computation

When the solution set consists of positive dimensional components, Proposi-
tion 13.5 provides a computationally viable means for computing the degree
of each component as the volume of a convex polytope. Let V be a com-
ponent of V∗(xA − b) ⊂ (C∗)n, d = dimV = n− r = n− rankA, and P 0 =

(p
(1)
0 , . . . ,p

(n)
0 ) ∈Md×n(Z) be the matrix appears in (13.4). Considering each

p
(j)
0 as a point in Rd, let S = {p(1)

0 , . . . ,p
(n)
0 ,0} ⊂ Rd be the finite point set.

Then by Proposition 13.5,

(13.15) deg V = d ! Vold(convS).

Even though any algorithm for computing the volume of a convex poly-
tope can be used to compute the degree via (13.15), there are two main
reasons behind our specialized algorithms for computing the degree deg V :
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First, from a numerical point of view, the fact that deg V =d!Vold(convS)
must be an integer permits the use of efficient but potentially less accurate
numerical methods as well as floating point arithmetic, they can still obtain
the correct result. Indeed, the exact result can be achieved as long as the total
absolute error remains below 1/2. This is certainly not possible for methods
that are designed to compute volumes of more general convex polytopes.

Secondly, in Numerical Algebraic Geometry, the computation of witness
points (§12) is a fundamental problem. The framework we establish to cal-
culate deg V helps, as to be described in §13.4, to construct a specialized
homotopy method which is ideal for efficiently providing witness points in
this environment. The construction of the homotopy, however, requires the
simplicial subdivision of the polytope convS. Algorithms that do not pro-
duce simplicial subdivisions are therefore not suitable for this task.

The concept of mixed volume is actually a generalization of the volume.
Indeed,

deg V = d ! Vold(convS) =M(convS, . . . , convS).

The computation of deg V therefore becomes a special case of the mixed
volume computation discussed in §6.2, and the algorithm described in §8
can be used directly: A “lifting function” ω : S → Q with generic images
is used to “lift” points in S to one higher dimension via p 7→ (p, ω(p)) ∈
Qd+1. Let Ŝ be the collection of the lifted points. Proposition 6.16 asserts
that the projection of the facets on the lower hull of conv Ŝ form a “fine
unmixed subdivision” of S, and the algorithm of systematic face extensions
can be used to enumerate the lower facets efficiently. Here the “unmixed
subdivision” of the single polytope convS is simply a subdivision in the
familiar sense: a collection of simplices intersecting only on their faces yet
fills the entire convS. Such a subdivision, obtained as the projection of the
lower hull of a generic lifting, is known as a regular subdivision [51], and it
will be of critical importance in the next section.

Since the cells of such a fine ummixed subdivision are simplices, their
volume are easy to compute. The degree deg V is then the sum of the volume
of all these cells multiplied by d !.

13.4. Computing witness sets

Witness sets, discussed in detail in §12.1 is the core concept of Numerical
Algebraic Geometry. In the case of C∗-solution set of binomial systems, the
witness set can be computed by a specialized polyhedral homotopy based
method.



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 266 — #148 i
i

i
i

i
i

266 T.-R. Chen and T.-Y. Li

By Proposition 13.4, the intersection between a component V ⊆ V(xA −
b) and a generic affine space of complementary dimension consists of pre-
cisely the points t = (t1, . . . , td) ∈ (C∗)d that satisfy the system of d Laurent
polynomial equations in d variables given by

(13.16)

c11t
p

(1)
0 + c12t

p
(2)
0 + · · ·+ c1nt

p
(n)
0 = c10

...

cd1t
p

(1)
0 + cd2t

p
(2)
0 + · · ·+ cdnt

p
(n)
0 = cd0

where the coefficients depends on both the choice of the component in
V∗(xA − b) and the choice of the r-dimensional affine space. Apparently, this
system is fully unmixed (every equation has exactly the same monomials).
We shall find all its isolated zeros in (C∗)n by the polyhedral homotopies.

For simplicity, we reuse the notations from §13.3. Namely, we let a0 =

0, a1 = tp
(1)
0 , . . . ,an = tp

(n)
0 . With S = {a0, . . . ,an}, let ω : S → Q be the

generic lifting function used for constructing regular simplicial subdivision
of convS in §13.3. As before, âj = (aj , ω(aj)) for j = 0, . . . , n, and Ŝ =
{â0, . . . , ân} ⊂ Qd+1. With a new variable s ∈ [0, 1], consider the homotopy

(13.17) H(t, s) =


c11t

a1sω(a1) + · · ·+ c1nt
ansω(an) − c10s

ω(a0) = 0

...

cd1t
a1sω(a1) + · · ·+ cdnt

ansω(p
(n)
0 ) − cd0s

ω(a0) = 0

which is constructed by multiplying each term in (13.16) by a rational power
of the new variable s whose exponent is determined by the lifting func-
tion ω : S → Q. Clearly, H(t, 1) = 0 is exactly the system (13.16) which we
intend to solve (inside (C∗)d). Similar to solving fully mixed systems by the
polyhedral homotopies, H(t, 0) cannot be used as the starting system since
at s = 0, the system is either identically zero or undefined. Therefore certain
transformation is necessary to produce a meaningful and solvable starting
system.

Let D be a fine unmixed subdivision induced by ω. Each cell in D is a
projection of a cell of the form, say {â0, . . . , âd}, such that conv{â0, . . . , âd}
is a lower d-face of conv Ŝ. More precisely, there exists a (unique) vector of
the form α̂ = (α1, . . . , αd, 1) for which

(13.18)
〈â0, α̂〉 = 〈âj , α̂〉 for j = 1, . . . , d and

〈â0, α̂〉 < 〈â, α̂〉 for all a ∈ S\{a1, . . . ,ad}.
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For α̂ = (α1, . . . , αd, 1), by the change of variables with y = (y1, . . . , yd)

(13.19) t =


t1 = y1s

α1

...

td = yds
αd ,

then H(t, s) becomes

H(t, s) = H(y1s
α1 , . . . , yds

αd , s) =



∑
a∈S

c1,ay
as〈a,α〉+ω(a) =

∑
a∈S

c1,ay
as〈â,α̂〉

...∑
a∈S

cd,ay
as〈a,α〉+ω(a) =

∑
a∈S

cd,ay
as〈â,α̂〉.

Let β = 〈â0, α̂〉 and define a new homotopy

Hα,β(y, s) = s−βH(y1s
α1 , . . . , yds

αd , s) =



s−β
∑
a∈S

c1,ay
as〈â,α̂〉

...

s−β
∑
a∈S

cd,ay
as〈â,α̂〉.

Note that the new homotopy still has the necessary property that Hα,β(y, 1)
= 0 is identical to the system of equations in (13.16). Moreover, by (13.18),
there are precisely d+ 1 terms in each equation of Hα,β(y, s) having no
power of s (the terms corresponding to a0, . . . ,ad), and all other terms have
positive powers of s. Consequently, at s = 0, terms with positive powers of
s vanish, leaving only

(13.20)


c1,a0

ya0 + c1,a1
ya1 + · · ·+ c1,ady

ad = 0

c2,a0
ya0 + c2,a1

ya1 + · · ·+ c2,ady
ad = 0

...

cd,a0
ya0 + cd,a1

ya1 + · · ·+ cd,ady
ad = 0.

Let

C =

c1,a0
· · · c1,ad

...
. . .

...
cd,a0

· · · cd,ad

 and Γ =
(
a0 · · · ad

)>
,
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then the above equation can be written as

(13.21) C · (yΓ)> = 0.

For generic choices of the coefficients, there exists a nonsingular matrix
G ∈Md×d(C) such that

(13.22) GC =


c∗11 c∗12

c∗21 c∗22
. . .

...
c∗d1 c∗d2

 .

for some c∗ij ∈ C∗. Thus, without altering its solution set, (13.21) can be
converted to the equivalent system

(13.23) GC(yΓ)> =


c∗11y

a0 + c∗12y
ad = 0

c∗21y
a1 + c∗22y

ad = 0
...

...
...

c∗d1y
ad−1 + c∗d2y

ad = 0,

which is apparently a square Laurent binomial system. The algorithm devel-
oped earlier for solving square Laurent binomial system can be used here to
solve this system. The solutions are precisely the solutions of the starting
system (13.20) for the homotopy Hα,β. Tracing solution paths of Hα,β = 0
emanating from those solutions will locate solutions to the target system
(13.16) when s = 1. They are points in the witness set of the component V
of V∗(xA − b).

The construction of the homotopy Hα,β relies on a cell whose convex
hull is a lower d-face of conv Ŝ in the fine unmixed subdivision D of convS.
It is typical for D to contain more than one such cells. Evidently, each cell
can induce a different homotopy in the form of Hα,β. Just like solving fully
mixed polynomial systems by the polyhedral homotopies before, when one
goes through all those cells in D, the resulting homotopies of the form Hα,β

will find all isolated solutions of (13.16) which constitute the witness set
of V .

13.5. Verifying the consistency numerically

While the binomial system is assumed to be consistent throughout previ-
ous sections, in more general cases as stated in Proposition 13.2, when the
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number of equations in the given binomial system xA = b is greater than
the rank of the matrix A, the system may become inconsistent. With the
notations in (13.5), the system is consistent if and only if

bQ0 = 1

where 1 = (1, . . . , 1) ∈ (C∗)m−r. So the consistency of the binomial system
can be verified by simply checking the above equality. This can certainly
be accomplished quite easily when b is given in the exact form. When b is
only given approximately, however, verifying bQ0 = 1 becomes an ill-posed
problem, it should be avoided at all cost. After all, a generic perturbation
in b, however small in magnitude, will break the above equality.

The main strategy is to rephrase the question of consistency into a ques-
tion of closeness: How close is the binomial system from being consistent?
More precisely, let W be the algebraic set in (C∗)n defined by

bQ0 = 1

then the binomial system is consistent if and only if b lies in W . Therefore,
the distance between b and the smooth part of W may be used as a measure
of how close the binomial system is being consistent. Under this substitu-
tion, the resulting problem becomes well-posed, and can be answered via
numerical computation.

While the distance between a point and an algebraic set may be generally
difficult to compute, the distance in the log-norm space can be obtained quite
easily: since bQ0 = 1 is equivalent to

{
(Re(log b)) ·Q0 = 0

(Im(log b)) ·Q0 = 0 (mod 2π)

where Re and Im denote the component-wise real and imaginary parts
respectively. So the distance, in the log-norm sense, can be computed sim-
ply as the distance between Re(log b) and the kernel of Q0 and the distance
between Im(log b) and the kernel of Q0 modulo 2π, and this distance should
provide a coarse indication for the consistency of the binomial system xA − b
over (C∗)n.
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14. Numerical considerations

14.1. Scaling of the coefficients

In applications, it is not uncommon to encounter polynomial systems with
“unbalanced” coefficients — some coefficients are much larger than the oth-
ers (see examples listed in [53]) which often results in ill-conditioned Jaco-
bian matrix of the homotopy function. This will, in turn, affect the efficiency
of the path tracing algorithm. The idea of scaling the system to balance the
magnitudes of the coefficients of the polynomials first appeared in [80]. We
will illustrate the scaling method by an example.

Example 14.1. Consider the following system of two equations in two
unknowns

8000x2
1x

2
2 − 2000x1 + 1 = 0(14.1)

5000x1x2 − 30 = 0.(14.2)

To scale the variables, let x1 = 10c1z1 and x2 = 10c2z2, and to scale the
equations, multiply (14.1) by 10c3 and multiply (14.2) by 10c4 . This gives

10c3(8000 ∗ 102c1+2c2 z2
1z

2
2 − 2000 ∗ 10c1z1 + 1) = 0

10c4(5000 ∗ 10c1+c2 z1z2 − 30) = 0.

Or,

10E1z2
1z

2
2 − 10E2z1 + 10E3 = 0

10E4z1z2 − 10E5 = 0

where

E1 = 2c1 + 2c2 + c3 + log10(8000)

E2 = c1 + c3 + log10(2000)

E3 = c3

E4 = c1 + c2 + c4 + log10(5000)

E5 = c4 + log10(30).

To have the numerical stability afforded by coefficients centered about unity,
we want each Ei to be close to 0. Furthermore, to reduce variability among
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the magnitude of the coefficients in each equation, we want the difference
between each pair of E′is in an equation to be close to 0. Thus, setting

r1 ≡ E2
1 + E2

2 + E2
3 + E2

4 + E2
5

r2 ≡ [(E1 − E2)2 + (E2 − E3)2 + (E1 − E3)2] + [(E4 − E5)2],

we wish to minimize r = r1 + r2. More explicitly,

r = (2c1 + 2c2 + c3 + log(8000))2 + (c1 + c3 + log(2000))2 + c2
3(14.3)

+ (c1 + c2 + c4 + log(5000))2 + (c4 + log(30))2

+ (c1 + 2c2 + log(8000)− log(2000))2

+ (2c1 + 2c2 + log(8000))2 + (c1 + log(2000))2

+ (c1 + c2 + log(5000)− log(30))2.

In [80], r is considered as a second degree polynomial in four unknowns
c1, c2, c3, c4 and is minimized by the solution of

∂r

∂ci
= 0 for i = 1, 2, 3, 4.

Actually, r in (14.3) can be written as

r =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



2 2 1 0
1 0 1 0
0 0 1 0
1 1 0 1
0 0 0 1
1 2 0 0
2 2 0 0
1 0 0 0
1 1 0 0


︸ ︷︷ ︸

A


c1

c2

c3

c4


︸ ︷︷ ︸

x

−



− log(8000)
− log(2000)

0
− log(5000)
− log(30)

log(2000)− log(8000)
− log(8000)
− log(2000)

log(30)− log(5000)


︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

=‖ Ax− b ‖22 ,

its minimization is therefore the solution of a linear least squares prob-
lem. With the solution of this least squares problem c1 = −3.3437, c2 =
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1.3495, c3 = 0.0427, and c4 = −1.5909, the original equations then become

0.9064 z2
1z

2
2 − z1 + 1.1033 = 0

1.2996 z1z2 − 0.7695 = 0.

Clearly, the new system has coefficients with magnitudes smaller than those
of the original one. They are closer to unity and to each other. When
solutions z = (z1, z2) of the new system are located, the solutions x =
(x1, x2) can be attained by applying the transformation x1 = 10c1z1 and
x2 = 10c2z2.

In general occasions where equations in the systems have many terms, we
will ignore the requirement that reduces variability among the magnitude
of the coefficients in each equation. Namely, we only minimize r1 above,
making the corresponding linear least squires problem much easier to solve.

14.2. Endgames

14.2.1. Deflation. At the end of tracking a homotopy path where t = 1,
usually Newton’s iterations is applied for the final approximation of the
solution. While Newton’s method converges rapidly with high accuracy at
nonsingular solutions of a polynomial system, the desired number of signif-
icant digits for a singular solution may not be achievable, as the following
example shows.

Example 14.2. The system of polynomial equations


x2

1 + x1 + x2 + x3 + x4 + x5 − 2x1 − 4 = 0
x2

2 + x1 + x2 + x3 + x4 + x5 − 2x2 − 4 = 0
x2

3 + x1 + x2 + x3 + x4 + x5 − 2x3 − 4 = 0
x2

4 + x1 + x2 + x3 + x4 + x5 − 2x4 − 4 = 0
x2

5 + x1 + x2 + x3 + x4 + x5 − 2x5 − 4 = 0

has a solution (x1, x2, x3, x4, x5) = (1, 1, 1, 1, 1) of multiplicity 16. After the
final stage of the homotopy method, the best approximation we are able to
achieve by using the double-precision IEEE floating point arithmetic have
about 4-digit accuracy, such as
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
x1

x2

x3

x4

x5

 =


0.99997588488142196729
0.99997475062867600718
1.0000433370416735036
1.0000382630564498376
0.99996776439177868437

 .

To improve the accuracy of singular solutions we further use the so-
called deflation method [55, 86, 87]. For a general polynomial system P (x) =
(p1(x), . . . , pn(x)) with x = (x1, . . . , xn), let x∗ = (x∗1, . . . , x

∗
n) be a solution

of P (x) = 0 with multiplicity ≥ 2. Assume DP (x∗), the Jacobian of P (x)
at x∗, is of rank n− d where 0 < d < n. (This d can be found efficiently by
the technique developed in [56].) Then for almost all d× n random matrix
R, the matrix [

DP (x∗)
R

]
is of full column rank. Let e1 := (1, 0, . . . , 0)T ∈ Rd. It is clear that the linear
system [

DP (x∗)
R

]
y =

[
0
e1

]
has a unique solution y = ŷ in Cn. Then we construct a new (2n+ d)× 2n
system

Q(x,y) :=

 P (x)[
DP (x)
R

]
y −

[
0
e1

] = 0.

If ẑ := (x̂, ŷ) is a simple zero of Q(z) := Q(x,y), DQ(ẑ) must be of full rank.
Denote

(DQ(z))† := [(DQ(z))T (DQ(z))]−1(DQ(z))T .

Then the Gaussian-Newton iterations

z(j+1) = z(j) − (DQ(z(j)))†Q(z(j)) for j = 0, 1, . . .

with z(0) := (x∗, ŷ) can be used, until the residue ‖Q(z(j+1))‖2 is within the
desired accuracy. This will lead to a more accurate approximation of x∗.

If ẑ is a multiple zero of Q(z) := Q(x,y), the deflation procedure given
above can be repeated on Q(z) until a satisfactory x̃∗ is achieved.
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Returning to Example 14.2, evaluating the Jacobian of the system at the
solution x∗ = (1, 1, 1, 1, 1), we have d = 4, and when the deflation method is
used the solution can be approximated much accurately as shown below

x1

x2

x3

x4

x5

 =


0.99999999999999999998
0.99999999999999999981
1.0000000000000000002
1.0000000000000000000
1.0000000000000000000

 .

14.2.2. The local geometry of a homotopy path. While, by this time,
in the construction of the homotopies H(x, t) the parameter t is normally
taken as a real variable and any solution path is a subset of Cn × [0, 1], in
the context of singular endgame, it is crucially important to recognize the
rich geometric information that lie beyond the real parameter space [0, 1]. In
particular, we need to consider t as a complex variable and H as a function
H : Cn × C→ Cn. A solution path γ ⊂ H−1({0}) is then a subset of Cn × C.

Near a “regular point” (x0, t0) ∈ H−1({0}) where the Jacobian matrix
Hx of H with respect to x is nonsingular, the geometric structure of a
solution path γ is very simple: By the Implicit Function Theorem (for holo-
morphic functions), γ is locally parametrized by t in a small open disk of C
centered at t0 (via a holomorphic map). Therefore, locally, γ is simply a copy
of an open disk in C embedded in Cn and hence disjoint from other paths.
The geometry near a “singular point” is much more complicated, and to
understand it requires more powerful machinery from several complex vari-
ables.

Here the solution path γ of H(x, t) = 0 is a subset of Cn × C (locally)
defined as the common zero set of polynomial or holomorphic functions,
known as an analytic set. Since only local behavior of the path near a point
is of interest, we will focus on the “germ of the analytic set” γ, which can
be vaguely understood as an infinitely small part of a point on γ. Formally,
two analytic sets V1 and V2 both containing a point p are said to be equiva-
lent at p if there exists a neighborhood U of p for which V1 ∩ U = V2 ∩ U .
For a fixed point p, this defines an equivalence relation, and the resulting
equivalence classes are known as the germs of analytic sets at p. A germ of
an analytic set at a point is reducible if it is the union of two proper germs
of analytic sets at that point, and is irreducible otherwise. Despite being
infinitesimal distillations of analytic sets, irreducible germs of analytic sets
indeed have well defined dimensions.

In this context, the endgame can be understood as the geometric charac-
terization of the irreducible germ of the solution path γ ⊂ Cn × C at its end
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point (ζ, 1) as well as the computation of a better estimate for this end point
using these geometric information. The singular endgame hinges on a few
nontrivial observations: γ determines an one-dimensional irreducible germ at
its end point (ζ, 1). By Local Parametrization Theorem [36] this irreducible
germ can be realized as a finite branched covering over an open disk in C
(commonly known as the “local uniformization”). Topologically, the finite
branched covering must be isomorphic to the standard finite branched cov-
ering given by z 7→ zm where m is the number of sheets. These observations
are made precise by the following important theorem:

Theorem 14.3. With the above notations, let (ζ, 1) be an end point of the
path γ in Cn × C. Then each point (x, t) = (x1, . . . , xn, t) on γ sufficiently
close to (ζ, 1) can be expressed by a fixed convergent power series of the form

xj =

∞∑
k=0

ajks
k

t = 1− sm

for each j = 1, . . . , n, and some fixed m ∈ Z+.

While power series expansions in the above form as well as the integer m
are not unique (via change of variables s = σk for some k > 1, one obtains a
different power series expansion with a different value of m), it is important
to note that the smallest such m is unique. This m is known as the winding
number of the solution path γ at the end point (ζ, 1).

The above formulation also reveals an important geometric property of
the homotopy paths near its end point: Fix any m-th root of unity ω (i.e.
ωm = 1). Under the substitution s = σω, the corresponding t value remains
the same since t = 1− sm = 1− σmωm = 1− σm regardless whichm-th root
of unity is chosen. In particular, as σ moves toward 0 along the real axis,
the corresponding t converges to 1 at the same rate independent from the
choice of ω. Yet the m different choices of the m-th root of unity ω would
result in m distinct trajectories of x-values as σ goes to 0 all converging to
(a10, . . . , an0). Consequently, there are at least m distinct homotopy paths
converging to the same end point.

Now it is possible that the solution path γ fails to converge to any point
in Cn. This may occur, by the smoothness, only when ‖x‖ grows boundlessly
as t→ 1 along γ, the path is then characterized as “diverge to infinity”.
Theorem 14.3 can be generalized to include such cases.
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Theorem 14.4. With the same notations, for (x, t) = (x1, . . . , xn, t) on
γ as t close to 1, there are integers d1, . . . , dn, possibly negative, and a
positive integer m for which (x, t) on the path γ has a convergent Laurent
series expansion of the form

xj =

∞∑
k=dj

ajks
k for some ajdj 6= 0

t = 1− sm

for j = 1, . . . , n and m ∈ Z+.

Similarly, the smallest m in the above series expansion is unique and it
is called the winding number of the (possibly divergent) solution path γ. If
dj < 0 for at least one j ∈ {1, . . . , n}, the corresponding variable xj would
grow unboundedly as s→ 0 causing the path to diverge.

For a simpler expression in the discussions below as well as numer-
ical considerations (see the next Remark), we change the path parame-
ter via t = 1− τ . The paths defined by H(x, t) = H(x, 1− τ) = 0 are now
parametrized by τ , and a standard notation of the end point of a path
becomes (limτ→0 x, 0). Furthermore, the Laurent series expansion of the path
in Theorem 14.4 takes the form

(14.4)
xj =

∞∑
k=dj

ajks
k

τ = sm.

Remark 14.5. In numerical computation, floating point numbers are almost
aways used for approximating real numbers (and complex numbers by exten-
sion). Floating point numbers, designed as a compromise between precision
and range, have a distributions of varying density among the real numbers
that depends on the magnitude. This distribution is biased toward zero.
That is, there are more floating point numbers near zero than there are in
the ranges of larger magnitude. Numbers near zero therefore can be approx-
imated more accurately. Moreover, denormal numbers (a.k.a. denormalized
numbers or subnormal numbers4) has been formalized in IEEE 754 standard
to fill in the “underflow gap” (numbers that are too small to be represented

4While in the 2008 edition of the IEEE 754 standard, “subnormal numbers”
became the official name, the term “denormal numbers” remain widely used in
the community of numerical analysts.
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in the normal floating point format). It is therefore beneficial to use the path
parameter τ = 1− t near the end point where τ = 0.

A variety of endgames were developed based on the above formulation.
We briefly outline some of the most commonly used techniques below.

14.2.3. Cauchy integral endgame. Developed in [83, 84], the “Cauchy
integral endgame” is an efficient and effective technique for accurately ap-
proximating singular endpoints of a homotopy path. Assuming the path γ
has a singular end point in Cn and let m be the winding number of this path.
Following the above discussion, with an abuse of notations, we shall consider
each xj = xj(s) and τ = τ(s) as holomorphic functions of a parameter s
within some small neighborhood D of s = 0 (although for m > 1, xj will
not be holomorphic in the path parameter τ). The Cauchy Integral Formula
thus provides an alternative means for computing end point of the path via

xj(0) =
1

2πi

∮
Γ

xj(s)

s
ds

where Γ is a sufficiently small circle inside Dj and the contour integral is
taken in a counter-clockwise direction. Moreover, the value of this integral
is independent from the choice of the circle as long as s = 0 is the only
singularity in the interior of Γ and each xj remain holomorphic on Γ. Let
r be the radius of the circle, then Γ can be parametrized by s = reiθ with
which ds = ireiθdθ. Therefore

xj(0) =
1

2πi

∮
Γ

xj(s)

s
ds =

1

2πi

∫ 2π

0

xj(re
iθ)

reiθ
ireiθdθ(14.5)

=
1

2π

∫ 2π

0
xj(re

iθ)dθ.

However, this integral is not directly computable, after all, the variable s
does not appear in the formulation of the homotopies and hence cannot be
manipulated independently. An indirect computation is nonetheless possible
by observing that as s goes around the small circle Γ once (in the counter-
clockwise), τ = sm would move around a circle of a different radius m times.
Therefore the sample values needed for approximating the integral in (14.5)
can be obtained indirectly by tracking the movement of xj for j = 1, . . . , n
as τ circle around 0 for m times. In other words, assuming m is already
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known, one can track along the solution path defined by

(14.6) H̃(x, θ) := H(x, r̃eiθ)

where the path parameter τ is parametrized by r̃eiθ starting from a point
(x(0), τ (0)) on the path γ. The points visited by the path tracking algorithm
are recorded. After θ reaches 2mπ, that is, after τ goes around 0 along the
circle m times, the corresponding s variable would have made one complete
revolution (since τ = sm). Then with the sample points obtained by path
tracking along the circle, the integral (14.5) can be approximated by numer-
ical integration techniques. This yields an approximation of the end point
ζ = (x1(0), . . . , xn(0)).

A key question is the value of the winding number m which is usually
unknown. Fortunately, this missing piece of information can be obtained as
a by-product of the process that collects the sample points for computing
the Cauchy integral. Observe that as θ in (14.5) reaches 2mπ (at which
point we terminate the path tracking), the corresponding s makes one full
revolution around 0 and comes back to the very same complex number
that corresponds to the starting point at θ = 0. Consequently, the corre-
sponding values of x1, . . . , xn, having power series expressions in terms of
s comes back to the same values as in the starting point. Recall that from
a topological point of view m is the number of sheets in the irreducible
germ of the path γ as a branched cover over τ = 0. Subsequently, m is
the least number of revolutions one must make before the corresponding
xj ’s come back to the same values. In other words, by collecting the points
(x(0), 0), (x(1), 2π), (x(2), 4π), . . ., (x(k), 2kπ), . . ., as the solution path defined
by (14.5) is tracked, m is the smallest positive integer such that x(0) = x(m).

14.2.4. Laurent series method for identifying divergent paths. In
this section, a technique for identifying divergent paths using the Laurent
series formulation in (14.4) is presented. By “factoring out” the leading terms
(terms with the lowest power), from each xj in (14.4), it follows that

xj =

∞∑
k=dj

ajks
k = ajdjs

dj

(
1 +

∞∑
k=1

ajk
ajdj

sk

)
.

Clearly, the path diverges (to infinity) if any of the dj is negative. This
method relies on the numerical identification of the signs of dj ’s.
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Within the (punctured) disk of convergences, by taking a fixed branch
of the complex logarithm function, one obtains

log xj = log ajdj + dj log s+ log

(
1 +

∞∑
k=1

ajk
ajdj

sk

)
log τ = m log s

which are holomorphic away from s = 0. Since 1 +
∑∞

k=1
ajk
ajdj

sk → 1 as s→
0, log

(
1 +

∑∞
k=1

ajk
ajdj

sk
)

is holomorphic at s = 0 and has a convergent power

series expansion of the form

log

(
1 +

∞∑
k=1

ajk
ajdj

sk

)
= c1s

1 + c2s
2 + · · · .

Moreover, substituting log s = log τ
m yields

log xj = log ajdj +
dj
m

log τ + c1s
1 + c2s

2 + · · · .

By taking two sets of approximations of log x1, . . . , log xn, log τ along the

path, say (log x
(1)
j )nj=1 and (log x

(2)
j )nj=1 along with τ (1) and τ (2) respectively,

one can approximate

(14.7) log x
(1)
j − log x

(2)
j =

dj
m

(log τ (1) − log τ (2)) +O(τ
1

m )

where O(τ
1

m ) denotes the collection of terms that will vanish with order 1
m

as |τ | → 0. Therefore, the approximation can be taken as

(14.8)
log x

(1)
j − log x

(2)
j

log τ (1) − log τ (2)
≈ dj
m

as long as a suitable branch of logarithm is used. If it is determined that
dj
m < 0 for some j, the path is divergent and can therefore be discarded as
it will not converge to a point in Cn.

Clearly the formulation in (14.8) may be unstable near the end of a
divergent path (which we want to identify) since τ would approach 0 and
at least one of the xj →∞. More practical numerical improvements on this
scheme were developed in [44] and [53]. The accuracy of this estimate is
limited by the winding number m since the O(τ

1

m ) terms in (14.7) have
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been discarded in the derivation. For larger m values, (14.8) becomes a poor
estimate. The improvement on this scheme for handling divergent paths with
larger winding number is still an open problem at this time.

14.3. Projective path tracking

Though the various methods of affine path tracking in Cn described in §4
are sufficient in dealing with many problems, they may not be able to dif-
ferentiate between solution paths that escape Cn and “diverge to infinity”
or solution paths that converge to end points with very large norms. In
§14.2.4 Laurent series (or, equivalently, Puiseux series) expansions with neg-
ative exponents are used to identify divergent solution paths near their end
points. In this section we present a much stronger environment where the
entire path tracking process is carried out in a “compactified” space where
solution paths cannot diverge.

Divergent paths exist, in part, because Cn is not compact as a topological
space. If Cn is replaced by a compact topological space W , a compactification
of Cn, in which Cn is embedded as a dense subset, then all homotopy paths,
now in W × [0, 1], must converge to points inside W at t = 1 and have finite
arc length [58]. One of the most commonly used compactification of Cn
in the context of algebraic geometry is the complex projective space CPn.
Recall that

CPn = (Cn+1\{(0, . . . , 0)})/ ∼

where x ∼ y for x,y ∈ Cn+1 if x = λy for λ ∈ C \ {0}, and points of CPn
are one dimensional linear subspaces of Cn+1 with “origin” removed. The
notation [x0 : · · · : xn] is commonly used for the homogeneous coordinate
of a point in CPn with [x0 : · · · : xn] being equivalent to [λx0 : · · · : λxn] for
any λ ∈ C \ {0}. With such coordinates, CPn can be covered by subsets Uj =
{[x0 : · · · : xn] |xj 6= 0} for j = 0, . . . , n, called standard charts. Clearly,
each standard chart Uj is isomorphic to Cn, as a set. These charts equip
the set CPn with a 2n-dimensional smooth manifold structure (as well as an
n-dimensional complex manifold structure).

The zero sets of polynomials in CPn are not well defined in general since
each point in CPn has infinitely many different coordinates. However, recall
that given any polynomial f ∈ C[x1, . . . , xn] of degree d, its homogeniza-
tion

f̂(x0, . . . , xn) = xd0 · f
(
x1

x0
, . . . ,

xn
x0

)
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has the property that for x = (x0, . . . , xn), f̂(λ · x) = λd · f̂(x). Hence the
zero set of f̂ is well defined in CPn, since for any λ 6= 0, f̂(λ · x) = 0 if
and only if f̂(x) = 0. Furthermore, since f̂(1, x1, . . . , xn) = f(x1, . . . , xn),
then, whenever x0 6= 0, there is a one to one correspondence between the
zero sets of f̂ and f . This common construction allows us to “lift” a prob-
lem into the complex projective space. In particular, for a given homotopy
H = (h1, . . . , hn), its homogenization Ĥ(x0, x1, . . . , xn) = (ĥ1, . . . , ĥn) with
respect to the variables (x1, . . . , xn) can be considered as a homotopy con-
struction that defines paths in CPn × [0, 1] which will simply be called pro-
jective paths. Note that these “projective” paths are closely related to
the original “affine” paths defined by H(x, t) = 0 in the sense that for any
affine path γ ⊂ Cn × (0, 1), the corresponding path γ̂ = {([1, x1, . . . , xn], t) |
(x1, . . . , xn, t) ∈ γ} ⊂ CPn × (0, 1) must satisfy the equation Ĥ = 0. The
path γ̂ will be called a projective path corresponds to γ. A main advan-
tage of working in CPn is its compactness as a topological space, thus all
projective paths defined by Ĥ = 0 must converge and have finite length. In
working with CPn, it is particularly convenient to use the unit sphere S2n+1

as the model of computation via the well known consideration of CPn as the
quotient manifold S2n+1/S1 which we shall briefly review.

Let S2n+1 = {x ∈ Cn+1 : ‖x‖2 = 1} be the unit sphere of Cn+1, which
is a smooth manifold of 2n+ 1 (real) dimension. It is standard to view
CPn as the quotient of S2n+1 under the action of the circle group: First
of all, each point (x0, . . . , xn) ∈ S2n+1 represents a point in CPn via the
map π : S2n+1 → CPn given by (x0, . . . , xn) 7→ [x0 : · · · : xn], which is clearly
onto. However, the representative of a point in CPn is not unique, i.e., π is not
1-to-1, as π(x) = π(λx) for any λ ∈ C∗. To leave S2n+1 invariant, we must
have |λ| = 1, i.e., λ = eiθ. So for x ∈ S2n+1, the points of the form eiθx with
θ ∈ R are exactly those that represent the same point as x does. Therefore,
CPn can be identified with the set of equivalent classes {[x] : x ∈ S2n+1}
where

[x] := { eiθx | θ ∈ R }.

In fact, this identification is more than set theoretical. Let S1 = {eiθ | θ ∈ R}
be the unit circle of C. With it, the set [x] can be considered as the orbit of
x under the action of a compact Lie group S1. This identifies CPn with the
quotient S2n+1/S1. This quotient is a smooth manifold in its own right. On
the other hand, it has a unique smooth structure for which π is a smooth
submersion. With this smooth structure, one can show that S2n+1/S1 is dif-
feomorphic to CPn whose smooth structure is given by the standard charts.
Furthermore, since S2n+1 is a Riemannian manifold, with its Riemannian
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metric gS2n+1 inherited from the standard inner product of Cn+1 ≈ R2n+2,
the quotient map π also gives us a natural choice of the Riemannian metric
on CPn ≈ S2n+1/S1. Since π is a submersion, at each point x ∈ S2n+1, its
pushforward π∗ has a constant rank of 2n. Its kernel Vx ⊂ TxS2n+1, of real-
dimension 1, is known as the vertical space, which is simply the tangent
space of the fiber over π(x) = [x]. Its orthogonal complement with respect
to gS2n+1

Hx = {h ∈ TxS2n+1 | gS2n+1(h,v) = 0 ∀ v ∈ Vx}
is known as the horizontal space, and it is a representation of the tangent
space of the quotient S2n+1/S1. There is a unique Riemannian metric g,
called Fubini-Study metric, on CPn, such that π is also a Riemannian
submersion, i.e., at each point x ∈ S2n+1,

gS2n+1(h1,h2) = g(π∗(h1), π∗(h2))

for any h1,h2 ∈ Hx. In other words, π∗ is an isometry on the horizontal
space Hx.

The benefit of using S2n+1 as our model of computation (i.e., points of
S2n+1 are used to represent points of CPn) is that, in additional to being
compact, all points in S2n+1 have coordinates with norm 1, a numerically
favorable environment. Note that the “points at infinity” are represented by
points x = (x0, x1, . . . , xn) ∈ S2n+1 with x0 = 0 much like the situation with
the homogeneous coordinates. To track a smooth solution path γ̂ ⊂ CPn ×
[0, 1] defined by Ĥ = 0 with parametrization x̂ : [0, 1]→ CPn, it is sufficient
to track a representation x : [0, 1]→ S2n+1 in S2n+1 of the projective path
x̂ in the sense that π(x(t)) = x̂(t) for all t ∈ [0, 1]. Unfortunately, there are
infinitely many such representations in S2n+1. In particular, if x : [0, 1]→
S2n+1 is such a representation, then so is

x(1)(t) = ei·θ(t)x(t)

for any smooth function θ : [0, 1]→ R. While, in principle, any choice of
the representation would allow us to obtain our desirable end point x̂(1),
the Riemannian geometry of CPn suggests a natural choice: the horizontal
lift of x̂. Given a starting point x(0) ∈ S2n+1 representing x̂(0) ∈ CPn, the
horizontal lift x : [0, 1]→ S2n+1 is the unique smoothly parametrized curve

(14.9)

x(0) = x(0)

ẋ(t) ∈ Hx(t)

DxĤ(x(t), t)ẋ(t) = −DtĤ(x(t), t)
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This is the projective analog of the Davidenko differential equation.
Intuitively, this choice is a representation whose tangent vector is always

orthogonal to the fiber direction. Concerning Riemannian geometry, this
choice is indeed a natural one, because the submersion π acts as an isometry
along such a curve. In addition, there are three more properties that justify
this choice: First, over each infinitesimal t-interval, the horizontal lift has
the minimum length among all smooth representations of γ̂ in S2n+1, which
is certainly a desirable property. Second, when the Fubini-Study metric is
used, the horizontal lift has exactly the same length as γ̂. Hence this choice
of representation does not artificially stretch the curve in length. Finally,
as an arguably more important benefit for numerical algorithms, this choice
has the best numerical condition among all the representations.

Using Cn+1 as the ambient space, at each fixed x ∈ S2n+1 ⊂ Cn+1, the
horizontal spaceHx has a simple numerical description: Via the isomorphism
TxCn+1 ∼= Cn+1, Hx is given by the subspace

Hx = {v ∈ Cn+1 | 〈x,v〉C = xHv = 0}

where xH is the conjugate transpose of vector x. Notice that this character-
ization of Hx is invariant under the group action of S1, since if 〈x,v〉C = 0,
then 〈eiθx,v〉C = 0 for any eiθ ∈ S1. With this formulation, the projective
Davidenko differential equation (14.9) can be expressed in coordinate as

(14.10)

(
DxĤ(x, t)

xH

)
· ẋ =

(
−DtĤ(x, t)

0

)
.

It is clear that under the smoothness condition of the homotopy Ĥ, the
above system of ODE uniquely determines the tangent vector ẋ at each
point along the curve x(t). So the projective path tracking can be reduced
to the initial value problem given by (14.10) on the Riemannian manifold
S2n+1. This forms the foundation to establish the projective path tracking
algorithm. In the following subsections we will outline the basic building
blocks of the algorithm.

14.3.1. Spherical projective Euler’s predictor. Given a point x =
x(t0) ∈ S2n+1 on (or close to) a horizontal lift of a projective path and a
step size ∆t, the task of a predictor is to produce an approximation of
the point on the path at t = t0 + ∆t. In light of Equation (14.10), with the
ability to compute tangent vectors, almost any curve fitting or extrapolation
scheme on the sphere S2n+1 can be used as predictors. For simplicity, we
shall focus on the generalization of Euler’s method.
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A geometric interpretation of Euler’s method in (4.4) is the movement
of a point along the straight line defined by the tangent vector by certain
step length. The analogue in the context of Riemannian geometry is the
exponential map Exp : TS2n+1 → S2n+1

Exp(x,v) := γv(1)

where γv : R→ S2n+1 is a Riemannian geodesic such that γv(0) = x and
γ̇v(0) = v. It moves a point x ∈ S2n+1 along a Riemannian geodesic passing
though that point with the given initial tangent vector v ∈ TxS2n+1 for a
step of unit length within the confine of S2n+1. On S2n+1, one can verify
that the geodesic with initial tangent vector v is simply given by

γv(t) = cos(‖v‖2t)x + sin(‖v‖2t)v/‖v‖2.

Therefore, in this context, the exponential map is given by

Exp(x,v) = cos(‖v‖2)x + sin(‖v‖2)v/‖v‖2.

One can construct the generalized Euler’s method out of a scaled version
of the exponential map: define spherical projective Euler’s prediction
EExp : S2n+1 × R→ S2n+1 by

(14.11) EExp(x,∆t) := cos(‖ẋ‖2∆t)x + sin(‖ẋ‖2∆t)ẋ/‖ẋ‖2

where ∆t is the step size. It is easy to verify that EExp(x, 0) = x, EExp(x,∆t)
∈ S2n+1, and the Riemannian distance between x and EExp(x,∆t) is exactly
‖ẋ‖2 ·∆t for any ∆t ≥ 0, agreeing with our intuition.

14.3.2. Spherical projective Newton’s corrector. The prediction (x′,
t0 + ∆t) produced by projective Euler’s predictor may not be exactly on or
even very close to the projective path defined by Ĥ = 0. If the next predic-
tion step is to start from such an approximation, the error can quickly build
up to an unacceptable level. To curb such error accumulation, a corrector is
needed to produce a refinement x′′ of the approximate solution x′ of Ĥ = 0
at t1 = t0 + ∆t. When a corrector fails to bring the prediction back to the
path quickly and reliably, the prediction should be performed again with a
smaller step size.

A natural choice of the corrector is an extension of Newton’s iteration to
the sphere in the same way the spherical Euler’s method is constructed via
the exponential map. Starting from the prediction x(1) = x′ provided by the
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spherical Euler’s method, a sequence of points x(2),x(3), . . . will be produced
iteratively, we wish they will converge to some approximated solution x′′ of
Ĥ = 0 at t = t1. For the k-th iteration, the Newton direction ∆x(k) is given
via the linear system(

Ĥx(x(k−1), t1)

(x(k−1))H

)
·∆x(k) =

(
−Ĥ(x(k−1), t1)

0

)
which came from the “projective Newton’s method” developed in [96]. Con-
sidering the vector ∆x(k) as a horizontal tangent vector in Hx, the spherical
Newton’s iteration is defined as

NExp(x(k−1)) := cos(‖∆x(k)‖2)x(k−1)(14.12)

+ sin(‖∆x(k)‖2)∆x(k)/‖∆x(k)‖2.

Using this map, we can produce points

x(k) = NExp(x(k−1))

for k = 1, 2, . . . until certain convergence criteria are met. The exact con-
vergence criteria are implementation dependent. The Riemannian distance
dS2n+1(x(k),x(k−1)) between consecutive points x(k) and x(k−1) or, in gen-
eral, dS2n+1(x(k),x(k−j)) for some j ∈ N serve as useful stopping criteria,
since the shrinking of these distances is usually a good indication of conver-
gence. Here we refer to [53] for a list of the stopping criteria as well as their
detailed descriptions.

Remark 14.6. Note that the spherical projective Newton’s method pro-
posed here is quite different from the “Projective Newton’s method” intro-
duced in [13] and [96]. In the first place, the spherical projective Newton’s
method uses the exponential map. Secondly, while the spherical projective
Newton’s method is used as the corrector in the predictor-corrector scheme
here, [13] and [96] uses Projective Newton’s method alone to track the paths.

15. Parallel mixed cells enumeration

Modern scientific computing is marked by the advent of vector and parallel
computers and search for algorithms that are to a large extend parallel
in nature. A great advantage of the homotopy continuation algorithm for
solving polynomial systems is, it is to a large degree parallel in the sense that
each isolated zero can be computed independently. In this respect, it stands
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in contrast to the highly serial algebraic elimination methods, which use
resultants or Gröbner bases. On the other hand, to attain more computing
resources for solving larger polynomial systems, the parallelization of the
homotopy method becomes inevitably essential.

The landscape of computation hardware has seen extremely active devel-
opments in recent years making available a wide spectrum of exciting new
technologies. First, developments in new processor design and network tech-
nology have allowed supercomputers and computer clusters to grow larger
and faster than ever. Second, new ideas such as cycle-scavenging and grid
computing has led to the creation of virtual supercomputers out of large
numbers of individual computers around the globe. Another exciting devel-
opment is the advent of parallel computing on GPUs (Graphical Processing
Units). While originally designed to handle 2D and 3D graphics rendering
only, over the years GPUs have become sufficiently sophisticated to handle
a much wider range of problems. Highly parallel by design, GPUs are more
efficient than general purpose CPUs in carrying out a range of complex algo-
rithms. Living in such interesting times is exciting and daunting. We must
rise up to the challenge, fully incorporate all these cutting-edge parallel
computing technology, and solve larger and larger polynomial systems.

As mentioned above, the “path tracking” part of the homotopy contin-
uation method is pleasantly parallel, since each path can be tracked inde-
pendent from one another. In the context of polyhedral homotopy (§7),
however, the main preprocessing step of “mixed cell enumeration”, detailed
in §8, appears to be quite serial and is potentially a major bottleneck for
the parallel scalability. Based on the idea of reformulating the problem into
a graph-theoretic search problem, a fully parallel mixed cell enumeration
algorithm that is efficient, robust, and highly scalable has been developed
in Hom4PS-3 [15]. In this section, we briefly explain this algorithm.

In the main algorithm for mixed cell enumeration described in §8: while
some of the one-point tests are closely related, most of the other one-point
tests are independent from one another. Based on this observation, the mixed
cell enumeration algorithm have since been modified to a parallel algorithm
developed in [16] rooted from classical algorithms in graph theory.

In the reformulation, related one-point tests can be group together to
form “tasks”: a task is a series of one-point tests (8.4) originated from
the same subface. Namely, they are the sets of one-point tests of the form
LP (F, ∗) := {LP (F,b) : b ∈ Ŝj}. For instance, all one-point tests originated

from the subface ({â, â′}, {b̂, b̂′}) will be grouped together to form a task
denoted by LP (({â, â′}, {b̂, b̂′}), ∗). Such tasks will be our smallest units of
computation around which the parallel algorithm is designed.
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∅

LP (({â1, â2}), ∗)

LP (({â1, â2}, {b̂1}), ∗) LP (({â1, â2}, {b̂2}), ∗)

LP (({â1, â2}, {b̂1, b̂2}), ∗)LP (({â1, â2}, {b̂1, b̂3}), ∗) LP (({â1, â2}, {b̂2, b̂3}), ∗)

Figure 26. A direct acyclic graph containing tasks

Tasks are interconnected in such a way that they form a direct acyclic
graph or DAG, whose vertices are the tasks and edges between vertices are
given by the natural extension relation between subfaces of the tasks as
elaborated in §8. Figure 26 depicts an example of such graphs. In this way,
a graph representation of the totality of the one-point tests is produced. Of
course, some of the one-point tests in the graph will be infeasible. With this
connection, the mixed cell enumeration process via one-point tests can be
understood as a special case of the graph traverse problem (the problem of
visiting vertices of a graph by walking along edges connecting them). One
important distinction is that in the mixed cell enumeration process there is
no need to visit every vertex. Recall that by advanced techniques discussed
in §8.3.3, §8.4, §8.5, and §8.3, results of many one point tests can quickly be
attained. As a consequence, only a small fraction of one-point tests need to
be solved formally. This specialized graph traverse problem can be handled
by graph traversal algorithms following a “discover-explore” procedure with
a proper book keeping. The theory behind such graph traverse algorithms
can be found in standard textbooks such as [97].

In order to keep track of the progress of the exploration and coordi-
nate multiple threads,5 the collection of discovered (but not yet completely
explored) vertices are stored in a data structure called “task pool”. Though
a number of data structures can be used, Hom4PS-3 chooses to use a priority
queue to maintain the task pool which provides fine-grained control of the

5Here a “thread” refers to the smallest unit of a sequence of instructions that
can be executed independently by the processor.
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exploration process, e.g., depth-first-search versus breadth-first-search. We
refer to [16] for details.

Multiple threads will operate on the task pool and perform one point
tests simultaneously: Each thread repeatedly fetches a single task from the
pool and explores it by performing a series of one-point tests. This “fetch-
and-explore” procedure continues until the task pool is empty and there is
no tasks that are currently being explored. At this point the feasible one
point tests in the DAG are completely explored and all the mixed cells have
been obtained. The algorithm then terminates. Since multiple threads will
access the priority queue concurrently, operations on the queue must be
made thread-safe to prevent race condition [41] (a condition in which mul-
tiple threads access the same data structure resulting in catastrophic data
corruption). In [16], “mutex” (“mutual exclusion”, a standard mechanism
commonly used to ensure only one thread has access to a data structure)
was proposed to guard the task pool and prevent race conditions. A much
more efficient and scalable solution using “concurrent data structure” was
later adopted in Hom4PS-3.

On multi-core systems, the implementation of this algorithm, based on
Intel TBB (and optionally OpenMP), in Hom4PS-3 has achieved remarkable
efficiency and scalability. Nearly n-fold linear speedups scalable up to 64
processor cores have been exhibited in experiments on standard test suite
problems. Figure 27 shows the speedup ratio on the standard benchmark
problem cyclic-15 [12].

This general parallel algorithm for mixed cell enumeration can be further
modified to adapt to other parallel architectures including NUMA systems,
computer clusters, distributed environments, and GPU devices (See. [16]).

15.1. On-the-fly NUMA optimization

Modern shared-memory systems with a large number of processor cores usu-
ally adopt a Non-Uniform Memory Access [41], or NUMA. In this architec-
ture each processor core can access all the available memory with different
speeds, depending on the relative closeness between the core and memory.
Developed in the 1990s as an answer to the scalability limitation in the
traditional SMP (symmetric multiprocessing) architectures, it has gained
a great popularity in the world of high performance computing especially
when AMD and Intel adopted the technology under the names HyperTrans-
port (2003) and QPI (2007) respectively.

Figure 28 shows the “memory-processor topology” of a NUMA system
that consists of 8 nodes. Each node contains 4 processor cores as well as
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Figure 27. Speedup ratio achieved on a 64 core system (AMD Opteron with
512GB memory) for the cyclic-15 [12] problem showing close to n-fold linear
speedups for up to 64 cores. The speedup is computed in comparison with
the fastest serial implementations published: MixedVol-2.0 [52] and DEMiCs
[77, 78].
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Figure 28. An example of a NUMA node structure

their “local” memory which they can access at full speed. The edges between
nodes indicate the direct connectedness between nodes and determine the
speed at which processor cores on one node can access memory on other
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nodes. For instance a processor on node 1 can access the memory on node 2
at a slower rate than it could access its local memory on node 1. The same
core can access memory on node 3 at a even slower rate due to the minimum
two jumps required (through node 2 or 4). Similarly there are at least three
jumps between node 1 and node 7. Consequently, that processor core would
have the slowest memory access to memory on node 7.

Recall that most of the data required by our algorithm for mixed cell
enumeration reside in the task pool. On the NUMA system, it is there-
fore crucial to split a single task pool into several task pools shared by
the threads in an optimized pattern that ideally matches the underlying
memory-processor topology. The planning of this pattern is governed by
two conflicting constraints:

1) Each thread should access a task pool that is placed as close as possible
in terms of memory-processor topology to optimize the memory access
time.

2) Each task pool should be shared by as many threads as possible to
avoid load balancing issues (to be discussed in detail in §15.2).

Unfortunately there is no standardized method currently available to
determine precisely the memory-processor topology [41]. In particular, while
one could inquire from the operating system which memory access patterns
are slow, but not how slow. Coupled with the fact that the operating sys-
tem can, at any time, migrate a running thread from one processor core to
another, a dynamic and on-the-fly planning of the task pool placement and
sharing pattern is therefore a necessity. Here we briefly outline the proce-
dure.

At the beginning of the extension process, the program starts with an
initial “evaluation phase” in which each thread is spawned with its own task
pool in the memory local to the processor core that the thread runs on.6

During the extension process, each thread will access tasks from all task
pools. The average time for accessing each task pool is monitored, and the
resulting data is used to construct a list of “preferred” task pools for having
best access time. (see for example Figure 29a). Then threads that prefer the
same task pool are grouped into “thread clusters” (see Figure 29b for the
formation of clusters). Conversely task pools that are preferred by the same
cluster of threads are merged (see Figure 29c for the merger of task pools).

6On Linux, this is done via the standard library libnuma provided by most Linux
distributions. On Unix this step requires the correct configuration to be set by the
user.



i
i

“1-Chen˙Li” — 2015/12/16 — 0:40 — page 291 — #173 i
i

i
i

i
i

Homotopy continuation method 291
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(a) Four threads T1,T2,T3,T4

with their preferred task pools

P1, P2, P3, P4.

T1 T2

T3 T4

P1

P2

P3

P4

(b) Two clusters of threads

formed based on common pref-

erence on task pools.

T1 T2

T3 T4

P1 ∪ P2

P3 ∪ P4

(c) Task pools preferred by

the same clusters are merged

together.

Figure 29. Dynamic optimization of the task pool sharing pattern on NUMA
architectures

This process is repeated until the threads’ preference of task pools stabilizes.
At this point each cluster of threads has a single preferred task pool that has
the best access time and this “evaluation phase” is terminated. Afterwards,
this task pool sharing pattern is fixed and each thread only access its own
preferred task pool. This optimization procedure can be performed again
whenever threads have migrated to different processor cores or certain task
pool becomes empty before others.

Incurring minimum additional computational cost at the initial “eval-
uation phase”, this technique substantially improves the memory access
time on NUMA systems. As shown in Table 3, in experiments on standard
benchmark problems: the cyclic family [12], the five-body central configura-
tion problem (fivebody) [3, 37, 54], and the 6-vortex problem (vortexAC6)
[38, 111], approximately 1.5× to 20× speedup (150% to 2000%) in mem-
ory access time7 have been observed which resulted in 5% to 35% overall
speedups in the extension process.

Remark 15.1. The sensitivity in the overall run time to memory access
pattern exhibited in Table 3 highlights the possibility that for sufficiently
large systems, the mixed cell enumeration problem will become memory-
bound. That is, the run time will no longer be dominated by the number
of floating point operations but will instead be dominated by the memory

7The memory access time is approximated by using the “memory access latency”
provided by the Intel VTune software which closely correlates to the actual memory
access time that is generally difficult to measure. For the best accuracy, all CPU
caches were disabled when measuring memory access latency.
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access latency, an important factor that is often ignored in complexity anal-
ysis.

System Mem. acc. speedup Overall reduction

cyclic-14* 1.40 4.9%

cyclic-15* 2.40 8.2%

cyclic-16* 4.50 9.5%

fivebody 17.55 33.2%

vortex-6 19.95 34.5%

Table 3. The memory access speedup (with errors within ±0.05) and overall
reductions in run time in the extension process over the basic algorithm
observed in experiments with a few large systems in standard test suites on
a NUMA system consisting of 8 node each having 8 quad-core AMD Opteron
processor with a total of 256 cores. Experiments marked by ‘*’ only used 4
out of 8 nodes (128 of the 256 cores) due to smaller size. The time spent on
the computation of cell volume (6.13) and the accumulation of the mixed
volume are not included since they are not affect by the memory access
pattern.

15.2. Extending to computer clusters

While the above referenced NUMA architecture allows shared-memory sys-
tems to scale to tens or even more than 100 processor cores, their scala-
bility is still limited by the inherently high cost. Larger systems that con-
tain several hundreds or even thousands of cores generally take the form of
distributed-memory systems in which nodes, connected by some network,
do not directly share memory spaces but communicate with one another
by passing messages instead. The parallel algorithm described above can
be extended to distributed-memory systems including computer clusters in
which nodes are connected by dedicated high speed network.

In such distributed-memory systems, a master-worker model is chosen to
extend the parallel algorithm described above. In this model, the “master”
runs on a single node in the system. It first populates its own task pool with
an initial set of subfaces. The number of initial subfaces is determined based
on the number of nodes available within the system (a prescribed multiple
of the number of nodes). This initial task pool is then divided into equal
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portions and sent to each of the remaining nodes as seeds for exploration.
Each worker executes the Explore algorithm described in §8 and explores
the subgraph accessible from the initial set of nodes sent by the master until
its task pool becomes empty. At the end each worker would have a collection
of mutually exclusive mixed cells. These are then passed back to the master
to form a final set of mixed cells. This basic scheme was proposed in [66]
and significantly improved in [16]. Figure 30 shows a typical setup in which
arrows indicate the passing of tasks between nodes.

Worker 1 Worker 2 Worker 3 Worker 4

Master

Pool 1 Pool 2 Pool 3 Pool 4

Initial pool

Figure 30. A master-worker setup for performing parallel mixed cell enu-
meration on a computer cluster with 5 nodes. One node act as the master
and the remaining nodes act as workers each having their own task pools.
The initial tasks are passed to each worker for exploration.

The Message Passing Interface, or MPI, is a specification that allows
nodes to communicate with one another in a cluster. Though not sanctioned
by any major standards body, MPI has became a de facto standard for
scientific computation on computer clusters. In Hom4PS-3, this protocol is
used for the communication between the master and workers.

An implementation based on this master-worker model would not be
scalable without load balancing mechanisms. In exploring the spanning tree
of the feasible subgraph, certain branches may require significantly more
CPU time than other branches. Such imbalances generally cannot be detected
easily ahead of time, a dynamic load balancing mechanism that actively
shifts tasks from one worker to another is therefore critically essential to
the overall efficiency and scalability of this algorithm. In [16], this problem
is resolved by requiring each worker to request more tasks from the master
when it exhausted its own task pool. However, the waiting spent on mes-
sage passing incurs a measurable and sometime significant cost. Indeed, in
large clusters, experiments suggest that the waiting time often dominate the
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overall run time as the single master node can be easily overwhelmed by the
large number of worker nodes.

A major improvement Hom4PS-3 provides over [16] is the use of asyn-
chronous message passing and buffering to further improve the load balanc-
ing mechanism: In addition to the task pool, each worker also maintains an
“overflow buffer” which is filled with newly discovered tasks whenever the
number of tasks in the task pool exceeds a prescribed threshold. The num-
ber of tasks in the buffer is periodically reported back to the master which
maintains a dynamic tally of the imbalance of buffers among the workers.
The master periodically broadcasts to all workers which buffer has the low-
est number of tasks. Upon receiving the notice, each worker whose buffer has
higher number of tasks then passes certain number of tasks to the buffers
with lowest number of tasks. Here the passing of tasks from one buffer to
another is performed via efficient asynchronous message passing provided by
recent revisions of the MPI standard that are asynchronous in the sense that
they do not interrupt the threads from their main computational intensive
task. That is, the transmission of data takes place in the background and the
workers have no need to wait for the sending or receiving. See Figure 31 for
the illustration. When a worker exhausted its own task pool, it moves tasks
from its own buffer, which resides in the worker’s local memory space, to its
task pool so that the task pool reaches the original prescribed capacity. The
worker then continues its exploration.

Buffer 1 Buffer 2 Buffer 3 Buffer 4

Worker 1 Worker 2 Worker 3 Worker 4

Pool 1 Pool 2 Pool 3 Pool 4

Figure 31. Buffering and load balancing mechanisms among workers. Tasks
are moved from one buffer to another in the background. In contrast to the
simple master-worker setup illustrated in Figure 30, this model relies mostly
on direct (peer-to-peer) communication among worker nodes.

The asynchronous load balancing substantially improved the efficiency
and scalability of the basic scheme developed in [16]. The implementation
exhibits great scalability on clusters having between 32 and 200 nodes. It
is expected that the speedup ratio cannot get close to those achieved on a
multi-core system (as shown in Figure 27) due to the inherently higher cost
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in communication. However it is possible to scale to many more processors
cores than on multi-core or NUMA system. For example, the speedup ratios
achieved using multiple nodes in a cluster for the fivebody (five body central
configuration) problem [3, 37, 54] is shown in Figure 32.
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Figure 32. Speedup ratios achieved by the distributed-memory variation
of the parallel algorithm for mixed cell enumeration over the fastest serial
implementations MixedVol-2.0 [52] and DEMiCs [77]. Measurements are done
in a cluster containing up to 192 processor cores.

15.3. GPU accelerated mixed cell enumeration algorithm

An exciting development in the world of computing is the advent of general
purpose parallel computation on GPUs. Highly parallel by design, GPUs are
more efficient than traditional CPUs in performing a variety of complicated
tasks [85]. In terms of raw computational power, GPU devices have now
surpassed the fastest CPU available [85]. However, hurdles still exist along
the path to fully employing GPU computing. In particular, both the memory
layout and thread organization are very different from their counterparts in
traditional CPUs. In NVidia’s CUDA architecture, for example, threads are
always organized in groups of 32 threads called “warps” [85] which are the
basic scheduling units in CUDA GPUs with all threads in a warp always
perform the same instruction at the same time.

In an attempt to take advantage of GPU devices, Hom4PS-3 adopts the
approach of GPU accelerated mixed cell enumeration algorithm where the
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CPUs still perform the main algorithm, and GPU devices provide assistance
in computation intensive tasks that are best suited for GPUs. Though still an
experimental part of the software with active development currently under-
way, the remarkable speedups achieved definitely merit further investigation
on the idea. We therefore present the preliminary results here.

The GPU accelerated mixed cell enumeration algorithm explores the
parallelism inside individual “tasks” which is not directly utilized in the
approaches discussed above. It comes in the form of a separated module that
performs a specific set of operations inside the one-point test problems (8.4).
As we mentioned in §8, in the mixed cell enumeration algorithm included
in Hom4PS-3, the simplex method is preferred due to the great amount
of additional information it generates which can be used to substantially
accelerate the mixed cell enumeration process (see §8.3.3).

The simplex method is an iterative method for solving the linear pro-
gramming problems of the form (8.4). Leaving aside the technical details,
the key property being exploited here is that each iteration in the sim-
plex method involves the manipulation of a fixed size matrix. In particular,
the part that dominates the overall computational cost takes the form of a
matrix-vector multiplication

y← A · x

where A is a fixed matrix with real entries whose number of rows is much
greater than the number of columns. The potential parallelism in this oper-
ation is immediate: in principle, every scalar-scalar multiplication involved
can be computed independently.

A straightforward approach would be to utilize the standard NVidia
cuBLAS library [85] which has built-in functions designed specifically for
handling this task. Unfortunately, the cuBLAS library incurs a small but
measurable amount of additional cost upon each invocation. Recall that the
enumeration of mixed cells involves a large number of one-point tests, the
cumulative costs associated with cuBLAS often outweighs its benefits, as our
experiments suggest.

A direct programming approach is therefore in place. The computation
is divided into two steps. First, all the scalar-scalar products {ai,j · xj} are
computed in parallel where ai,j and xj are the entries of A and x respectively.
GPU devices are generally capable of running hundreds or even thousands of
threads simultaneously. Conforming to the organization of threads on GPU,
this step is done in block of 16× 16 threads. That is, the (i, j) block of
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System (dimension) Avg. speedup in y← Ax

cyclic15 (15) 3.55

cyclic19 (19) 3.95

cyclic23 (23) 8.09

cyclic27 (27) 9.00

cyclic31 (31) 31.54

cyclic47 (47) 39.90

Table 4. The average speedup ratio in computing y← Ax and solving one-
point test problems respectively observed in some standard test suite prob-
lems. The data reflect the average of 10000 one-point tests for each problem.

16× 16 threads computes the array of products
a16i,16j · x16j a16i,16j+1 · x16j+1 · · · a16i,16j+15 · x16j+15

a16i+1,16j · x16j a16i+1,16j+1 · x16j+1 · · · a16i+1,16j+15 · x16j+15
...

...
...

a16i+15,16j · x16j a16i+15,16j+1 · x16j+1 · · · a16i+15,16j+15 · x16j+15


with one thread computing each entry. Once the scalar-scalar products
{ai,j · xj} are all computed, the standard “parallel reduction” algorithm is
then applied to compute the row sums among blocks of the above form.
Table 4 shows the speedup results of this algorithm observed on some stan-
dard test suite problems using a NVidia GTX 970 graphic card. Measur-
ing this operation of computing y← Ax alone, approximately 3.5x to 40x
speedup ratio have been achieved on sufficiently large systems.

Though still limited in its functionality and portability, on sufficiently
large systems the GPU accelerated part shows remarkably promising results.
Developments in applying GPU to more operations in the mixed cell enu-
meration algorithm are currently underway.
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