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Global robust adaptive output regulation

for nonlinear systems of

relative degree up to two

Zhiyong Chen and Jie Huang

In this paper, we study the global robust output regulation problem
for an uncertain nonlinear lower triangular system subject to an
uncertain exosystem. Under some standard assumptions, the prob-
lem can be transformed into a robust adaptive stabilization prob-
lem of a well defined system called augmented system. In order
to deal with the unknown parameter of the exosystem, we con-
struct an internal model consisting of two dynamic compensators.
As a result, the augmented system contains both the static and
dynamic uncertainties and the dynamic uncertainty is not input-
to-state stable. Then, we develop a recursive approach to construct
the controller.

1. Introduction

Consider a lower-triangular system of relative degree two described as fol-
lows,

(1.1)

q̇o = κo (qo, q1, v, w)

q̇1 = κ1(qo, q1, v, w) + q2

q̇2 = κ2(qo, q1, q2, v, w) + u

e = q1 − qd(v, w),

where qo ∈ Rno and qi ∈ R are the states, u ∈ R is the input, and e ∈ R is
the output representing the tracking error. The disturbance and/or reference
signal v ∈ Rq is produced by an exosystem described by

(1.2) v̇ = A1(σ)v, v(0) = vo.

The unknown parameters w ∈ Rp1 and σ ∈ Rp2 are assumed to be in some
known compact sets. It is also assumed that all functions in the system (1.1)
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16 Z.-Y. Chen and J. Huang

are polynomial in (qo, q1, q2, v). We will consider the problem described as
follows.

Global Robust Adaptive Output Regulation Problem: For given V, W, and
S, which are compact subsets of Rq, Rp1 , and Rp2 containing the origins,
respectively, find a state feedback controller such that, for all v(t) ∈ V, w ∈
W, and σ ∈ S, the trajectories of the closed-loop system, starting from any
initial states, exist and are bounded for all t > 0, and satisfy limt→∞ e(t) = 0.

Various versions of the problem have been extensively studied for the
case where the exosystem is exactly known in, for example, [1–5]. When the
exosystem contains uncertainty, the signal v represents the combination of
constant and sinusoids with unknown amplitudes, phases and frequencies.
This more practical problem was first studied for a simple nonlinear system
in [6], and was subsequently further pursued for more complex systems in
[7–12], etc. It is worth mentioning that the semi-global output regulation
problem for a class of lower triangular systems was studied in [12] via output
feedback control. Here, we consider the same system as the system studied
in [12]. However, our objective is global output regulation by state feedback.
Even though we only consider the case where the relative degree is two, the
iterative nature of our approach allows it to be extended to a higher relative
degree case with more complicated notation and assumptions.

Typically, the output regulation problem is approached in two steps. In
the first step, an appropriate dynamic compensator called internal model
is found. Attaching the internal model to the given plant leads to an aug-
mented system, and the internal model is such that the stabilization solu-
tion of the augmented system leads to the output regulation solution of the
original plant. As a result, the second step will be centered on stabilizing
the augmented system. When the exosystem is exactly known, the stabi-
lization problem of the augmented system can often be handled by various
robust control techniques. However, when the exosystem contains uncertain
parameters, these uncertain parameters will enter the augmented systems
and they cannot be handled by robust control techniques. Therefore, for this
case, adaptive control techniques have to be further introduced to handle
this type of the unknown parameters.

In all existing papers dealing with the output regulation problem of
nonlinear systems with an unknown exosystem, a common feature is that
only one dynamic compensator corresponding to the input needs to be con-
structed. As a result, the only unknown parameter vector that needs to be
estimated by the adaptive control technique appears in one single equation
containing the input. In contrast, in the present case, we need to construct
r dynamic compensators corresponding to r − 1 measurable states and one
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Global robust adaptive output regulation 17

input where r is the relative degree. Thus, the resulting augmented sys-
tem will also be much more complex in that r unknown parameter vectors
appear in r equations and all these unknown parameter vectors need to
be estimated by the adaptive control technique. Such type of systems has
never been encountered before. In this paper, we will propose a new robust
adaptive design approach to overcome this difficulty. This approach needs to
recursively construct the control law r times, and each recursion necessitates
a dynamic coordinate transformation which leads to a newly augmented sys-
tem with more complex parameter uncertainty. This phenomenon is called
“propagation of uncertainties”. To capture the essential mechanism of our
design method, and avoid tedious notation and assumptions, we only con-
sider the lower triangular system (1.1) whose relative degree is two.

The rest of the paper is organized as follows. Section 2 provides a typical
construction of an adaptive internal model to deal with uncertain exosys-
tems. Based on the adaptive internal model and a new robust adaptive
control approach, the global robust output regulation problem formulated
in this paper is solved in Section 3. Finally, the paper is concluded in Sec-
tion 4.

2. Problem conversion

To begin with, let us recall from the general framework established in [5]
that the solvability of the robust output regulation problem relies on an
appropriate internal model. To ascertain the existence of the desired internal
model, we will list the following four assumptions.

Assumption 2.1. For all σ ∈ S, the exosystem is assumed to be neutrally
stable in the sense that all the eigenvalues of A1(σ) are simple and have zero
real parts.

Assumption 2.2. There exists qo(v, w, σ), a polynomial function in v with
coefficients depending on w and σ such that,

∂qo(v, w, σ)

∂v
A1(σ)v = κo(qo(v, w, σ), qd(v, w), v, w)

for all v ∈ V, w ∈W, and σ ∈ S.

Assumption 2.3. There exists a sufficiently smooth function V (qo) bounded
by some class K∞ polynomial functions, such that, along the trajectories of
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18 Z.-Y. Chen and J. Huang

q̇o = κo (qo, q1, v, w),

dV (qo)

dt
≤ −‖qo‖2 + π(q1)(2.1)

for some polynomial positive definite function π.

Assumption 2.4. There exist polynomial functions κ2 and κ3 in (qo, q1,
q2, v) such that

κ2(qo, q1, q2, v, w) = κ2(qo, q1, q2, w) + κ3(qo, q1, v, w).

Remark 2.1. Assumption 2.1 means that the solution of the exosystem
is a sum of finitely many sinusoidal functions. Typically, σ represents the
frequencies of these sinusoidal functions. Under Assumption 2.2, we can
define, for all v ∈ V, w ∈W, and σ ∈ S,

q1(v, w) = qd(v, w)

q2(v, w, σ) =
∂q1(v, w)

∂v
A1(σ)v − κ1(qo(v, w, σ),q1(v, w), v, w)

u(v, w, σ) =
∂q2(v, w, σ)

∂v
A1(σ)v−κ2(qo(v, w, σ),q1(v, w),q2(v, w, σ), v, w)

which constitute the solution of the regulator equations for the system com-
posed of (1.1) and (1.2) for all v ∈ V, w ∈W, and σ ∈ S. And the solutions
are polynomial in v with coefficients depending on w and σ. Assumption 2.3
implies that the system (1.1) is minimum phase. Assumption 2.4 excludes
cross terms between q2 and v in κ2(qo, q1, q2, v, w) so that the uncertainty
term l2(y2, µ) in the augmented system (2.8) satisfies the linear parameteri-
zation condition which is needed for the employment of the adaptive control
technique later.

Since q2(v, w, σ) and u(v, w, σ) are polynomial in v with coefficients
depending on w and σ, there exist integers r1 and r2, and matrices Φi(σ) ∈
Rri×ri such that

ϑ̇i = Φi(σ)ϑi, ξi = [1 0 · · · 0]ϑi, i = 1, 2

where ϑi(v, w, σ) := col(ξi, ξ̇i, . . . , ξ
(ri−1)
i ), i = 1, 2, ξ1 = q2(v, w, σ), ξ2 =

u(v, w, σ). Moreover, all the eigenvalues Φi(σ) are simple with zero real
parts.
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Global robust adaptive output regulation 19

Next, pick any controllable pairs (Mi, Ni) with Mi ∈ Rri×ri , Ni ∈ Rri×1,
and Mi Hurwitz, and solve Ti(σ) from the Sylvester equation Ti(σ)Φi(σ)−
MiTi(σ) = Ni[1 0 · · · 0]. Let

θi(v, w, σ) := Ti(σ)ϑi(v, w, σ),

Ei(σ) := Ti(σ)Φi(σ)T−1i (σ),

Ψi(σ) := [1 0 · · · 0]T−1i (σ)

and

(2.2)

θ(v, w, σ) = col(θ1(v, w, σ), θ2(v, w, σ)),

α(σ, θ) = block diag(E1(σ)θ1, E2(σ)θ2),

β(σ, θ) = col(Ψ1(σ)θ1,Ψ2(σ)θ2),

X = block diag(X1,X2),

X = M,N, T.

Then, it can be verified that the triplet {θ(v, w, σ), α(σ, θ), β(σ, θ)} satisfies

θ̇(v, w, σ) = α(σ, θ), ξ = β(σ, θ), ξ := col(ξ1, ξ2).

The triplet {θ(v, w, σ), α(σ, θ), β(σ, θ)} is called a steady-state generator of
the system (1.1) and (1.2) with the output col(q2, u). Furthermore, let

η̇ = Mη +Ncol(q2, u), η := col(η1, η2)(2.3)

which defines the internal model for system (1.1) and (1.2) with the output
col(q2, u). The composition of the system (1.1) and the internal model (2.3)
is called an augmented system.

If σ were known, then based on the framework in [5], we could further
perform on the augmented system (1.1) and (2.3) the following input and
state transformations

(2.4)
ū = u−Ψ2(σ)η2, zi = ηi − θi −Nixi, i = 1, 2,

xo = qo − qo(v, w, σ), x1 = e, x2 = q2 −Ψ1(σ)η1

to obtain a transformed augmented system in the following form:

(2.5)

ẋo = fo(xo, x1, d), ż1 = M1z1 + γ1(χ1, d)

ẋ1 = f1(ζ1, χ1, d) + x2, ż2 = M2z2 + γ2(ζ1, χ2, d)

ẋ2 = f2(ζ2, χ2, d) + ū
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where χ1 := col(xo, x1), χ2 := col(xo, x1, x2), ζ1 := z1 ζ2 := col(z1, z2), d =
col(v, w, σ), and µ = col(w, σ). Also, the functions fi and γi satisfy fi(0, 0, d)
= 0 for i = 0, 1, 2,, and γ(0, d) = 0 and γ2(0, 0, d) = 0. The system (2.5) is
in a standard lower triangular form with static uncertainty d and dynamic
uncertainty (xo, z1, z2). It was shown in [5] that it is possible to globally sta-
bilize the system (2.5) by a state feedback controller ū = gu(x1, x2) based on
the small gain approach. Moreover, this controller will lead to the following
controller

(2.6) u = Ψ2(σ)η2 + gu(e, q2 −Ψ1(σ)η1), η̇ = Mη +Ncol(x2, u)

that solves the global output regulation problem of the original system.
Unfortunately, when σ is unknown, the control law (2.6) is not imple-

mentable. To overcome the difficulty caused by the uncertain exosystem, we
will instead consider performing on (1.1) and (2.3) the following coordinate
transformation:

(2.7)
zi = ηi − θi −Nixi, i = 1, 2,

xo = qo − qo(v, w, σ), x1 = e, x2 = q2.

This transformation leads to the following transformed augmented system:

(2.8)

ẋo = fo(xo, x1, d),

ż1 = M1z1 + γ1(χ1, d)

ẋ1 = f1(ζ1, χ1, d) + l1(y1, µ) + x2,

ż2 = M2z2 + γ2(ζ1, χ2, d) + h2(ȳ2, µ)

ẋ2 = f2(ζ2, χ2, d) + l2(y2, µ) + u

where ȳ1 = col(e, qo, q1), y1 = col(e, qo, q1, η1), ȳ2 = col(e, qo, q1, q2, η1), and
y2 = col(e, qo, q1, q2, η1, η2). Various functions in (2.8) are described as fol-
lows:

fo(xo, x1, d) = κo(qo, q1, v, w)− κo(qo,q1, v, w)

γ1(χ1, d) = M1N1x1 −N1A1

f1(ζ1, χ1, d) = A1 + Ψ1(σ)η1 −Ψ1(σ)θ1

γ2(ζ1, χ2, d) = M2N2x2 −N2A2 +N2Ψ1(σ)E1(σ)(N1x1 + z1)

f2(ζ2, χ2, d) = A2 −Ψ1(σ)E1(σ)(N1x1 + z1) + Ψ2(σ)(N2x2 + z2)
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Global robust adaptive output regulation 21

and

l1(y1, µ) = −Ψ1(σ)η1

h2(ȳ2, µ) = −N2B −N2Ψ1(σ)E1(σ)η1

l2(y2, µ) = B + Ψ1(σ)E1(σ)η1 −Ψ2(σ)η2

where

A1 := κ1(qo, q1, v, w)− κ1(qo,q1, v, w)

A2 := κ2(qo, q1,Ψ1(σ)η1, w)− κ2(qo,q1,q2, w)

+ κ3(qo, q1, v, w)− κ3(qo,q1, v, w)

B = κ2(qo, q1, q2, w)− κ2(qo, q1,Ψ1(σ)η1, w).

Remark 2.2. Like the case where σ is known, if the system (2.8) can be
globally stabilized in the sense that the states of the closed-loop are globally
bounded and limt→∞ x1(t) = 0, then the resulting controller will lead to a
controller that solves the global output regulation problem for the original
system (1.1) with σ unknown. Therefore, for the rest of this paper, we only
need to focus on the stabilization of (2.8).

Remark 2.3. The system (2.8) appears much more complicated than the
system (2.5) in that the left hand side of (2.8) contains such terms as l1, l2
and h2. Owing to the presence of these terms, (ζ2, χ2) = 0 is not the equilib-
rium point of the system any more. For this reason, we refer to these terms
as equilibrium point perturbing (e.p.p.) terms in what follows. The presence
of the e.p.p. terms greatly complicates the global stabilization of (2.8). In
particular, the dynamic uncertainty z2 does not satisfy a certain input-to-
state stability condition. Therefore, the small gain approach as employed
in [5] does not apply to (2.8). As a result, we need to develop a specific
technique to handle the stabilization problem of (2.8) in the next section.

Remark 2.4. When using the output feedback control to deal with the
output regulation problem of the system (1.1), the control law does not
utilize the state variable q2. Therefore, there is no need to construct an
internal model corresponding to q2. As a result, instead of using the trans-
formation (2.7), one can use the following transformation

(2.9)
ū = u−Ψ2(σ)η2, zi = ηi − θi −Nixi, i = 1, 2,

xo = qo − qo(v, w, σ), x1 = e, x2 = q2 − q2(v, w, σ).
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Under this transformation, the augmented system (1.1) and (2.3) will be
transformed into a system similar to (2.8) but with the terms l1 and l2 van-
ishing. Such a system is still much simpler than (2.8). However, even this
much simpler system cannot be globally stabilized by output feedback con-
trol. That is why only semi-global output regulation was considered in [12].

3. Main result

In this section, we will consider the stabilization problem of the system (2.8).
First, as seen in [13], under Assumption 2.3, there exist polynomial functions
αi(·), i = 1, 2, such that, under the new coordinate

x̃o = xo, x̃1 = x1, x̃2 = x2 − α1(x̃1), x̃3 = x3 − α2(x̃2),

the system (2.8) with l1 = 0, l2 = 0 and h2 = 0 becomes

(3.1)

˙̃x0 = f0(x̃o, x̃1, d)

żi = Mizi + ϕi(ζi−1, χ̃i, d)

˙̃xi = φi(ζi, χ̃i, d) + αi(x̃i) + x̃i+1, i = 1, 2

for some polynomial functions ϕi and φi. Moreover, there exist positive
definite and radially unbounded functions V (ζ2) and W (χ̃2) =

∑2
i=0Wi(x̃i)

with χ̃2 := col(x̃o, x̃1, x̃2), such that, along the trajectories of the system (3.1),

(3.2)
d(V (ζ2) +W (χ̃2))

dt
≤ −k(ζ2, χ̃2)

for some positive definite function k(·, ·).
Next, we will turn to deal with the nontrivial terms l1, l2 and h2. We

first consider the upper subsystem governing col(xo, z1, x1). To apply the
adaptive scheme, we note the fact that

Ψ1(σ) = ωT
1(µ)Ψ̄1

for a constant matrix Ψ̄1 and a column function vector ω1(µ). As a result,
we have the following linear parameterization property of l1(y1, µ):

l1(y1, µ) = −Ψ1(σ)η1 = ρ1(y1)ω1(µ)

for a row vector function ρ1(y1) = −ηT
1Ψ̄T

1. Consider the following coordinate
transformation:

x̄2 = x2 + ρ1(y1)ω̂1 − α1(x1),
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with the function α1(·) given above, and the vector ω̂1 used to estimate
ω1(µ). In particular, ω̂1 is generated by an update law

˙̂ω1 = ψ1(y1) = k1(dW1(x1)/dx1)ρ
T
1(y1), k1 > 0.

As a result, the x1−subsystem is in the following form:

ẋ1 = f1(ζ1, χ1, d) + α1(x1)− ρ1(y1)ω̃1 + x̄2

= φ1(ζ1, χ1, d) + α1(x1)− ρ1(y1)ω̃1 + x̄2

with ω̃1 = ω̂1 − ω1.
From above, we see that the notation

(χ̄i)− (%i, $i)− (ζ̄i, si)− (ρi, ωi)− (ψi)− (ω̂i)(3.3)

has been defined for i = 1 with

χ̄1 = col(xo, x̄1), x̄1 = x1,

%1 ∈ Ro, $1 ∈ Ro, ζ̄1 = z̄1 = z1, s1 ∈ R0.

Before moving to the full system (2.8), we need to define the notations (3.3)
for i = 2 as follows.

• Let χ̄2 := col(xo, x̄1, x̄2).

• Define

~2(ȳ2, ω̂1, µ) = γ2(ζ1, χ2, d)− γ2(ζ̄1, xo, x̄1, x̄2 + α1(x̄1), d) + h2(ȳ2, µ)

= −M2N2ρ1(y1)ω̂1 +N2κ2(qo, q1, q2, w)

−N2κ2(qo, q1,Ψ1(σ)η1, w)−N2Ψ1(σ)E1(σ)η1.

Since all functions are in polynomial form, the function ~2(ȳ2, ω̂1, µ)
satisfies the following linearly parameterization property:

(3.4) ~2(ȳ2, ω̂1, µ) = %2(ȳ2, ω̂1)$2(µ)

for a sufficiently smooth function matrix %2 and a column function
vector $2.

• Let s2 be a square matrix governed by ṡ2 = M2s2 + %2(ȳ2, ω̂1), and let
ζ̄2 := col(z̄1, z̄2) where z̄2 = z2 − s2$2(µ).
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• Define ρ̄1(y2, µ) = −η̇T
1Ψ̄T

1 = −(M1η1 +N1x2)
TΨ̄T

1. Then, the deriva-
tive of ρ1(y1) is dρ1(y1)/dt = ρ̄1(y2, µ). Let

`2(y2, s2, ω̂1, µ)

= f2(ζ2, χ2, d)− f2
(
ζ̄2, xo, x̄1, x̄2 + α1(x̄1), d

)
+ l2(y2, µ)

+ (∂α1(x̄1)/∂x̄1)ρ1(y1)ω̃1(µ) + ρ̄1(y2, µ)ω̂1(µ) + ρ1(y1)ψ1(y1)

= −Ψ2(σ)N2ρ1(y1)ω̂1 + κ2(qo, q1, q2, w)− κ2(qo, q1,Ψ1(σ)η1, w)

+ Ψ2(σ)s2$2(µ) + l2(y2, µ) + (∂α1(x̄1)/∂x̄1)ρ1(y1)ω̃1(µ)

+ ρ̄1(y2, µ)ω̂1(µ) + ρ1(y1)ψ1(y1).

Clearly, the function `2(y2, s2, ω̂1, µ) is linearly parameterized in the
sense that

`2(y2, s2, ω̂1, µ) = ρ2(y2, s2, ω̂1)ω2(µ)

for a sufficiently smooth row vector function ρ2 and a column function
vector ω2.

• Let ψ2(y2, s2, ω̂1) = k2(dW2(x̄2)/dx̄2)ρ
T
2(y2, s2, ω̂1), k2 > 0.

• Let ω̂2 be a vector variable governed by ˙̂ω2 = ψ2(y2, s2, ω̂1).

With the above notation, the z2-subsystem can be rewritten as follows,

ż2 = M2z2 + γ2(ζ̄1, xo, x̄1, x̄2 + α1(x̄1), d) + ~2(ȳ2, ω̂1, µ)(3.5)

= M2z2 + ϕ2(ζ̄1, χ̄2, d) + ~2(ȳ2, ω̂1, µ).

We can define the following dynamic coordinate transformation

(3.6) z̄2 = z2 − s2$2(µ), ṡ2 = M2s2 + %2(ȳ2, ω̂1),

under which, we have

(3.7) ˙̄z2 = M2z̄2 + ϕ2(ζ̄1, χ̄2, d).

Furthermore, with the controller u = −ρ2(y2, s2, ω̂1)ω̂2 + α2(x̄2), we have

˙̄x2 = f2
(
ζ̄2, xo, x̄1, x̄2 + α1(x̄1), d

)
(3.8)

− (∂α1(x̄1)/∂x̄1)(φ1(ζ̄1, χ̄1, d) + α1(x̄1) + x̄2)

+ `2(y2, s2, ω̂1, µ) + u

= φ2(ζ̄2, χ̄2, d) + α2(x̄2)− ρ2(y2, s2, ω̂1)ω̃2
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with ω̃2 = ω̂2 − ω2. From the above development, the system (2.8) is put in
the following form:

(3.9)

ẋo = fo (xo, x1, d)

˙̄zi = Miz̄i + ϕi(ζ̄i−1, χ̄i, d)

˙̄xi = φi(ζ̄i, χ̄i, d) + αi(x̄i)− ρi(yi, si, ω̂i−1)ω̃i + x̄i+1, i = 1, 2

under the following controller:

(3.10)

u = −ρ2(y2, s2, ω̂1)ω̂2 + α2(x̄2)

x̄2 = x2 + ρ1(y1)ω̂1 − α1(x1)

˙̂ω1 = ψ1(y1), ˙̂ω2 = ψ2(y2, s2, ω̂1)

ṡ2 = M2s2 + %2(ȳ2, ω̂1)

where ω̂o ∈ R0. Now, it is ready to have the main result.

Theorem 3.1. Under Assumptions 2.1 to 2.4, form any initial condition,
the states of the system (3.9) are bounded and limt→∞ x1(t) = 0. Therefore,
the global robust adaptive output regulation problem for the system (1.1) is
solved by the controller (3.10) and (2.3).

Proof. Compare the system (3.9) with the system (3.1), we can define a
function

U(ζ̄2, χ̄2, ω̃) = V (ζ̄2) +W (χ̄2) +
1

2
ω̃TKω̃

where ω̃ := col(ω̃1, ω̃2), and the matrix K = diag(k1, k2) is diagonal and pos-
itive definite which is used to modify the update rate. Using (3.2), it can be
shown that the derivative of U(ζ̄2, χ̄2, ω̃) along the system (3.9) is

dU(ζ̄2, χ̄2, ω̃)

dt
≤ −k(ζ̄2, χ̄2)−

∂W (χ̄2)

∂[x̄1, x̄2]T
ρ(y2, s2, ω̂1)ω̃ + ω̃TKψ(y2, s2, ω̂1)

where

ρ(y2, s2, ω̂1) = block diag(ρ1(y1), ρ2(y2, s2, ω̂1))

ψ(y2, s2, ω̂1) = col(ψ1(y1), ψ2(y2, s2, ω̂1)).

Now, let the update law be

(3.11) ˙̃ω = ψ(y2, s2, ω̂1) = K−1
[
∂W (χ̄2)

∂[x̄1, x̄2]T
ρ(y2, s2, ω̂1)

]T
.
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As a result,

(3.12)
dU(ζ̄2, χ̄2, ω̃)

dt
≤ −k(ζ̄2, χ̄2).

Thus, the states ζ̄2, χ̄2, and ω̃ are bounded. It is easy to verify that s2 is
bounded. In other words, all states in the closed-loop system are bounded.
Next, let U(t) = U(ζ̄2(t), χ̄2(t), ω̃(t)) and k(t) = k(ζ̄2(t), χ̄2(t)). Integrating
on both sides of (3.12) shows that

∫ t
o k(τ)dτ ≤ U(0)− U(t) ≤ U(0), hence,

limt→∞
∫ t
o k(τ)dτ exists and is finite. The fact that all states are bounded

implies that

k̇(t) =
∂k(ζ̄2, χ̄2)

∂ζ̄2

˙̄ζ2 +
∂k(ζ̄2, χ̄2)

∂χ̄2

˙̄χ2

is bounded for all t ≥ 0, hence, k(t) is uniformly continuous. By Barbalat’s
lemma, limt→∞ k(t) = 0, hence limt→∞ x1(t) = 0. The proof is thus com-
pleted. �

Remark 3.1. The stabilization problem of some special cases of the sys-
tem (2.8) has been extensively studied over the past two decades. The sim-
plest case where the system involves neither dynamic uncertainty nor static
uncertainty was solved via full state feedback control using the well known
backstepping technique in a series of papers [14–16]. When the system con-
tains only the static uncertainty, the problem was also dealt with via state
feedback control using the adaptive backstepping approach under various
assumptions on the uncertainty vector d(t) itself and the way d(t) enters the
system in [17–19], to name just a few. For the more general case where the
system contains both static and dynamic uncertainties, a similar problem
was also studied in several papers [13, 20, 21] by under the assumption that
the dynamic uncertainty satisfies a certain input-to-state stability condition.

Remark 3.2. Some features of the proposed controller design approach are
highlighted as follows. (i) As z2 is not available for feedback, the standard
adaptive control technique, e.g., [18], is incapable of handling the e.p.p. term
h2 appearing in the subsystem governing z2. We have devised a dynamic
coordinate transformation (3.6) to overcome this difficulty. (ii) At the sec-
ond step, the uncertainties from the first step enter the e.p.p. terms h2 and
l2 and hence induce more complex e.p.p. terms ~2 and `2. This phenomenon
is called propagation of uncertainty. As a result, we need to examine the lin-
early parameterization property of these new terms. This examination may
become more difficult if a system with a higher relative degree is considered.
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Remark 3.3. From (3.11), it is known that the rate of the parameter
estimate converges to zero since limt→∞ χ̄2(t) = 0. Moreover, we can give the
condition under which the parameter ω̂i converges to the real value ωi(µ),
i.e., limt→∞ ω̃i(t) = 0. To give that condition, we note that limt→∞ x̄i(t) =
0 and ḋ(t) is bounded, then ¨̄xi(t) is bounded, that is, ˙̄xi(t) is uniformly
continuous in t. By Barbalat’s lemma, limt→∞ ˙̄xi(t) = 0. As a result, we have
limt→∞ ρi(t)ω̃i(t) = 0. Using Lemma 4.1 of [11], we have limt→∞ ω̃i(t) =
0 if ρT

i (t) is a persistent excitation (PE). For the system (1.1), we note
that ρT

1(t) = −Ψ̄1η1(t) is a PE if η1(t) is. Thus, the estimated parameter ω̂1

converges to its true value ω1(µ) if θ1(t) is a PE.

Example 3.1. We consider the global output regulation problem of the
following system:

(3.13)
q̇o = −qo + 0.2e, q̇1 = 0.5qo sin q1 + w1q1 + q2

q̇2 = w2q
2
o + w3q1 + u, e = q1 − v1

coupled with an exosystem

(3.14) v̇1 = −σv2, v̇2 = σv1.

These equations formulate the control problem of designing a state feedback
regulator to have the output x1 of system (3.13) asymptotically track a sinu-
soidal signal of an unknown frequency with an arbitrarily large fixed ampli-
tude, produced by the exosystem (3.14), in the presence of three uncertain
parameters (w1, w2, w3). In this example, we allow a non-polynomial term
sin q1 in the system to show that the polynomial assumption is not necessary
as long as there exists a polynomial solution to the regulator equations.

It can be verified that Assumptions 2.1–2.4 are satisfied. In particular,
the regulator equations associated with (3.13) and (3.14) have a globally
defined solution in polynomial form as follows

qo (v, w, σ) = 0, q1 (v, w, σ) = v1,

q2 (v, w, σ) = −σv2 − w1v1, u (v, w, σ) = −σ2v1 + w1σv2 − w3v1.

To construct the internal model, we have the matrices

Φ1(σ) = Φ2(σ) =

[
0 1
−σ2 0

]
,

M1 = M2 =

[
−1 0
0 −2

]
, N1 = N2 =

[
0.2
0.5

]
.
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Next, we can solve Ti(σ) and Ψi(σ) as

T1(σ) = T2(σ) =

[ 0.2
σ2+1 − 0.2

σ2+1
1

σ2+4 − 0.5
σ2+4

]
,

Ψ1(σ) = Ψ2(σ) =
[
−5σ2 − 5 2σ2 + 8

]
.

After the introduction of the internal model (2.3), we can define an
augmented system and further transform the augmented system into the
form (2.8). Next, we will give the detailed calculation on the quantities used
in the controller design. First, we can choose

α1(x1) = −K1x1, α2(x̃2) = −K2x̃2(1 + x̃22), p1 = 2, p2 = 1

where K1 and K2 are determined by the bound of w1, w2, w3 and σ. Since
l1(y1, µ) = −Ψ1(σ)η1, we can verify that

ρ1(y1) = −ηT
1Ψ̄T

1, Ψ̄1 =

[
−5 2
−5 8

]
, ω1(µ) = col(σ2, 1).

Next, note Ψ1(σ)E1(σ) = [−10σ2 − 10, 2σ2 + 8]. Since

~2(ȳ2, ω̂1, µ) = M2N2η
T
1Ψ̄T

1ω̂1 −N2Ψ1(σ)E1(σ)η1,

we can verify that

%2(ȳ2, ω̂1) =
[

0 M2N2η
T
1Ψ̄T

1ω̂1

]
−N2η

T
1Ψ̂T

1,

Ψ̂1 =

[
−10 2
−10 8

]
, $2(µ) = col(σ2, 1).

We note the derivative of ρ1(y1) is ρ̄1(y2, µ)=−η̇T
1Ψ̄T

1 =−(M1η1 +N1x2)
TΨ̄T

1,
which is well defined and measurable. A calculation shows

`2(y2, ξ2, ω̂1, µ) = [A11 A12 +A21 A22]col(σ4, σ2, 1) +Bcol(σ2, 1) + C

with

A = Ψ̄1s2,

B = −(N2ρ1(y1)ω̂1)
TΨ̄T

1 + ηT
1Ψ̂T

1 − ηT
2Ψ̄T

1 − (∂α1(x̄1)/∂x̄1)ρ1(y1)

C = (∂α1(x̄1)/∂x̄1)ρ1(y1)ω̂1 + ρ̄1(y2, µ)ω̂1 + ρ1(y1)ψ1(y1).
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Therefore,

ρ2(y2, s2, ω̂1) =
[

0 B
]

+
[
A11 A12 +A21 C +A22

]
,

ω2 = col(σ4, σ2, 1).

In the numerical simulation, we can compare the non-adaptive con-
troller and the adaptive one. The simulation is conducted with the param-
eters w1 = −0.4, w2 = 0.8, w3 = 0.3, v1(0) = 10, v2(0) = 0, qo(0) = 5, q1(0) =
8, q2(0) = −1, and the initial values of the remaining states being zero. The
simulation condition is listed in Table 1. For the first 100 seconds, the value

time(s) 0− 100 100− 200 200− 300 300− 400

adaptive law off off on on

σ 0.2 1 1 0.2

Table 1: Simulation condition for the system (3.13).

of σ is the same as that used for the controller design, the adaptive law is
off. The desired tracking performance limt→∞ e(t) = 0 is shown in Figure 1.
At t = 100, the parameter σ changes its value and the tracking performance
degrades significantly. When the adaptive law is turned on at t = 200, the
tracking error quickly converges to zero. Good tracking performance is main-
tained even after another step change of the parameter at t = 300. The
tracking performance is shown in Figure. 1 in a similar tendency.

Also, we can check that the signal

θ1(v, w, σ) = T1(σ)

[
−w1 −σ
−σ2 σw1

] [
v1
v2

]
is a PE if v(t) 6= 0. Then, the parameter estimation ω̂1 always converges to
its real value ω1(µ). Since the unknown frequency σ is related to ω̂11, ω̂21,
and ω̂22 by σ̂1 =

√
ω̂11, σ̂2 = 4

√
ω̂21, and σ̂3 =

√
ω̂22, any one of the three

relations gives the precise estimation of σ as shown in Figure 2.

4. Conclusion

A common feature of the existing approaches to handling the adaptive out-
put regulation problem with uncertain exosystems is that the internal model
compensator only consists of a single dynamic compensator corresponding to
the input. In contrast, in this paper, we have to construct an internal model
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Figure 1: Profile of the tracking errors for the plant states and input.
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Figure 2: Profile of the estimated frequencies.

consisting of two dynamic compensators corresponding to the input and the
state q2, respectively. As a result, we have to deal with a much more com-
plicated augmented system. We have proposed a recursive design method
to solve the problem. Even though we have only considered a lower trian-
gular system with relative degree two, the relative degree one case can be
considered as a special case. Moreover, the recursive nature of our approach
allows it to be extended to systems with a higher relative degree at the cost
of more complicated notation and assumptions.
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