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This paper presents a unifying perspective on communication, esti-
mation, and control. A feedback communication system over a
Gaussian channel is reformulated as an estimation system (i.e. a
Kalman filter) and also as a feedback control system. Therefore, a
fundamental limitation applicable in one system can be translated
into a fundamental limitation applicable in another system and
vice versa. Specifically, the achievable rate in the communication
system is equal to half the Cramer-Rao bound decay rate or mini-
mum mean-square error decay rate in the estimation system, and
also equal to the Bode integral in the control system. Furthermore,
the optimal trade-offs for each of the following three pairs of quan-
tities are equal: first, the pair of power and rate in communication,
second, the pair of the (causal) prediction performance and (anti-
causal) smoothing performance in estimation, and third, the pair
of the output regulation performance and disturbance rejection
measure in control. All these trade-offs can be interpreted as the
tradeoff between causality and anti-causality. Extensions to more
general channels are briefly discussed.
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1. Introduction

There is an increasing trend to investigate the interactions of information,
estimation, and control; see [1–13] and references therein. Specifically, the
communication system in which the transmitter has access to noiseless feed-
back of channel outputs has been a central focus since it possesses aspects
of a communication system, an estimation system, and a control system.
One of the most important case of such is the system over a Gaussian
channel with noiseless feedback. The fundamental limitation of this sys-
tem, from a communication perspective, is characterized by the feedback
capacity and capacity-achieving codes and has been studied using several
approaches. These approaches are categorized roughly (by no means strictly,
since they are intrinsically related) as follows. 1) Estimation theory related
approaches. This approach utilizes concepts such as maximum likelihood
(ML) or minimum mean-square error (MMSE) estimates in constructing
the coding schemes, such as the capacity-achieving Schalkwijk-Kailath (SK)
codes for additive white Gaussian noise (AWGN) channels motivated by
the Robbins-Monro stochastic approximation and recursive ML algorithm
[1, 2]. See also [14–17]. 2) Information theoretic approaches, most notably
those based on the Cover-Pombra scheme (CP scheme for short) built upon
the asymptotic equipartition property, the mutual information between the
message and channel outputs, and the directed information from the input
to output of a channel. In addition, Kim [18] proved the capacity theorem
and obtained the capacity expression. See also [6, 19–23]. 3) Control theory
related approaches, which regards the feedback communication problems as
optimal control problems (cf. e.g. [3–6, 22, 24]). Tatikonda and Mitter [6]
reformulated the capacity problem as an optimal control problem and pro-
posed dynamic programming based solutions. Sahai and Mitter [5] investi-
gated the problem of tracking unstable sources over a channel and introduced
the notion of anytime capacity, revealing the connections of the fundamen-
tal limitations between communication and control. Elia [4] established an
equivalence between reliable communication and stabilization over Gaussian
channels, showed that the achievable transmission rate is equal to the Bode
integral (BI) of the associated control system, and generalized the SK codes
via control-oriented methods. See also [25, 26] and so on for a related study
of analyzing a control system under communication constraints. There also
exist studies utilizing more than one approach, such as Ardestanizadeh et
al [27, 28] showed the connections of the information-theoretic capacity and
MMSE exponent with a certain type of control policies.
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Convergence of fundamental limitations 163

As we have seen, different approaches have been shown useful in address-
ing the fundamental limitations associated with the Gaussian feedback com-
munication system. This paper attempts to present a converging point for
the studies of this system based on a perspective that unifies information,
estimation, and control. We demonstrate that the communication problem
can be reformulated as an optimal estimation problem or an optimal control
problem. Specifically, we will show that many coding schemes in the existing
literature have to utilize the Kalman filter (KF) algorithm or are reformu-
lations of Kalman filters: First, the CP scheme needs to implement a KF to
achieve power efficiency (defined as achieving minimum channel input power
to support a given rate) and optimal receovery of the transmitted message
(see Section 4.1); second, the SK code can be easily obtained from a KF of
an appropriate form (see Sections 2 and 5.1); and third, the control-oriented
schemes can be derived from a KF by the duality between control and esti-
mation [29, 30] (see Section 5.1). Therefore, we will conclude that the three
approaches described above are intimately connected, and consequently, one
can be used to complement another when addressing various problems over
Gaussian channels.

As a result, we can establish certain corresponding relationship for the
fundamental limitations in feedback communication, estimation, and feed-
back control. The achievable rate of the feedback communication system is
alternatively given by the decay rate of the Cramer-Rao bound (CRB) (or
equivalently, decay rate of the MMSE) for the associated estimation system,
or given by the BI of the associated control system, in both finite horizon
or infinite horizon (see Sections 6.2 and 7.2). In addition, the fundamen-
tal limitations in terms of the optimal tradeoffs in feedback communication,
estimation, and feedback control coincide, all of which may be interpreted
as the tradeoff between causality and anti-causality. In feedback communi-
cation, this fundamental limitation is the capacity, i.e., the optimal tradeoff
between the input power (i.e. the cost) causally generated by the feedback
loop and information rate (i.e. the payoff) which is independent of feedback;
in the associated estimation system, it is characterized by the optimal trade-
off between the causal mean-square error (MSE) and (anti-causal) smoothing
MSE decay rate; and in the associated control system, by the optimal trade-
off between the variance of a regulated output generated by causal feedback
(a control performance measure) and the BI (or degree of anti-causality or
degree of instability, which is the disturbance rejection measure). For each
of the tradeoff pairs, if one wishes to keep the cost (i.e. the first in the pair)
low, the payoff (i.e. the second in the pair) cannot exceed some constant
determined only by the underlying channel and the cost (see Section 6.3).
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The above-mentioned equivalence relationship leads to a simple equiva-
lence between generalized SK codes and the KF, which provides a convenient
way to obtain a feedback communication scheme from an estimation prob-
lem. This leads to an information theoretic characterization of KF ; that is,
the KF is not only a device to provide sufficient statistics (which was shown
in [22]), but also a device to ensure the power efficiency and to recover the
message optimally.

Different from papers studying channel capacity problems and estab-
lishing capacity theorems or coding theorems, this paper is focused on dis-
cussing the confluence of information, estimation, and control, such as how
one problem may be transformed into another, and how the fundamental
limitations in these problems are related. Hence only some aspects of the
channel capacity that are pertinent to estimation and control will be dis-
cussed in this paper. We do not attempt to address the capacity problem
per se (e.g. proving the coding theorem), and the interested reader is refer
to [18, 31] and related papers for the characterization of capacity.

Throughout the paper, for simplicity, channel refers to feedback chan-
nel, Gaussian channel refers to Gaussian channel with memory and feedback,
and capacity refers to feedback capacity, unless otherwise specified. We use
underlines to specify vectors, and boldface to specify matrices. We repre-
sent transpose by ′. KKK > 0 (or ≥ 0) means that the symmetric matrix KKK
is positive definite (or positive semi-definite). We represent time indices by
subscripts, such as yt. We denote by yT the vector [y0, y1, . . . , yT ]′, and ‖yT ‖
be the vector 2-norm of yT . We assume that the starting time of a process
is 0. A finite-dimensional linear time-invariant (FDLTI) system is denoted
using a scripted symbol, e.g., Z(z), and as it can be alternatively captured
by a matrix, we represent the matrix associated with the linear system Z(z)
by ZZZ (boldface scripted symbol). We use (AAA,B,C ′, D) to represent system

(1)

{
xt+1 = AAAxt +But
yt = C ′xt +Dut.

2. Motivating example: Kalman filter based optimal
communication over AWGN channel

To help the reader understand the intuition behind our study, we present a
simple example over an AWGN channel before we study the general Gaus-
sian channels with memory. First, we introduce a simple KF system (see
Fig. 1 (a)), followed by a straightforward rewrite of it (see Fig. 1 (b)), which
then may be used for information transmission at the Shannon capacity
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rate. Finally, we show that this communication system is equivalent 1 to the
SK scheme in the sense that both follow the same procedures and dynam-
ics and generate identical corresponding signals for any time horizon. This
implies that the celebrated SK scheme in fact performs the KF algorithm. It
motivates the further exploration of the connections among feedback com-
munication, estimation, and feedback control.

2.1. A Kalman filter problem

Consider a standard KF problem for a first-order unstable LTI system with
noisy measurements:

(2) to-be-estimated system:


xt+1 = axt
rt = cxt
ȳt = rt + wt,

for time t = 0, 1, . . ., where x0 is a continuous random variable with zero
mean and finite variance, |a| > 1 (namely the system is unstable), a and c
are known, and wt

i.i.d.∼ N (0, 1) is the AWGN. The KF provides the linear
MMSE estimate of {xt} based on the noisy measurement process {ȳt}, and
if x0 is Gaussian, the estimate is the MMSE estimate. The (steady-state) 2

KF is described as (see Fig. 1 (a) for the block diagram)

(3) Kalman filter:


x̂t+1 = ax̂t + let
r̂t = cx̂t
et = ȳt − cx̂t,

where

(4) l :=
aΣΣΣc

1 + c2ΣΣΣ

is the asymptotic Kalman filter gain, and ΣΣΣ is the asymptotic MSE for x̂t (i.e.
ΣΣΣ = limt→∞E(xt − x̂t)2), which is the positive solution to the discrete-time

1In here and subsequent places, “equivalence” is according to the notion described
in Appendix A.1.

2Though {ȳt} is neither stationary nor even asymptotically stationary, a time-
varying or time-invariant (steady-state) KF can be built to guarantee bounded error
variance for estimating xt, and the difference between the time-varying one and
time-invariant one vanishes as time increases, as pointed out in Chapter 14 of [29].
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algebraic Riccati equation (DARE)

(5) ΣΣΣ = a2ΣΣΣ− a2c2ΣΣΣ2

1 + c2ΣΣΣ
.

Solving the DARE, we obtain

(6) ΣΣΣ =
a2 − 1

c2
, l =

a2 − 1

ac
.

+ + +

Kalman filter

(a)

+ + +

decoderAWGN
channelencoder

(b)

Figure 1: (a) A KF problem. (b) A KF-based coding scheme.

2.2. KF-based feedback communication

Next, as illustrated in Fig. 1 (b), we introduce a feedback communication
coding scheme over an AWGN channel by slightly changing the KF problem
shown in Fig. 1 (a). Rather than closing the loop to the right of the AWGN wt
(i.e. adding (−r̂t) to ȳt to obtain et) as done in the KF, in Fig. 1 (b), the loop
is closed to the left of the AWGN wt (i.e. adding (−r̂t) to rt to obtain ut). It
is straightforward to verify that all corresponding signals remain the same
after the change and hence the two systems are considered as equivalent.
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(Note that in Fig. 1 (b), yt = et.) As indicated in Fig. 1 (b), one can identify
a communication system with an encoder, AWGN channel, and a decoder,
all of which will be described in the following for time t = 0, 1, . . ..

(7) AWGN channel: yt = ut + wt,

where ut is the channel input, wt
i.i.d.∼ N (0, 1) is the channel noise, and yt is

the channel output.
At time t, the encoder can access r̂t (generated from yt−1) via the noise-

less feedback link and operates according to:

(8) encoder dynamics:


xt+1 = axt
rt = cxt
ut = rt − r̂t

where a and c are encoder design parameters such that |a| > 1 and c 6= 0.
The encoding procedure is as follows. Fix the number of channel uses to be
(T + 1) (i.e. the system runs from time 0 to time T ) and a power budget
P > 0. Given a set of KT equally likely messages, map the kth message into
a message point M (k) according to

(9) M (k) :=

√
P
c

(
−1 +

2k

KT − 1

)
; k = 0, 1, . . . ,KT − 1.

This is known to both the transmitter and receiver a priori. Suppose the kth
message is to be transmitted across the channel. To encode, let x0 := M (k),
the message point representing a selected message.

The decoder operates according to

(10) decoder dynamics:


x̂t+1 = ax̂t + lyt
r̂t = cx̂t
x̂0,t = a−t−1x̂t+1,

and the decoding procedure is to simply map x̂0,T (or x̂0,T /(1− a−2T−2))

into the closest message point referred to as M̂ (k).
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In summary, the KF-based communication system dynamics is:

(11)
KF-based

communication



xt+1 = axt
rt = cxt
ut = rt − r̂t

 encoder

yt = ut + wt = et AWGN channel
x̂t+1 = ax̂t + let
r̂t = cx̂t
x̂0,t = a−t−1x̂t+1

 decoder

The following proposition shows that, the Kalman filter in (3), an opti-
mal estimator for a process generated by a continuous random variable and
perturbed by AWGN, can be transformed into an optimal communication
system to transmit digital messages over an AWGN channel.

Proposition 1. The feedback communication system together with the de-
scribed encoding and decoding procedures can achieve the feedback capacity

(12) Cfb(P) =
1

2
log(1 + P),

under an average channel input power constraint

(13)
1

T + 1
E‖uT ‖2 ≤ P

for any T .

Proof. Fix any ε > 0, an arbitrarily small slack from the capacity Cfb. Then
let a :=

√
1 + P, c 6= 0, KT := ba(T+1)(1−ε)c, and follow the above-described

encoding and decoding dynamics and procedures. One can derive that

(14) E(xt − x̂t)2 = a−2tE(x0)2 + l2
t−1∑
j=0

a−2j ,

and then straightforward computations show that the channel input power
satifies

(15) E(ut)
2 = c2E(xt − x̂t)2 = a−2t(c2E(x0)2 − P) + P ≤ P

since x0 := M (k) and |cM (k)| ≤
√
P for any k according to (9). Therefore,

(13) holds.



i
i

“2-elia” — 2015/2/6 — 15:07 — page 169 — #9 i
i

i
i

i
i

Convergence of fundamental limitations 169

Additionally, for any fixed x0, the decoder generates

(16) x̂0,T = (1− a−2T−2)x0 + a−2T−2
T∑
j=0

aj+1lwj ,

which maps to the correct message point if

(17) |x0 − x̂0,T | < dT :=

√
P

c(KT − 1)
,

where dT is half of the spacing between any two neighboring message points.
One can see that (x0 − x̂0,T ) is Gaussian conditioned on x0, with mean µT :=
a−2T−2x0 and variance σ2

T := a−2T−2(1− a−2T−2)P/c2. Then the probabil-

ity of the decoded message point M̂ not equal to the selected message point
M can be shown to satisfy

(18)

PET |M := Pr(M̂ 6= M |M)

≤ Pr(x̂0,T − x0 ≥ dT |x0) + Pr(x̂0,T − x0 ≤ −dT |x0)

= Q

(
dT − µT
σT

)
+Q

(
dT + µT
σT

)
= Q

(
1√

1− a−2T−2

(
caT+1

KT − 1
+ a−T−1 cx0√

P

))
+Q

(
1√

1− a−2T−2

(
caT+1

KT − 1
− a−T−1 cx0√

P

))
< 2Q

(
caT+1

ξTa(1−ε)(T+1)
− a−T−1

)
≤ 2Q

(
caε(T+1) − a−T−1

)
,

where ξT := KT /a
(1−ε)(T+1) ≤ 1. The first inequality (as opposed to equal-

ity) is because when, say, x0 :=
√
P/c, then any noise such that x̂0,T > x0

would not result in a decoding error. The last two inequalities are because
the Q-function is strictly decreasing and c|x0| ≤

√
P. Since a > 1, straight-

forward computation can show that as T tends to infinity, the above upper
bound of PET |M , which is independent of x0, decreases to zero. Then the

probability of decoding error PET := Pr(M̂ 6= M) also vanishes to zero.
Hence the rate

(19) lim
T→∞

1

T + 1
logKT = (1− ε)Cfb(P)
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is achievable (also cf. [32] for a similar proof for a slightly different setting),
and we have proven that (11) equipped with the described encoding and
decoding procedures is capacity achieving. �

Note that in the KF problem described in Section 2.1, the initial condi-
tion x0 is a continuous random variable with zero mean and finite variance,
whereas in the KF-based communication problem described in this subsec-
tion, the initial condition is a discrete random variable uniformly chosen from
the KT message points. However, as suggested by (16) and (17), asymptot-
ically the distribution of x0 does not play any role in recovering x0 from
the noisy measurements and hence the KF-based communication scheme
can be used to transmit any unknown x0, regardless of its distribution. See
[33] (page 481) for similar comments regarding a common scheme used for
transmitting either a Gaussian random variable or digital data. As we will
see in Section 2.4, the common scheme in [33] is a rewrite of our KF-based
communication scheme.

2.3. Connections with the SK coding scheme

The coding scheme in Fig. 1(b) is a simple reformulation of the celebrated
SK coding scheme known to achieve capacity. To see this, a slight variation
of the original SK scheme (cf. [2]) is illustrated in Fig. 2 3 . In this figure,
one can identify the encoder, AWGN channel, decoder, and the feedback
link with one-step delay.

To see the connection between the two coding schemes, note that in the
SK scheme, it holds that

(20) SK scheme


ut = gat(x̂0,t−1 − x0) encoder
yt = ut + wt AWGN channel

x̂0,t =
g2 + 1

a2
x̂0,t−1 − a−t−2gyt decoder

3The SK variation here performs the same operations every step, as opposed to
the scheme in [2] whose initialization step differs from later steps, and the message
points M (k)’s are defined differently in this paper and in [2]. However, for any time
k > 1, both the variation in Fig. 2 and the original SK scheme perform identical
operations. The resulting signal differences can be shown to vanish as time increases
and affect neither the power constraint nor the decay of the error probability (details
omitted for brevity). See also Sec. IV-B for [4] for similar comparison and [24] for
further comparison of a few SK-type schemes and their variations.
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++ +

decoder

AWGN
channel

encoder

+

Figure 2: The SK coding scheme.

(To help the reader verify, note that the signals x0, wt, yt, x̂0,t in Fig. 2
correspond to θ, Zi1, Yi1(Xi1), Xi+1,1 in [2], resp.) If we let g := −

√
P,

then (20) leads to

(21)
ut =

√
Pat(x0 − x̂0,t−1)

x̂0,t = x̂0,t−1 + a−t−2
√
Pyt.

Straightforward computations can show that the KF-based coding scheme
also follows (21) if we let c :=

√
P (and hence l =

√
P/a), namely, the KF-

based coding scheme and the SK scheme generate identical channel inputs
ut, outputs yt, and decoder estimates x̂0,t respectively at each time.

2.4. A stable variation of the KF-based coding scheme

The KF-based coding scheme illustrated in Fig. 1 generates unbounded sig-
nals such as rt (noticing rt = catx0 where |a| > 1). The SK coding scheme
illustrated in Fig. 2 generates unbounded values such as at. A simple refor-
mulation, however, leads to a stable coding scheme with all involved signals
and values stable. See Fig. 3 for the stable formulation.

The system dynamics is

(22)
KF-based stable
coding scheme


x̃t = ax̃t−1 − lyt−1

ut = cx̃t

}
encoder

yt = et = ut + wt AWGN channel
x̂0,t = x̂0,t−1 + a−t−1lyt decoder

where x̃−1 := M/a ifM is the selected message point (i.e. x̃0 = M), y−1 := 0,
and x̂0,−1 = 0. To see how this formulation may be derived from (11), simply
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+

decoder

AWGN
channel

encoder

+ +

control setup

Figure 3: A stable variation of the KF-based coding scheme.

let

(23) x̃t := xt − x̂t

in (11) and then (22) will follow.
To see that it is stable, note that

x̃t = ax̃t−1 − l(cx̃t−1 + wt−1)(24)

= (a− lc)x̃t−1 − lwt−1

= a−1x̃t−1 − lwt−1,

where we have used the definition of l in (6). As |a−1| < 1, (24) is stabilized
and hence all signals and parameters in (22) are bounded.

We remark that the stable variation in (22) coincides with the com-
mon scheme studied by Gallager (pages 480 to 482, [33]). The only dif-
ference being that, in [33], the decoder calculates the unbiased estimate
x̂0,T /(1− a−2T−2) and then maps it to the closest message point to receover
the transmitted message (as opposed to mapping x̂0,T directly to a message
point); however the difference vanishes sufficiently fast and hence (22) and
the common scheme have the same asymptotic behavior.

Moreover, this formulation is related to a control problem. To see this,
consider the optimal control problem for (22), assuming a and c are given,
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l is the controller gain (i.e., −lyt−1 is the control input based on noisy
observation yt−1):

(25) min
l:(22) is stable

lim
T→∞

1

T + 1

T∑
t=0

E(ut)
2;

that is, we want to minimize the power of the regulated output u by appro-
priately choosing l (namely to minimize the power of the “error” signal
u := cx̃t, or simply put, to make the state x̃t small, through proper controller
design). Since the objective function does not assign any direct penalty to
the controller’s output −lyt, i.e., there is no need to reduce the control effort,
this is a cheap control problem. See [34]; also see Appendix A.2 for the dis-
cussion of cheap control and closely related expensive control problems. It
is straightforward to see that, the average channel input power Eu2 is min-
imized if and only if the control gain l takes the value according to (6). For
this reason, the dotted box in Fig. 3 is called a control setup.

Thus, we have seen that the SK scheme can be seen as a reformulation
of a KF system or cheap control solution. The SK scheme is an optimal com-
munication system; the KF system is an optimal estimation system; and the
cheap control solution is an optimal control system. This draws connections
among communication, estimation, and control. These observations can be
generalized for Gaussian channels with memory, which we now turn to.

3. The channel model and CP scheme

In this section, we introduce the Gaussian channel with memory, which
includes the AWGN channel studied in the previous section as a special
case. The channel may be formulated as one with AWGN and inter-symbol
interference (ISI), or one with colored Gaussian noise but without ISI. We
then discuss the CP scheme over the channel with colored Gaussian noise.
Finally we reformulate the CP scheme for the channel with AWGN and ISI
and introduce a state-space representation of the scheme.

3.1. Channel models

Fig. 4 depicts the channel F with AWGN and ISI. In state-space the channel
is given by

(26) channel F :

{
st+1 = FFFst +Gut
yt = H ′st + ut + wt,
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where s0 = 0, FFF ∈ Rm×m, the system (FFF ,G,H ′, 1) is stable and minimum-
phase, and wt

i.i.d.∼ N (0, 1). Here m is called the order (or dimension) of the
channel. The input-output representation of F , in matrix form and for the
time duration t = 0, 1, . . . , T , can be written as

(27) F : yT = ZZZ−1
T uT + wT ,

where ZZZ−1
T ∈ R(T+1)×(T+1) is a unique lower triangular Toeplitz matrix of

the impulse response of (FFF ,G,H ′, 1) with all-one diagonal elements.

++ +

Figure 4: The channel F in state space.

This channel F can be transformed to a colored Gaussian noise channel
without ISI ([6, 22]), called F ′, defined as

(28) F ′ : ỹT := ZZZT yT = uT +ZZZTwT := uT + ZT , i.e. ỹT = uT + ZT ,

where ZT := ZZZTwT is the colored noise process generated by the FDLTI
system ZZZT driven by AWGN wT . The channel F is said to be equivalent to
the channel (28) in the sense that yT and ỹT causally determine each other.

3.2. The CP scheme over F ′

Over the channel F ′, the CP scheme is obtained by letting

(29) uT := BBBTZT + vT ,

where BBBT ∈ R(T+1)×(T+1) is strictly lower triangular and vT is Gaussian
and independent of ZT . That is, the channel input uT is generated based
on the strictly causal feedback of the channel noise ZT and an indepen-
dent information-bearing signal vT . Based on the CP scheme, the concept
of “finite-horizon information capacity” was introduced in [31] as the rate
associated with the maximum mutual information between vT and the cor-

responding channel output yT for all admissible BBBT and KKK
(T )
v := EvT vT ′.



i
i

“2-elia” — 2015/2/6 — 15:07 — page 175 — #15 i
i

i
i

i
i

Convergence of fundamental limitations 175

Formally, let uT (KKK
(T )
v ,BBBT ) and yT (KKK

(T )
v ,BBBT ) be an input sequence and an

output sequence generated using (KKK
(T )
v ,BBBT ), and I(vT ; yT (KKK

(T )
v ,BBBT )) be the

mutual information between vT and yT .

Definition 1. The finite-horizon information capacity CT (P) for any power
budget P > 0 is defined as

(30) CT (P) := supRT (KKK(T )
v ,BBBT ) := sup

1

T + 1
I(vT ; yT (KKK(T )

v ,BBBT ))

subject to the power constraint

(31) PT (KKK(T )
v ,BBBT ) :=

1

T + 1
E‖uT (KKK(T )

v ,BBBT )‖2 ≤ P.

One can also define the inverse function of CT (P) as PT (R), the infimum
power for a given rate constraint:

(32) PT (R) = inf
s.t. RT (KKK

(T )
v ,BBBT )≥R

PT (KKK(T )
v ,BBBT ).

The finite-horizon CT is different from the capacity notion defined for
infinite horizon in the sense of Shannon, but in [31] a channel coding theo-
rem was proven for the case of Gaussian channels based on the sequence of
CT . Furthermore, if the Gaussian noise process {Zt} is stationary, then CT
converges to the feedback capacity in the sense of Shannon [18]. Therefore,
it is meaningful to study CT . In addition, the results in [31] also imply that
any mutual information rate is achievable by appropriate codes, and hence
it is sufficent to study mutual information rate for the Gaussian channels.

3.3. The CP scheme over F

We now introduce the CP scheme for F based on the CP scheme for F ′. Let

(33) rT := (III +BBBT )−1vT ;

i.e., rT and vT can causally determine each other for any given BBBT and
hence are in one-to-one correspondence with each other. However, rT turns
out to bear some significance since the mutual information between rT and
yT across the channel is determined only by rT (in particular, the mutual
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information or its rate is independent of BBBT , a property not held for vT );
see Proposition 2 and Remark 1. By ZT = ZZZTwT and ỹT = ZZZT yT , we have

(34)
uT = BBBTZZZTwT + (III +BBBT )rT

yT = ZZZ−1
T (III +BBBT )(ZZZTwT + rT ).

This further follows that, the channel input uT can be represented as

(35) uT = (III +BBBT )−1BBBTZZZT yT + rT = BBBT (III +BBBT )−1ZZZT yT + rT ,

which we call the CP scheme over F and is illustrated in Fig. 5 (a). We
point out that in this formulation of the CP scheme, the channel input uT is
generated from the strictly causal feedback of the channel output yT (instead

of the channel noise ZT in (29)) and message-bearing signal rT (instead of
vT in (29)).

3.4. State-space representation of the CP scheme over F

A state-space representation of the CP scheme over F , denoted S := S(F),
can be obtained as shown in Fig. 5 (b), and its dynamics is shown in (36).
The corresponding relation between S and the CP scheme over F will be
rigorously established in Lemma 1.

(36)
Coding
scheme S :



xt+1 = AAAxt
rt = C ′xt
ut = rt − r̂t

 encoder

st+1 = FFFst +Gut
yt = H ′st + ut + wt

}
channel F

−r̂T = GGGT yT feedback generator

where x0 := M ∼ N (0, IIIn+1), 0 ≤ n ≤ T , (n+ 1) is called the encoder dimen-
sion or order, and GGGT will be characterized in state-space in the next section.
Note that the initial condition x0 is assumed to be Gaussian since here we
focus on the study of mutual information, which is maximized if x0 is Gaus-
sian.

Let TT,n := (AAA ∈ R(n+1)×(n+1), C ∈ Rn+1,GGGT ∈ R(T+1)×(T+1)). The tri-
ple TT,n is said to be admissible if the following Assumption (A1) holds:

(A1) (AAA,C ′) is observable, GGGT is strictly lower triangular, and 0 ≤ n ≤ T .
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++

channel

(a)

+

feedback
generator

encoder channel

++ +

(b)

Figure 5: (a) The CP scheme over the channel F . (b) A state-space repre-
sentation of (a), called the coding scheme S over F . The feedback generator
is a portion of the decoder.

Throughout the paper, Assumption (A1) is assumed unless otherwise
specified. Note that the feedback generator’s operation at time t is fully
captured in the (t+ 1)st row of the matrix GGGT . Then the fact that GGGT
is strictly lower triangular implies that the feedback generator is strictly
causal. Assumption (A1) allows the feedback generator GGGT to be either
time invariant (if GGGT is Toeplitz) or time varying (if GGGT is not Toeplitz).

Let uT (TT,n) and yT (TT,n) be any input and output sequences generated
with the triple TT,n and so on (the dependency on TT,n may be dropped for
notational convenience), and

(37)
RT,n(TT,n) :=

1

T + 1
I(M ; yT (TT,n)),

PT,n(TT,n) :=
1

T + 1
E‖uT (TT,n)‖2.

The system S with a triple TT,n generates

(38) uT (TT,n) = −r̂T + rT = GGGT yT + ΓΓΓTM,
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where we have defined

(39) rT := ΓΓΓTM

and

(40) ΓΓΓT (TT,n) := [C,AAA′C, . . . ,AAAT ′C]′

is the observability matrix with full rank by Assumption (A1) (cf. [35]).
Therefore, the covariance matrix of rT , i.e.,

(41) KKK(T )
r := ErT rT ′ = ΓΓΓTΓΓΓT

′,

is of full rank.
In the case of n = T , the strictly lower triangular matrix GGGT can be cho-

sen such that it can generate any strictly causal feedback from yT , and rT

can be or approach any given covariance matrix. Thus, comparing the above
uT (TT,n) generated by the system S with (35), one can conclude that any
input that the CP scheme can generate can also be generated or approached
by the system S, and hence CT can be attained or approached by the sys-
tem S.

Definition 2. Consider S in (36). Define the constrained capacity

(42) CT,n := CT,n(P) := sup
PT,n(TT,n)≤P,(A1)

RT,n(TT,n)

and define its inverse function as PT,n(R), that is,

(43) PT,n := PT,n(R) := inf
RT,n(TT,n)≥R,(A1)

PT,n(TT,n).

In other words, CT,n is the finite-horizon information capacity over all
admissible TT,n with a fixed encoder dimension (n+ 1). The following lemma
connects CT,T and CT based on the relation between S and the CP scheme
over either F ′ or F .

Lemma 1. i) For any given triple TT,n, there is (KKK
(T )
v ,BBBT ) such that

uT (KKK
(T )
v ,BBBT ) = uT (TT,n);

ii) For any given pair (KKK
(T )
v ,BBBT ) with KKK

(T )
v > 0, there exists an admis-

sible triple TT,T such that uT (KKK
(T )
v ,BBBT ) = uT (TT,T ); for any given pair
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(KKK
(T )
v ,BBBT ) with KKK

(T )
v ≥ 0 but KKK

(T )
v 6> 0, there exists a sequence of admis-

sible triples {TT,T,i}∞i=1 such that uT (KKK
(T )
v ,BBBT ) = limi→∞ u

T (TT,T,i);
iii) It holds that CT (P) = CT,T (P) and PT (R) = PT,T (R).

Proof. See Appendix A.3. �

Thus, to achieve CT , it is sufficient to study either the CP scheme with

all possible (KKK
(T )
v ,BBBT ) or the system S with all admissible TT,T . Since the set

formed by all admissible TT,T is a subset of the set formed by all admissible
TT,n with n ≤ T , we can study the system S with all admissible TT,n with
n ≤ T with no loss of generality or optimality. However, allowing n to be
not necessarily equal to T gives us the flexibility of increasing T (i.e. time
horizon) for a fixed n (i.e. encoder dimension), a useful step towards the KF
characterization of the feedback communication problem. In what follows,
several refinements to the coding scheme S with TT,n will be presented.

4. Necessity of KF for optimal communication

In this section, we refine the CP scheme by showing that the scheme S
necessarily implements the KF algorithm in order to minimize the channel
input power (i.e., to achieve power efficiency) and to generate an optimal
estimate of the transmitted message (e.g., in the sense of MMSE estimation).
Therefore, the optimal feedback communication system over the channel F
(optimal in the sense of capacity achieving) has to contain a KF, either
explicitly or implicitly.

4.1. The KF for channel input power minimization

We first compute the mutual information in the aforementioned coding
scheme S.

Proposition 2. Let (AAA,C,GGGT ) be an admissible triple for S in (36). Then
it holds that

I(M ; yT ) = I(rT ; yT ) =
1

2
log |KKK(T )

y |(44)

=
1

2
log |III +ZZZ−1

T KKK(T )
r (AAA,C)ZZZ−1′

T )|,

independent of GGGT .
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Proof. From yT = ZZZ−1
T uT + wT and uT = rT −GGGT yT , one obtains

(45) yT = (III −ZZZ−1
T GGGT )−1(ZZZ−1

T rT + wT ).

Therefore, we have

I(M ; yT ) = h(yT )− h(yT |M)(46)

= h(yT )− h
(
(III −ZZZ−1

T GGGT )−1(ZZZ−1
T rT + wT )|M

)
(a)
=

1

2
log |2πeKKK(T )

y | − h(wT )

=
1

2
log |KKK(T )

y |
(b)
=

1

2
log |III +ZZZ−1

T KKK(T )
r ZZZ−1′

T |,

where (a) is due to rT = ΓΓΓTM and |III −ZZZ−1
T GGGT |−1 = 1, (b) is due to |AAABBB| =

|AAA||BBB|. Thus, I(M ; yT ) is independent of the feedback generator GGGT and

depends only on (AAA,C) or equivalently KKK
(T )
r (AAA,C). One can also easily seen

that

(47) I(rT ; yT ) =
1

2
log |KKK(T )

y |

following similar derivations. �

Remark 1. The proposition implies that, for the given channel F , a fixed

(AAA,C) or fixed KKK
(T )
r (AAA,C) leads to a fixed mutual information regardless

of the feedback generator. Thus, the information rate RT,n(AAA,C,GGGT ) can be
written as RT,n(AAA,C) since it does not depend on GGGT , in other words the
mutual information (and information rate) is invariant under any causal
feedback, and is equal to the mutual information (and information rate,
resp.) in the system without feedback. Consequently, these quantities can
be computed offline before running the closed-loop system, and hence may
be interpreted as anti-causal quantities.

A further implication is that the feedback generator GGGT has to be chosen
to minimize the average channel input power in order to achieve the capacity
(recalling that the capacity can be expressed as the minimal power for any
giving rate (43)). The infinite-horizon counterpart of this result was proven
in [4].

Next we solve the optimal feedback generator for a fixed (AAA,C) in
finite horizon. Denote the optimal feedback generator for a given (AAA,C) as
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GGG∗T (AAA,C), namely

(48) GGG∗T (AAA,C) := arg inf
GGGT

PT,n(AAA,C,GGGT ) = arg inf
GGGT

E‖rT +GGGT (AAA,C)yT ‖2;

that is, the optimal feedback generator GGG∗T (AAA,C) achieves power efficiency.
This problem can be solved by studying the estimation system shown in
Fig. 6 (a), which contains an estimator Ĝ̂ĜGT mapping the channel output

ȳT into r̂T , an estimate of rT , i.e., r̂T = Ĝ̂ĜGT ȳT . As one can see, similar
to the case studied in Section 2, a communication system with feedback
can be constructed from an estimation system, and the minimization of
channel input power in the communication system can be obtained from the
minimization of MSE in the estimation problem, which necessitates a KF.
In other words, the observation regarding converting a KF over an AWGN
channel to a communication system (cf. Fig. 1) can be generalized to more
general Gaussian channels. More specifically, from the estimation system
Fig. 6 (a), one can subtract the estimate r̂t from the channel input and
add back (ZZZ−1

T r̂t) to the channel output, which leads to the communication
system with the feedback generator GGGT shown in Fig. 6 (b) without affecting

the input, state, and output of the estimator Ĝ̂ĜGT . If the estimate r̂t minimizes
the MSE, then the power of the channel input ut := rt − r̂t is minimized in
the communication system, i.e., the optimal feedback generator achieves
power efficiency.

Proposition 3. Consider the coding scheme S in Fig. 5 (b). Then it holds
that i) (recall the capacity definition PT,n(R) in (43))

(49) PT,n(R) = inf
RT,n(AAA,C)≥R

PT,n(AAA,C,GGG∗T (AAA,C))

and ii) the optimal feedback generator GGG∗T (AAA,C) is given by

(50) GGG∗T (AAA,C) = −Ĝ̂ĜG∗T (AAA,C)(III −ZZZ−1
T Ĝ̂ĜG

∗
T (AAA,C))−1,

where Ĝ̂ĜG∗T (AAA,C) is the one-step prediction MMSE estimator (Kalman filter)
of rT based on the noisy observation ȳT := ZZZ−1

T rT + wT (i.e. the optimal

one-step prediction is r̂T = Ĝ̂ĜG∗T (AAA,C)ȳT ), given by

(51) Ĝ̂ĜG∗T (AAA,C) := arg min
Ĝ̂ĜGT

1

T + 1
E‖rT − Ĝ̂ĜGT ȳT ‖2,

where Ĝ̂ĜGT is strictly lower triangular.
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estimatorunknown source channel

+

(a)

+ ++

(b)

Figure 6: Transforming an estimation system (a) to a communication sys-
tem (b).

Fig. 7 (a) shows the KF Ĝ̂ĜG∗T (AAA,C), and (b) the state-space representation
of the optimal feedback generator GGG∗T (AAA,C) (the parameters L1,t and L2,t

will be characterized in (64)).

Remark 2. Proposition 3 formally states that, for any fixed (AAA,C), the
minimization of the channel input power in a feedback communication prob-
lem is equivalent to the minimization of MSE in an estimation problem.
Thus, one essential role of the feedback generator GGG for any fixed (AAA,C) is
to minimize the input power, and the optimal feedback generator GGG∗T (AAA,C)
is given by the KF.

Proof. i) By Proposition 2, for any fixed (AAA,C), RT,n(AAA,C) is fixed. Then
from the definition of PT,n(R), we have

PT,n(R) = inf
AAA,C,GGGT

s.t. RT,n(AAA,C)≥R

PT,n(AAA,C,GGGT )(52)

= inf
AAA,C

s.t. RT,n(AAA,C)≥R

inf
(AAA,C) fixed,GGGT

PT,n(AAA,C,GGGT ).
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Kalman filter

+ +++

(a)

+

(b)

Figure 7: (a) The KF Ĝ̂ĜG∗T (AAA,C). (b) The KF-based feedback generator
GGG∗T (AAA,C) in state space. (AAA,L1,t,−C, 0) with x̂t denotes a state-space repre-
sentation with x̂t being its state at time t, and initial condition x̂0 being 0.

Then i) follows from the definition of GGG∗T (AAA,C). For ii), note that for the
coding scheme S, it holds that

(53) uT = rT + (−r̂T ) = rT +GGGT yT .

Then, letting

(54) Ĝ̂ĜGT := −GGGT (III −ZZZ−1
T GGGT )−1

and ȳT := ZZZ−1
T rT + wT , we have GGGT yT = −Ĝ̂ĜGT ȳT . Therefore,

GGG∗T (AAA,C) = arg inf
GGGT

1

T + 1
E‖rT +GGGT yT ‖2(55)

= arg inf
Ĝ̂ĜGT

1

T + 1
E‖rT − Ĝ̂ĜGT ȳT ‖2.
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The last equality implies that the optimal solution Ĝ̂ĜG∗T is the strictly causal
MMSE estimator (with one-step prediction) of rT given ȳ

T
which can be

implemented recursively in state-space as a KF ([29]). Finally, from the

relation between GGGT and Ĝ̂ĜGT , we obtain (50). The state-space representation
of GGG∗T (AAA,C), as illustrated in Fig. 7 (c), can be obtained from straightforward
computation, as shown in Appendix A.1. �

4.2. The presence of the KF algorithm for optimal
message recovery

Given the transmitted message x0 := M , denote the decoder-side estimate

of the transmitted message at time t as x̂0,t, and denote M̂T := x̂0,T . The
estimate is desired to satisfy: 1) no loss of information during the recovery

process, i.e. I(M ; M̂T ) = I(M ; yt), and 2) minimization of the error M̃ :=

M − M̂T in some sense, e.g., in terms of MMSE or minimum error entropy
(MEE, see e.g. [36]). It is known that to recovery M , a (an anti-causal) fixed-
point smoothing filter can be used. The smoothing filter, typically based on
the KF innovations, is given by (see Problem 10.1 in [29])

(56) x̂0,t := E(M |yt) = x̂0,t−1 +φφφ′(t)CK−1
e,t et,

where φφφ(t) := AAAcl(t− 1)AAAcl(t− 2) · · ·AAAcl(0) if t > 0 and φφφ(0) := III, AAAcl(t) :=
AAA− L1,tC

′, et is the KF innovation (see Fig. 7 and Section 5.1). Since this
estimate is the conditional-mean estimate and the system is linear with
Gaussian random variables, straightforward computation shows it satisfies
the above-mentioned optimal criteria 1) and 2). Hence, the KF algorithm
can provide the optimal estimate of the transmitted message.

4.3. The complete characterization of the roles of KF algorithm
in feedback communication

To summarize, the KF for a process generated by an unstable linear sys-
tem driven by its unknown initial condition and observed through a Gaus-
sian channel with memory (e.g. rT in Fig. 6 (a)), when reformulated in
an appropriate form, is optimal in the sense of power efficiency in infor-
mation transmission and information recovery. Searching over all admissi-
ble unknown processes rT can achieve the capacity CT (P). The power effi-
ciency in communication, i.e. the minimization of the channel input power
for a fixed information rate, is guaranteed by the strictly causal one-step
prediction operation in Kalman filtering (i.e. the operation to recursively
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generate E(rt|yt−1) at time t); and the optimal recovery of the transmitted
message (optimal in the sense of MMSE or MEE between the message and
the estimate of the message) is guaranteed by the anti-causal smoothing
operation in Kalman filtering (i.e. the operation to generate E(M |yT )). We
may view this characterization as the optimality of KF in the sense of infor-
mation transmission with feedback, which is a complement to the existing
characterization that KF is optimal in the sense of information processing
established by Mitter and Newton in [12].

5. Connections among feedback communication,
estimation, and feedback control

We have shown that the coding scheme S necessarily contains a KF-based
feedback generator. The KF immediately links the feedback communication
problem to estimation and control problems. In this section, we present
a unified representation of the coding scheme S∗ (defined as S with the
optimal GGG∗(AAA,C) replacing GGG), its estimation theory counterpart, and its
control theory counterpart.

5.1. Unified representation of feedback coding system,
KF, and cheap control

5.1.1. Coding scheme S∗. The coding scheme S∗ which contains the
optimal feedback generator GGG∗T (AAA,C) can be described as

(57)
coding
scheme S∗



xt+1 = AAAxt
rt = C ′ xt
ut = rt − r̂t

 encoder

st+1 = FFFst +Gut
yt = H ′ st + ut + wt

}
channel F

ŝt+1 = FFF ŝt + L2,tet
et = yt −H ′ ŝt
x̂t+1 = AAAx̂t + L1,tet
−r̂t = −C ′ x̂t


optimal feedback
generator GGG∗(AAA,C)

with x0 = M known to the encoder only, s0 = ŝ0 = 0, and x̂0 = 0. Here L1,t

and L2,t are the time-varying optimal gains of the optimal feedback generator
(which is readily solved by studying the innovations representation of the
associated estimation problem; refer to Section 5.1.3). See Appendix A.1 for
the derivation of a state-space representation of GGG∗T (AAA,C). One can see that
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this is an extension of the KF-based coding scheme over an AWGN channel
shown in (11) 4. The encoding and decoding procedures, omitted here for
brevity, are also extensions of the AWGN ones as described in [4] (which also
showed that any mutual information rate is achievable using the encoding
and decoding procedures).

5.1.2. The estimation system. Fig. 6 (a) shows the estimation system,
in which (AAA,C) is fixed and known to the estimator. (Note the randomness
in rT comes from the initial condition for generating rT .) The system is
described as

(58)
estimation

system:



xt+1 = AAAxt
rt = C ′ xt

}
unknown source

s̄t+1 = FFF s̄t +Grt
ȳ
t

= H ′s̄t + rt + wt

}
channel F

x̂t+1 = AAAx̂t + L1,tet
r̂t = C ′ x̂t̂̄st+1 = FFF ̂̄st +Gr̂t + L2,tet
et = ȳ

t
−H ′ ̂̄st − r̂t


Kalman filter

Ĝ̂ĜG∗(AAA,C)

with x0 = M , s̄0 = ̂̄s0 = 0, and x̂0 = 0. To write this in a more compact
form, define

(59)

Xt :=

[
xt
s̄t

]
, X̂t :=

[
x̂t̂̄st
]
, AAA :=

[
AAA 000

GC ′ FFF

]
C :=

[
C
H

]
, Lt :=

[
L1,t

L2,t

]
.

Then we have

(60)
estimation

system:


Xt+1 = AAAXt
ȳ
t

= C′Xt + wt

}
unknown source
and channel F

X̂t+1 = AAAX̂t + Ltet
et = ȳ

t
− C′X̂t.

}
Kalman filter

Ĝ̂ĜG∗(AAA,C)

with X0 = [M ′, 0′]′ and X̂0 = 0. This is clearly an extension of the 1st-order
KF system shown in (2).

4Note that (57) is time-varying whereas (11) is time-invariant. Therefore, to be
more rigorous, (57) is an extension of the time-varying counterpart of (11), and the
steady-state of (57) is an extension of (11). See Section 7.1 for the existence of the
steady-state of (57).
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It can be easily shown that rt, r̂t, et, xt, and x̂t in (58) and (57) are
equal, respectively, and it holds for any t that st − ŝt = s̄t − ̂̄st, which leads
to the following unified representation as a control system.

5.1.3. The unified representation: A cheap control problem. Define

(61)

s̃t := st − ŝt = s̄t − ̂̄st, x̃t := xt − x̂t,

Xt :=

[
x̃t
s̃t

]
= Xt − X̂t, X0 :=

[
M
0

]
, D :=

[
C
0

]
.

Note that Xt is the estimation error for Xt. Substituting (61) into (58)
and (57), we obtain that both systems become

(62)
control
system:


Xt+1 = (AAA− LtC′)Xt − Ltwt (state evolution)

= AAAXt − Ltet
et = C′ Xt + wt (noisy measurement)
ut = D′ Xt (regulated output)

It is a control system where we want to minimize the power of the regulated
output u by appropriately choosing Lt (namely to minimize the power of the
“error” signal X weighted by D, or simply put, to make the state X small,
through proper controller design). More specifically, one may view et as the
noisy measurement which is also the input to the controller, (−Lt) as the
time-varying controller gain, (−Ltet) as the controller’s output which is also
the input to the system with state Xt. The objective is to minimize E‖uT ‖2;
formally we want to solve

(63) PT,n(AAA,C) := min
L0,...,Lt

s.t. (62),(AAA,C)fixed

1

T + 1
E‖uT (AAA,C,L0, . . . , Lt)‖2

in which M is unknown to the controller. Note that the control effort is
“free” as there is no direct penalty on the controller’s output (−Ltet), and
therefore, it is a cheap control problem, similar to the AWGN case studied
in Section 2.

The signal et in (62) is the KF innovation or simply innovation, which

forms a white process (cf. [29]), i.e., its covariance matrix KKK
(T )
e is a diag-

onal matrix. Also eT and yT (and thus ȳT ) determine each other causally:

eT = VVV yT where VVV is lower triangular with all-one diagonal elements. Hence

h(eT ) = h(yT ) and |KKK(T )
y | = |KKK(T )

e |.
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For each t, the optimal Lt is determined as

(64) Lt :=

[
L1,t

L2,t

]
=

AAAΣΣΣtC
Ke,t

,

where ΣΣΣt := EXtX′t, Ke,t := E(et)
2 = C′ΣΣΣtC + 1. The error covariance ma-

trix ΣΣΣt satisfies the Riccati recursion

(65) ΣΣΣt+1 = Ric(AAA,C,ΣΣΣt)

with initial condition ΣΣΣ0 := diag(IIIn+1,000), where the Riccati operator
Ric(·, ·, ·) is defined as

(66) Ric(AAA,C,ΣΣΣt) := AAAΣΣΣtAAA′ −
AAAΣΣΣtC C′ΣΣΣtAAA′

C′ΣΣΣtC + 1
.

This completes the description of the (KF-based) optimal feedback generator
for a given (AAA,C).

The existence of one unified expression for three different systems (58),
(57), and (62) is because the first two are actually two different non-minimal
realizations (cf. [35]) of the third. The input-output mappings from wT to
eT in the three systems are equivalent (see Appendix A.1). Thus we say that
the three problems, the optimal estimation problem, the optimal feedback
generator problem, and the cheap control problem, are equivalent in the
sense that, if any one of the problems is solved, then the other two are
solved.

6. Connections of fundamental limitations

In this section, the fundamental limitations and their connections are dis-
cussed. These limitations involve the information rate and channel input
power in the feedback communication system, the Fisher information, MSE,
entropy rate, and CRB in the estimation system, and the Bode integral and
regulated output variance in the feedback control system. The limitation in
one system may be expressed in terms of that in other systems, thanks to
the equivalence established above. For an incomplete list of references on
similar connections, see, e.g., [5, 6, 8, 10, 11, 13, 27, 28, 30, 37, 38]. Specifi-
cally, Mitter and Newton presented a rigorous theory on the duality between
estimation and control in [30, 38]. Van Trees [37] (pp. 501-511), de Bruijn,
and Guo et al [11] (and therein references and subsequent works) discussed
filtering versus smoothing as well as their relation to entropy and mutual
information.
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6.1. Fisher information matrix (FIM), CRB, entropy rate, and
Bode-type sensitivity integral (sum)

In estimation theory, it always holds, as a fundamental limitation, that

(67) MSEM ≥ CRBM = III−1
M ,

regardless of how one designs the estimator [37], where MSEM is the MSE
for estimating M , CRBM is the (Bayesian) CRB, and IIIM is the Fisher
information matrix (FIM).

In feedback control, the Bode integral is a fundamental limitation (typ-
ically stated in steady state). Simply put, for any feedback design, the sen-
sitivity of the output to exogenous disturbance cannot be made small uni-
formly over all frequencies, since the sensitivity transfer function’s power
spectrum in log scale sums up (integrates) to be constant [8]. Various forms
of the Bode integral and the like were derived in e.g. [10, 39]. A similar
limitation holds in finite horizon as we now show for the system S in (36).
For any feedback generator GGGT , the outputs of the closed-loop system is

(68) yT = (III −ZZZ−1
T GGGT )−1(ZZZ−1

T rT + wT ).

Since eT = VVV yT , one may treat either yT or eT as the measurement outputs.

Then the sensitivity of the measurements eT against noise wT is ST := VVV (III −
ZZZ−1
T GGGT )−1. It is easily seen that, if the spectrum of STS ′T is {λi}T+1

i=1 , then

(69)

T+1∑
i=1

log λi = 0,

which holds valid regardless of the choice of feedback generator GGGT , including
the case of open loop (i.e. there is no feedback). Thus, the effect of noise wT

cannot be made uniformly small over time in the noisy measurements eT by
any feedback, which may be viewed as a fundamental limitation of noise (or
disturbance) suppression.

We also introduce another way to quantify the disturbance rejection
capability. Let

BIT :=
1

2(T + 1)
log
|KKK(T )

y |

|KKK(T )
w |

=
1

2(T + 1)

T+1∑
i=1

log λi(KKK
(T )
y )(70)

=
1

2(T + 1)

T∑
t=0

logKe,t,
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which, by Proposition 2 and |KKK(T )
y | = |KKK(T )

e |, is independent of any causal
feedback GGGT and may be seen as the finite-horizon counterpart of the widely
known Bode integral of infinite-horizon; that is, causal feedback can reshape
the power spectrum for the noisy measurements eT or channel outputs yT ,
but it cannot change the sum (in log scale) of the measurement power spec-
trum. Hence BIT is an open-loop system property determined by ZT and rT ,
which may be seen as an anti-causality measure invariant with or indepen-
dent of the causal feedback. Note that uT = rT in open loop for the system
in (62); that is, uT or equivalently rT is the regulated output associated with
Lt = 0 for all t, and is also the initial-condition response for (62).

6.2. Expressions for mutual information and channel input power

Proposition 4. Consider the coding scheme S with fixed (AAA,C) satisfying
(A1). Then it holds that i)

I(M ; yT ) = (T + 1)BIT =
1

2

T∑
t=0

logKe,t =
1

2

T∑
t=0

log(C′ΣΣΣtC + 1)(71)

=
1

2
log |MMSEM,T |−1 =

1

2
log |IIIM,T | =

1

2
log |CRBM,T |−1;

and ii)

PT,n(AAA,C) =
1

T + 1

T∑
t=0

D′ΣΣΣtD =
1

T + 1
trace(CMMSEr,T )(72)

=
1

T + 1

T∑
t=0

C ′AAAtMMSEM,tAAA
t′C,

where MMSEM,T is the minimum MSE of M at time T , CMMSEr,T is
the causal minimum MSE of rT , IIIM,T is the FIM of M for the estimation
system (58), and CRBM,T is the Bayesian CRB of M .

Note that CMMSEr,T := E‖r̂T − rT ‖2, in which r̂T = [r̂0, . . . , r̂T ] con-
tains the strictly causal estimates with one-step prediction r̂t := C ′E(xt|yt−1)
for t = 0, . . . , T .

Remark 3. We have described before and also re-described in this propo-
sition that the mutual information (or information rate) cannot be made
higher or lower than a constant regardless of the feedback generator choice;



i
i

“2-elia” — 2015/2/6 — 15:07 — page 191 — #31 i
i

i
i

i
i

Convergence of fundamental limitations 191

the disturbance rejection measure BI cannot be made smaller than a con-
stant regardless of the feedback controller design; the estimate error cannot
be made smaller than a constant regardless of the estimator design. Fur-
thermore, this proposition connects these limitations by showing they are
essentially equivalent, and one limitation can be translated into another. For
example, the amount of mutual information we may obtain is limited by the
disturbance rejection ability in control and by how well the estimate can be
in estimation. We remark these limitations are expressed in finite horizon,
as opposed to the infinite-horizon limitations studied in [4]. It is also inter-
esting to point out that a capacity notion can be introduced based on the
MMSE decay rate and is closely related to the Shannon capacity for several
Gaussian channels; see [28].

Proof: i) First we note that h(yT ) = h(eT ) and Ke,t = C′ΣΣΣtC + 1.
Next, to find MMSE of M , note that the linear model in Fig. 7 (a) is
ȳT = ZZZ−1

T ΓΓΓTM + wT with M ∼ N (0, III), wT ∼ N (0, III). Thus we have

(73) MMSEM,t = (III + ΓΓΓ′TZZZ−1
T
′ZZZ−1

T ΓΓΓT )−1,

yielding

|MMSEM,t| = |III +ZZZ−1
T ΓΓΓTΓΓΓ′TZZZ−1

T
′|−1 = |III +ZZZ−1

T KKK(T )
r ZZZ−1

T
′|−1(74)

= |KKK(T )
r +KKK

(T )
Z |
−1.

In addition, from Sec. 2.4 in [37] we can directly compute the FIM of M
to be (III + ΓΓΓ′TZZZ

−1
T
′ZZZ−1

T ΓΓΓT ). Then i) follows from Proposition 2 and the
system dynamics (62). ii) Since ut = D′ Xt = C ′ x̃t = rt − r̂t and Ex̃tx̃

′
t =

AAAtMMSEM,tAAA
t′, we have E(ut)

2 = D′ΣΣΣtD = C ′Ex̃tx̃
′
tC = E(rt − r̂t)2, and

then ii) follows. �

6.3. Connections of the fundamental tradeoffs

The above fundamental limitations are based on one fixed (AAA,C) with
AAA ∈ Rn×n. Searching over all admissible (AAA,C) withAAA ∈ Rn×n for all n ≤ T ,
one obtains the optimal tradeoffs for feedback communication, estimation,
and feedback control. By the optimal tradeoff in feedback communication we
mean the optimal power-rate relation. The optimal tradeoffs in estimation
and control will be characterized below, and it is expected that they corre-
spond to the optimal tradeoff in feedback communication. Indeed, the opti-
mal tradeoffs obtained by searching over all admissible (AAA,C) are optimal
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over all (possibly nonlinear) feedback communication designs 5, estimator
designs, and feedback control designs, as elaborated below.

The fundamental tradeoff in the feedback communication problem over
the channel F for the finite-horizon from time 0 to time T is the capacity
CT (P) (or PT (R), see definitions in (30) and (32)) expressed as the optimal
power-rate pair where the power is viewed as the cost and the rate is the
utility. Though it is desired to make the cost low and the utility high, the
cost cannot be arbitrarily low for any given utility, and the utility cannot be
arbitrarily high for any given cost, regardless of how one may design the cod-
ing scheme. In other words, although one wishes to obtain a high rate using
a low power, one can only obtain no more than a certain rate with the given
power, and cannot arbitrarily lower the power in order to achieve a desired
rate. To capture this, let fff := (AAA,C,GGGT ) be any coding scheme over the
channel F , RT (fff) := 1

T+1I
(
uT (fff)→ yT (fff)

)
be the information rate with

fff , and PT (fff) := 1
T+1E‖uT (fff)‖2 be the average channel input power with fff .

Here we used the concept of directed information (see [6]) from uT to yT

defined as

(75) I(uT → yT ) :=

T∑
t=0

I(ut; yt|yt−1).

Optimal Feedback Communication Tradeoff : Consider the feedback
communication problem over the channel F with one-step delayed output
feedback. i) Given any P > 0, then the rate RT (fff) cannot be higher than
a constant (the constant being CT (P)) for any fff such that PT (fff) ≤ P. ii)
Given any R > 0, then the power PT (fff) cannot be lower than a constant
(the constant being PT (R)) for any fff such that RT (fff) ≥ R.

In the power versus rate tradeoff, one may see the power as a causal
quantity whereas the rate as an anti-causal quantity. This is because the
average input power depends on the strictly causal feedback from the channel
output. On the other hand, the information rate is independent of the causal
feedback and can be obtained a priori before executing the feedback system;
therefore, one may view the rate as a measure of anti-causality of the system.
Hence the power versus rate tradeoff can be seen as a causality versus anti-
causality tradeoff.

5This can be seen from Lemma 1 and Proposition 3: Linear (AAA,C) can achieve
PT,n(R) and hence CT (P).
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A fundamental tradeoff for the estimation problem over the channel F
is the causal estimation performance versus anti-causal estimation perfor-
mance. Consider any unknown process rT with known covariance matrix,
and rT passes through the channel F to generate noisy measurements ȳT .

Let us assume rT is generated from the normalized, whitened signal M
and M is to be estimated. That is, it holds that M := R−1rT , where R :=(
KKK

(T )
r

)1/2
ifKKK

(T )
r is of full rank; otherwise R is such thatKKKM = III holds that

rank(KKKM ) =rank(KKK
(T )
r ). Therefore we have a linear model (which includes

the linear model in Fig. 6 (a) as a special case)

(76) ȳT = ZZZ−1
T RM + wT .

Let fff be any estimator which outputs a causal, one-step prediction r̂t+1|t(fff)

at each t and a smoothed estimate M̂T |T (fff) at time T . Then the time-

averaged causal MSE with one-step prediction, for the source rT with the
estimator fff , is

(77) CMSE(rT , fff) :=
1

T + 1

T∑
t=0

E
(
rt − r̂t|t−1(fff)

)2
,

and the decay rate of the anti-causal, smoothing MSE, for the source rT

with the estimator fff , is

R-MSE(rT , fff)(78)

:=
1

2(T + 1)
log |MSE(rT , fff)|−1

= − 1

2(T + 1)
log
∣∣∣E((M − M̂T |T (fff))(M − M̂T |T (fff))′

)∣∣∣ .
The CMSE is viewed as the cost since the error is desired to be small, and
R-MSE the utility since the error is desired to decay fast.

Optimal Estimation Tradeoff : Consider the estimation problem over
the channel F . i) Given any P > 0, then the smoothing rate R-MSE(rT , fff)
cannot be larger than a constant (the constant being CT (P)), for any source
rT and any estimator fff such that CMSE(rT , fff) ≤ P. ii) Given any R > 0,
then CMSE(rT , fff) cannot be smaller than a constant (the constant being
PT (R)), for any source rT and any estimator fff such that R-MSE(rT , fff)
≥ R.
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Since CMSE is causal but the smoothing MSE is anti-causal and inde-
pendent of the causal operation (if any) done by the estimator, this predic-
tion versus smoothing tradeoff is a causality versus anti-causality tradeoff.
Note that the statement above “for any source rT and any estimator fff” is
equivalent to “for any admissible (AAA,C,L0, . . . , LT )” as we mentioned that
there is no loss of generality in considering linear systems only.

A fundamental tradeoff for the cheap control problem (62) over the
channel F is the closed-loop control performance (regulated output vari-
ance, in this case the variance of the channel input u(fff)) versus the Bode
integral (the disturbance rejection measure in (70)) BIT (fff), for any con-
trol design fff := (AAA,C,L0, . . . , LT ). The control performance is defined as
Pu(fff) := 1

T+1

∑T
t=0 E(ut(fff))2, which is viewed as the cost since one wishes

to keep it small. The disturbance rejection metric is desired to be high and
is the utility since a higher BIT (fff) implies a relatively smaller contribution
of the noise.

Optimal Feedback Control Tradeoff : Consider the control problem over
the channel F . i) Given any P > 0, then the Bode integral BIT (fff) cannot
be larger than a constant (the constant being CT (P)) for any control design
fff such that the regulated output variance Pu(fff) ≤ P. ii) Given any R > 0,
then Pu(fff) cannot be smaller than a constant (the constant being PT (R)),
for any control design fff such that BIT (fff) ≥ R.

Note that this specifies the relation between the (closed-loop) control
performance achievable via causal feedback and the (open-loop) anti-causality
of the system.

To summarize, all three tradeoffs are equivalent to each other and are
essentially the fundamental tradeoff between causality and anti-causality,
which manifests itself in the three different but closely related problems.
The causal entities, e.g. the channel inputs in feedback communication, one-
step prediction in estimation, and regulated output in control, are closed-
loop entities generated in a causal, successive way by the causal feedback,
and vary as the causal feedback varies. In contrast, the anti-causal enti-
ties, e.g. the information rate (and the decoded message) in communication,
the smoothed estimate in estimation, and the BI in control, are invariant
regardless of whether the systems are in open-loop or closed-loop or how
the closed-loop is done. Note that this does not claim that the open-loop
capacity is equal to closed-loop capacity, since the capacity is in fact the
pair of rate and power.
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7. Asymptotic analysis of the feedback system

By far we have completed our analysis in finite-horizon. Below, we briefly
consider the steady-state communication problem, by studying the limiting
behavior (T going to infinity) of the finite-horizon feedback system S∗ while
fixing the encoder dimension to be (n+ 1). (The infinite-horizon capacity
problem, solved by Kim in [18], is beyond the main scope of this paper and
will not be discussed.) We make the following assumption in S∗:

(A2) (AAA,C ′) is observable, and AAA has no eigenvalue on the unit circle or at
the locations of the eigenvalues of FFF .

7.1. Convergence to steady-state

The time-varying KF in (62) converges to a steady-state, namely (62) is
stabilized in closed loop. That is, asymptotically (62) becomes an LTI system

(79) steady-state:


Xt+1 = (AAA− L C′)Xt − Lwt = AAAXt − Let
et = C′ Xt + wt
ut = D′ Xt,

where

(80) L :=
AAAΣΣΣC
Ke

,

Ke = C′ΣΣΣC + 1, and ΣΣΣ is the unique stabilizing solution to the Riccati equa-
tion ΣΣΣ = Ric(AAA,C,ΣΣΣ).

This LTI system is sometimes easy to analyze and to implement. For
instance, the cheap control (cf. [24] and [34]) of an LTI system asserts that
the transfer function from w to e is an all-pass function in the form of

(81) Twe(z) =

k∏
i=0

z − λi
z − λ−1

i

where λ0, . . . , λk are the unstable eigenvalues of AAA or AAA (noting that FFF is
stable; see (59)), which also implies the whiteness of innovations process {et}
since the all-pass function Twe(z) holds that |Twe(ej2πθ)| is constant for all
θ. It also shows that the closed-loop eigenvalues are the reciprocals of the
open-loop ones.
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Proposition 5. Consider the Riccati recursion ΣΣΣt+1 = Ric(AAA,C,ΣΣΣt) and
the system (62). Assume (A2) and that AAA has (k + 1) unstable eigenvalues.
Then i) Starting from any initial condition ΣΣΣ0 := diag(IIIn+1,000), the sequence
{ΣΣΣt} converges to ΣΣΣ∞, the unique stabilizing solution to the Riccati equa-
tion ΣΣΣ = Ric(AAA,C,ΣΣΣ), and ΣΣΣ∞ has rank (k + 1). ii) The time-varying sys-
tem (62) converges to the unique steady-state as given in (79).

Proof. See Appendix A.4. �

7.2. Steady-state fundamental limitations

Now we fix (AAA,C) and let the horizon T in the coding scheme S∗ go to

infinity. Let N(M̃T ) := e
2

n+1
h(M̃T ) be the entropy power of the smoothing

error M̃T := M − M̂T |T ,

(82) DI(AAA) :=

k∏
i=0

|λi|

be the degree of instability or the degree of anti-causality of AAA (as λi’s are in
the right-half plane), and S(ej2πθ) := e(ej2πθ)/w(ej2πθ) be the spectrum of
the sensitivity function of system (79) (cf. [4]). Denote the asymptotic linear
growth rate of a sequence {aT } as

(83) σ(aT ) := lim
T→∞

aT
T + 1

and the asymptotic exponential growth rate of a sequence {aT } as

(84) ρ(aT ) := lim
T→∞

log aT
T + 1

.

Note that in this paper we only encounter the cases where the above limits
exist.

Then the limiting result of Proposition 4 is summarized in the next
proposition. See Remark 1 and (37) for the notation RT,n(AAA,C), which is
extended to the infinite horizon below.

Proposition 6. Consider the coding scheme S∗. Fix any n ≥ 0 and (AAA,C ′)
withAAA ∈ R(n+1)×(n+1) satisfying (A2). Then the asymptotic information rate
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is given by

R∞,n(AAA,C) := σ(I(M ; yT ))(85)

=
1

2
logKe = σ(h(eT ))− 1

2
log 2πe =

1

2
log(C′ΣΣΣC + 1)

=
1

2
ρ(|IIIM,T |) = −1

2
ρ(|MSEM,T |) = −1

2
ρ(|CRBM,T |)

= − 1

2
ρ(N(M̃T )) =

∫ 1

2

− 1

2

log |S(ej2πθ)|dθ = logDI(AAA),

and the average channel input power is given by

(86) P∞,n(AAA,C) := σ(E‖uT ‖2) = D′ΣΣΣD.

Proof. Proposition 5 leads to that, the limits of the results in Proposition 4
are well defined. Then

R∞,n(AAA,C) = lim
T→∞

1

2(T + 1)

T∑
t=0

logKe,t(87)

=
1

2
logKe,∞ = σ(h(eT ))− 1

2
log 2πe,

where the second equality is due to the Cesaro mean, and the last equal-
ity follows from the definition of entropy rate of a Gaussian process. Now
by (81), {et} has a flat power spectrum with magnitude DI(AAA)2. Then
R∞,n(AAA,C) = logDI(AAA). Since

(88) h(M̃T ) =
1

2
log(2πe)n+1

∣∣∣KKK(T )

M̃

∣∣∣ =
1

2
log(2πe)n+1|MSEM,T |,

we have ρ(N(M̃T )) = ρ(MSEM,T ). The Bode integral follows from [4]. The
other equalities are the direct applications of the Cesaro mean to the results
in Proposition 4. �

This proposition shows that all the fundamental limitations for the infor-
mation rate obtained in Proposition 4 become the logarithm of the degree
of anti-causality of AAA. One consequence of this is stable eigenvalues in AAA
do not affect the rate (also pointed out in [4]). Stable eigenvalues do not
affect P∞,n(AAA,C), either, as shown in the following corollary. Therefore, the
feedback communication problem studied in this paper can be reduced to a
problem of tracking an anti-stable source over the Gaussian channel ([4, 5]).
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Proposition 7. Suppose that (AAA,C) with AAA ∈ R(n+1)×(n+1) satisfies (A2).
Suppose further that AAA has (k + 1) unstable eigenvalues denoted λ0, . . . , λk
where 0 ≤ k ≤ (n+ 1). Then there exists an observable pair (AAAk, C

′
k) with

AAAk ∈ R(k+1)×(k+1) being anti-stable such that R∞,n(AAA,C) = R∞,k(AAAk, Ck)
and P∞,n(AAA,C) = P∞,k(AAAk, Ck).

Proof. See Appendix A.5. �

It is straightforward to extend the finite-horizon connections between the
fundamental tradeoffs for feedback communication, estimation, and feedback
control, presented in Section 6.3, to infinite horizon, since the limits exist.
The detail is skipped for brevity.

8. More general channels

In this section, we will extend some previous results over the Gaussian chan-
nel to more general channels. We will present an inequality of the mutual
information rate and estimation error decay rates, and will show that the
causal MMSE predictor is necessary for power efficiency for general channels
with feedback.

8.1. Information rate versus estimation error decay rate

Consider a channel with input uT and output yT for the time horizon span-
ning from 0 to T , in which each ut can depend on the message signal M and
past outputs yt−1 for any t between 0 and T . Assume the message signal
M of size n× 1 is fixed for any time horizon, and the recovered message is
M̂T . Assume all the involved differential entropies and limits exist and are

finite. Let 1) M̃T := MT − M̂T be the estimation error; 2) h
M̃T,MEE

be the

minimum (infimum) error entropy (MEE), i.e. h
M̃T,MEE

:= inf h
M̃T

for any

possible M̃T [36]; 3) H
M̃,MEE

:= σ(h
M̃T,MEE

), i.e. H
M̃,MEE

is the entropy

rate associated with the MEE estimate; 4) ρ
M̃,MEE

:= ρ(N(M̃T,MEE)), i.e.

ρ
M̃,MEE

is the exponential increasing rate of the entropy power for M̃T,MEE ;

5) ρ
M̃,MMSE

:= ρ(|MMSEMT
|) where MMSEMT

is the MMSE for estimating

MT ; and 6) R := σ(I(M ; yT )) be the information rate across the channel.
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Proposition 8. It holds that

(89) R ≥ −H
M̃,MEE

= −n
2
ρ
M̃,MEE

≥ −1

2
ρ
M̃,MMSE

and the first equality holds if and only if σ(I(M̃T,MEE ; yT )) = 0.

A sufficient condition for σ(I(M̃T ; yT )) = 0 is I(M̃T ; yT ) = 0, namely
the estimation error is independent (not just orthogonal) to the observa-
tions. In this case it is easily seen that the first and last equalities in (89)

hold (since if I(M̃T ; yT ) = 0 then the corresponding M̂T is the MMSE esti-
mate). Therefore, the proposition states that one cannot expect the MEE
(or MMSE, or any) estimator error to decay at a rate higher than the infor-
mation rate, and if the estimation error can be made independent of the
observations, the estimation error decays at a rate equal to how fast infor-
mation is transmitted over the channel ; here the decay rate may be the
linear decay rate of the entropy, the exponential decay rate of the entropy
power, or the exponential decay rate of the mean squares.

Proof. For any time horizon, it holds that

I(M ; yT ) = h(M)− h(M |yT ) = h(M)− h(M − M̂T |yT )(90)

= h(M)− h(M̃T |yT )
(a)
= h(M)− h(M̃T ) + I(M̃T ; yT )

(b)

≥ h(M)− h(M̃T ).

From (b), one obtains that for any estimation error M̃T , it holds that

σ(I(M ; yT )) ≥ σ(h(M))− σ(h(M̃T ))(91)

= −σ(h(M̃T )) = −n
2
ρ(N(M̃T ));

by straightforward computation. Clearly, the above inequality holds for the
MEE estimate. From (a), it can be seen that the equality can be achieved

if σ(I(M̃T ; yT )) = 0.
By the definition of MEE estimate, it holds that h

M̃T,MEE

≤ h
M̃T,MMSE

≤ 1
2 log(2πe)n|MMSEM,T | and thus

(92) σ
(
h
M̃T,MEE

)
≤ σ

(
1

2
log(2πe)n|MMSEM,T |

)
=

1

2
ρ(|MMSEM,T |).

Then the proof is complete. �
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8.2. Necessity of the MMSE predictor for general
channels with feedback

Assume an arbitrary additive channel

(93) yT = HuT + ZT

with an average power constraint E‖uT ‖2 ≤ (T + 1)P, where ZT is an arbi-
trary additive noise process. Assuming one-step delayed channel output feed-
back, the next Proposition states that the optimal feedback generator has
to be an MMSE one-step predictor. Let I(uT → yT ) be the directed infor-

mation from uT to yT of some appropriate form that can be used to capture
the information rate across the channel [6].

Proposition 9. Let ũt := ut −E(ut|yt−1) and ỹT := HũT + ZT . Then

I(uT → yT ) = I(ũT → ỹT ) and E‖ũT ‖ ≤ E‖uT ‖2.

Proof. Note that E(ut|yt−1) can be generated and added back to the channel
output at the receiver side and hence the directed information across the
channel is the same using either uT or ũT as the channel inputs. The average
power of using ũT is no larger since the conditional mean E(ut|yt−1) has the
minimum MSE. �

Simple as it is, this necessary condition for optimality is rather universal.
A corollary is that in the optimal feedback coding scheme the current channel
input ut is independent of all past channel outputs yt−1 by the Projection
Theorem. Moreover, since Eũt = E(ut −E(ut|yt−1)) = 0 by the law of total
expectation, it is a center-of-gravity encoding rule (cf. [16, 22, 40]). It is also
straightforward to see that if the channel output feedback delay is d steps,
then an MMSE d-step predictor is needed for optimality. 6

9. Conclusions and future work

We proposed a perspective that integrates information transmission (com-
munication), information processing (estimation), and information utiliza-
tion (feedback control). We established a certain equivalence and explored

6We note that in [17] the authors demonstrated the significance of a principle
called Posterior Matching in feedback communications and proposed optimal feed-
back communication based on the principle; its connections with this paper will be
addressed in future study.
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fundamental limitations in feedback communication, estimation, and feed-
back control over Gaussian channels with memory. We demonstrated that a
simple reformulation of the Kalman filter becomes the celebrated Schalkwijk-
Kailath codes, and the well-studied Cover-Pombra scheme necessarily con-
tains a Kalman filter in order to be optimal. We characterized the roles of
Kalman filtering in an optimal feedback communication system as to ensure
power efficiency and to optimally recover the transmitted codewords. We
showed that the fundamental limitations/tradeoffs in these three systems
also coincide: The power versus rate tradeoff in feedback communication, the
causal prediction MSE versus smoothing MSE tradeoff in estimation, and
the control performance versus Bode integral tradeoff in control, are equiv-
alent and in essence, are a causality versus anti-causality tradeoff. Some of
the results were extended to the cases with more general channels.

Our perspective has been employed in [41] to uniformly address the fun-
damental limits of several classes of feedback communication problems, and
we envision that this perspective can generate a new avenue for studying
more general feedback communication problems, such as multiuser feed-
back communications. Future research may include extending our proposed
scheme to address the optimality of other feedback communication prob-
lems (e.g. MIMO systems with output feedback). We also anticipate that
the perspective and the approaches developed in this paper be extended
and help build a theoretically and practically sound paradigm that unifies
information, estimation, and control.

Appendix A.

A.1. Systems representations and equivalence

The concepts of linear system representations and the equivalence between
different representations are used in this paper. We introduce a finite-horizon
input-output equivalence below; for a thorough treatment (including both
finite- and infinite-horizon systems), see e.g. [35].

Definition 3. Fix 0 ≤ T <∞. Two linear mappings Mi,T : Rq(T+1) →
Rp(T+1), i = 1, 2, are said to be equivalent if for any uT ∈ Rq(T+1), it holds
that M1,T (uT ) =M2,T (uT ).

Example: Equivalence between the estimation system (58) and
coding scheme S (57) To show the equivalence, it is sufficient to show
that the mappings from the system input (M ′, wT ′)′ to system output (rT ′,
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eT ′, r̂T ′)′ (or any other choice of output formed by corresponding signals in
the two systems) are equal; that is, for each t, the sets of signals rt, r̂t, et, xt,
and x̂t in (58) and (57) are equal, respectively. To this aim, first note that for
t = 0, the sets of signals are equal, respectively, and that s0 − ŝ0 = s̄0 − ̂̄s0.
Assume that for t ≤ τ , the sets of signals are equal, respectively, and that
sτ − ŝτ = s̄τ − ̂̄sτ . Now use induction. Apparently, xτ+1 (and hence rτ+1)
generated by (58) and (57) are equal, respectively. Then

(A.1) sτ+1 − ŝτ+1 = FFF (sτ − ŝτ ) +G(rτ − r̂τ )− L2,τeτ = s̄τ+1 − ̂̄sτ+1,

and eτ+1 from both (58) and (57) equals H ′(s̄τ − ̂̄sτ ) + (rτ − r̂τ ) + wτ+1.
Thus we have proven the equivalence.

Likewise, we can show that the estimation system (58), feedback com-
munication system (57), and control system (62) are equivalent.

Example: Derivation of state-space representation of GGG∗T (AAA,C)
Consider GGG∗T (AAA,C) in (50) in Section 4, where the state-space representations

for Ĝ̂ĜG∗T (AAA,C) and ZZZ−1
T are illustrated in Fig. 7 (a) and Fig. 4. Since (50)

suggests a feedback connection of Ĝ̂ĜG∗ and ZZZ−1 as shown in Fig. 6 (b), we
can write the state-space for GGG∗ as

(A.2)



x̂t+1 = AAAx̂t + L1,tet
r̂t = C ′x̂t̂̄st+1 = FFF ̂̄st +Gr̂t + L2,tet
et = ȳ

t
−H ′̂̄st − r̂t

Kalman filter Ĝ̂ĜG∗T (AAA,C)

sa,t+1 = FFFsa,t +Gr̂t
ȳ
t

= yt +H ′sa,t + r̂t

}
ZZZ−1
T

Letting ŝt := ̂̄st − sa,t, the above reduces to

(A.3)


x̂t+1 = AAAx̂t + L1,tet
r̂t = C ′x̂t
ŝt+1 = FFF ŝt + L2,tet
et = yt −H ′ŝt

which is the dynamics shown in Fig. 7 (b) for GGG∗, as claimed in the proof for
Proposition 3. The above reduction of realization is allowed since it preserves
the system equivalence.
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A.2. Cheap control

We briefly describe the scalar LTI formulation of the cheap control problem
and its related expensive control. Further details may be found in [34], [4],
and references therein. Consider a scalar LTI system

(A.4)

x̃t = ax̃t−1 − lyt−1

ut = cx̃t

yt = ut + wt,

where a > 1 and c 6= 0 are given. We need to find the control gain l (i.e., the
controller’s output is −lyt) to solve the following optimal control problem
in infinite horizon:

(A.5) min
l:(A.4) is stable

∞∑
k=0

E(ut)
2,

which is called a cheap control problem as the objective function does not
assign any direct penalty to the control effort −lyt.

Alternatively, instead of assuming c is given, we may assume l is given
in (A.4), and the state feedback control gain c (i.e. the controller’s output
is ut = cx̃t) is to be found to solve the following problem in infinite horizon:

(A.6) min
c:(A.4) is stable

∞∑
k=0

E(ut)
2,

which is called an expensive control problem as the sole objective is to reduce
the control effort ut.

In either problem, when (A.4) is stable, it holds that

(A.7) lim
t→∞

E(ut)
2 = c2l2

∞∑
t=0

(a− lc)2t =
c2l2

1− (a− lc)2
.

Then straightforward calculations can show that the optimizing solution
must satisfy

(A.8) lc = (a2 − 1)/a,

and the resulting closed-loop is stable, with the associated minimum aver-
age power being a2 − 1. Therefore, the cheap control problem and expen-
sive control problem in infinite horizon can be reformulated as one another
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for (A.4), and this holds similarly for their higher-order LTI counterparts
(proofs skipped for brevity). Thus, a communication problem may be con-
nected to a cheap control problem (as done in the present paper) or an
expensive control problem (as done in [4]).

It should be pointed out that the above connection between the cheap
control and expensive control is shown for the case where the controller
gains are static, i.e., the closed-loop systems are LTI. The cheap control and
expensive control can also be studied if the controller gains are allowed to
be time-varying, i.e., if lt at time t needs to be solved in (A.5) and if ct needs
to be solved in (A.6), for every t. For the cheap control problem, notice the
following iteration

E(x̃t)
2 = (a− ltc)2E(x̃t−1)2 + (lt)

2(A.9)

= (c2E(x̃t−1)2 + 1)(lt)
2 − 2acE(x̃t−1)2lt + a2E(x̃t−1)2;

therefore, to minimize the average power of u, one needs to minimize E(x̃t)
2

at each t by choosing lt (independently from the choices of lk, k 6= t). By
completion of squares (as done in [29] for the Kalman filtering problem),
one can solve for the optimal lt:

(A.10) l∗t =
acE(x̃t−1)2

c2E(x̃t−1)2 + 1
.

Then the convergence to the LTI cheap control solution can be easily shown,
similar to the Kalman filtering problem. On the other hand, the time-varying
expensive control problem is a minimum variance linear quadratic Gaus-
sian (LQG) problem, which can be solved using the dynamic programming
(details skipped for brevity), and the solution converges to the LTI expensive
control solution.

A.3. Corresponding relation between the CP scheme
and coding scheme S

i) For any given admissible TT,n in S, the channel input is equal to

(A.11) uT (TT,n) = rT +GGGT yT = ΓΓΓT (TT,n)M +GGGT yT .

To find the (KKK
(T )
v ,BBBT ) in the CP scheme that can generate the same channel

input, let

(A.12)
BBBT := GGGTZZZ−1

T (III −GGGTZZZ−1
T )−1

vT := (III +BBBT )ΓΓΓT (TT,n)M,
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(i.e. KKK
(T )
v := (III +BBBT )ΓΓΓT (TT,n)ΓΓΓT (TT,n)′(III +BBBT )′). Then the channel input

generated by the CP scheme is

uT (KKK(T )
v ,BBBT ) = (III +BBBT )−1vT + (III +BBBT )−1BBBTZZZT yT(A.13)

= ΓΓΓT (TT,n)M +GGGT yT = uT (TT,n).

ii) Assume KKK
(T )
v > 0 first. For any fixed (KKK

(T )
v ,BBBT ) in the CP scheme,

define in S that

(A.14)

GGGT := (III +BBBT )−1BBBTZZZT

AAA := ΓΓΓ−1
a

[
0 IIIT
* *

]
ΓΓΓa := ΓΓΓ−1

a AAAaΓΓΓa ∈ R(T+1)×(T+1)

C := ΓΓΓa
[
1 0 · · · 0

]′
:= ΓΓΓae1,

where ΓΓΓa := ((III +BBBT )−1KKK
(T )
v (III +BBBT )−

′
)

1

2 = ΓΓΓ′a is a positive definite square
root, * can be any number, and AAAa and e1 are defined in obvious ways. Then
GGGT is strictly lower triangular, and (AAA,C ′) is observable since its observabil-
ity matrix is ΓΓΓa with full rank. Letting M := (ΓΓΓa)

−1(III +BBBT )−1vT , then the
channel input is

uT (TT,n) = ΓΓΓT (TT,n)M +GGGT yT = ΓΓΓa(ΓΓΓa)
−1(III +BBBT )−1vT +GGGT yT(A.15)

= (III +BBBT )−1vT + (III +BBBT )−1BBBTZZZT yT

which is the same as the input generated by (KKK
(T )
v ,BBBT ).

Now consider the case that KKK
(T )
v ≥ 0 but KKK

(T )
v 6> 0. Perform the eigen-

value decomposition, one obtains that KKK
(T )
v = UUUΛΛΛUUU ′, where without loss of

generality, ΛΛΛ = diag(λ1, . . . , λq, 0, . . . , 0), 0 < q < T + 1, and q is the rank of

KKK
(T )
v . Define a sequence {KKK(T )

v,i }∞i=1, where KKK
(T )
v,i := UUU(ΛΛΛ + 1

iIII −
1
i
T+2
q IIIq)UUU

′,
III is the identity matrix and IIIq := diag(1, . . . , 1, 0, . . . , 0) with rank q. For
large enough i, each matrix in the sequence is positive definite, and hence

for each pair (KKK
(T )
v,i ,BBBT ), we can find an admissible triple TT,T,i correspond-

ing to it per the above construction. It is easily shown that the sequence of

triples generate a sequence of inputs that converge to uT (KKK
(T )
r ,BBBT ).

iii) By the continuity of the mutual information and power, the power
and mutual information generated by uT (TT,T,i) converge to the power and

mutual information generated by uT (KKK
(T )
v ,BBBT ), respectively. Thus to show

iii), it is sufficient to show that uT (TT,T,i) holds the power constraint in

Definition 2 if uT (KKK
(T )
v ,BBBT ) holds the power constraint in (31). However,

this is true as trace(KKK
(T )
vi ) < trace(KKK

(T )
v ). Then the result follows.
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A.4. Proof of Proposition 5: convergence to steady-state

We show that system (62) converges to the steady-state given by (79). To this
aim, we first transform the Riccati recursion into a new coordinate system,
then show that it converges to a limit, and finally prove that the limit
is the unique stabilizing solution of the Riccati equation. The coordinate
transformation is given by

(A.16)

ÃAA := ΨΨΨAAAΨΨΨ−1 :=

[
AAA 0
0 FFF

]
,

C̃ := ΨΨΨ−1′C =

[
C +φφφ′H

H

]
, D̃ := ΨΨΨ−1′D =

[
C
0

]
,

Σ̃ΣΣt := ΨΨΨΣ̃ΣΣtΨΨΨ
′, Σ̃ΣΣ0 := ΨΨΨΣΣΣ0ΨΨΨ

′ =

[
III −ψψψ′
−ψψψ ψψψψψψ′

]
,

where

(A.17) ΨΨΨ :=

[
IIIn+1 000
−ψψψ IIIm

]
(i.e. ΨΨΨ−1 =

[
IIIn+1 000
ψψψ IIIm

]
),

and ψψψ is the unique solution to the Sylvester equation FFFψψψ −ψψψAAA = −GC ′.
The existence and uniqueness of ψψψ are guaranteed by Assumption (A2) that
λi(−AAA) + λj(FFF ) 6= 0 for any i and j.

Assume k = n for the rest of the proof; i.e., AAA is anti-stable. For the
case k < n, we can further transform ÃAA, C̃, and Σ̃ΣΣ into ǍAA, Č, and Σ̌ΣΣ such
that ǍAA = diag[AAA+,AAA−,FFF ] where AAA+ ∈ R(k+1)×(k+1) is anti-stable and AAA− is
stable; then the following argument can be easily adopted for the case k < n.

Therefore, the convergence of ΣΣΣt+1 = Ric(AAA,C,ΣΣΣt) with initial condi-

tion ΣΣΣ0 is equivalent to the convergence of Σ̃ΣΣt+1 = Ric(ÃAA, C̃, Σ̃ΣΣt) with initial

condition Σ̃ΣΣ0. By [42], Σ̃ΣΣt would converge if

(A.18)

∣∣∣∣([000 000
000 IIIm

]
− Σ̃ΣΣ0

[
IIIn+1 000

000 XXX22

])∣∣∣∣ 6= 0,

whereXXX22 is the negative semi-definite matrix to the discrete-time Lyapunov
equation

(A.19) XXX22 = FFFXXX22FFF
′ − (C +ψψψ′H)(C +ψψψ′H)′.

Then direct computation shows that Σ̃ΣΣt indeed converges to a limit Σ̃ΣΣ∞,
and the limit is a positive semi-definite solution to the Riccati equation
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Σ̃ΣΣ∞ = Ric(ÃAA, C̃, Σ̃ΣΣ∞). By [29], this solution is the unique stabilizing solution

because (ÃAA, C̃
′
) is observable (since (AAA,C′) is observable) and ÃAA does not

have any eigenvalues on the unit circle, and it can be computed as Σ̃ΣΣ∞ =
diag(Σ̃ΣΣ11,000) where Σ̃ΣΣ11 is the positive-definite solution to a reduced-order

Riccati equation Σ̃ΣΣ11 = Ric(AAA, (C ′ +H ′ψψψ), Σ̃ΣΣ11) and has rank equal to the

number of anti-stable eigenvalues of ÃAA. Thus, ΣΣΣt converges to ΣΣΣ∞ with rank
equal to the number of anti-stable eigenvalues of ÃAA. The the results follow.

A.5. Proof of Proposition 7

Consider the coordinate transformations used in the proof of Proposition 5
that transform AAA, C, and ΣΣΣ into Σ̃ΣΣ into ǍAA, Č, and Σ̌ΣΣ. Note that the block in
Σ̌ΣΣ∞ (i.e. the solution to the Riccati equation defined by ǍAA and Č) associated
with the AAA− block is zero. By Proposition 6, in the new coordinates the
rate and power due to the AAA− block are both zero, and hence in the original
coordinates the rate and power due to the stable eigenvalues of AAA are both
zero. Then we remove the dimensions corresponding to AAA− in ǍAA, Č, and Σ̌ΣΣ.
It is easy to check that this leads to a pair of reduced order (AAAk, Ck) with
AAAk anti-stable and satisfying R∞,n(AAA,C) = R∞,k(AAAk, Ck) and P∞,n(AAA,C) =
P∞,k(AAAk, Ck).
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