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Split-complex numbers and Dirac bra-kets

Steven Deckelman and Barry Robson

We describe the real tessarines or “split-complex numbers” and
describe a novel instance where they arise in biomedical informat-
ics. We use the split-complex numbers to give a mathematical def-
inition of a Hyperbolic Dirac Network (HDN) — a hyperbolic ana-
logue of a classical probabilistic graphical model that uses quantum
physics as an underlying heuristic.

The methods of theoretical physics should be applicable to all those branches of
thought in which the essential features are expressible in numbers.

— P. A. M. Dirac, Nobel Prize Banquet Speech 1933

1. Introduction

A student’s first foray into complex numbers often begin with the intro-
duction of i as the square root of -1. i is a number having the property
that i2 = −1. The complex number system C is then defined to consist of
all numbers of the form a+ bi with a, b real. With addition defined by
addition of the real and imaginary parts, students learn that complex num-
bers are multiplied by applying the usual distributive laws and by replac-
ing each occurrence of i2 by −1, and that C is a field. More generally
(a+ bi)(c+ di) = (ac− bd) + i(ad+ bc). Suppose we were to change this in
the following way. In place of i we introduce a new quantity h. Consider
now two “h-complex numbers” a+ bh, c+ dh. Then, in multiplying out
(a+bh)(c+dh), rather than replacing each occurrence of i2 by -1, we adhere
to the following rule: replace each occurrence of h2 by 11. The ensuing prod-
uct will yield a complex product that is different from ordinary complex

1In physics this is known as the Lorentz rotation i→ h. This rotation is in may
respects the same in its consequences as the Wick rotation of time t to imagi-
nary time −it, widely used to render quantum mechanics classical. It makes simple
i-complex functions real. For example, Feynman early used it as an interim repre-
sentation to facilitate solution to the path integral. However, it captures only some
of the picture given by h, which can therefore be considered as a generalization of
the Wick notation. Notably, exponentials of functions multiplied by h are particular
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136 S. Deckelman and B. Robson

multiplication. h is acting like it thinks it’s a hidden square root of 1. The
resulting mathematical system is no longer a field but rather a commutative
ring. h is a kind of hyperbolic analogue of i. For example

ehθ = cosh θ + h sinh θ

for θ real in a sense that will be made precise below. Neither is this idea
new. In 1848 James Cockle [2], an associate of Cayley, dubbed this system
of numbers the (real) tessarines. The tessarines are a kind of poor, less lumi-
nary cousin of the complex numbers. Not quite a field, the tessarines lack the
power and versatility of C. Yet the tessarines or split-complex numbers have
a peculiar history of reappearing at critical times in the history of math-
ematics. In this article we describe a novel instance where these numbers
arise in biomedical informatics.

2. Tessarines or split-complex numbers

What Cockle called the tessarines is actually the complex algebra generated
by objects {1, i, j, k } where ij = ji = k, i2 = −1, j2 = 1. That is, “numbers”
of the form a+ bi + cj + dk, or given by the matrix representation

a+ bi + cj + dk 7→
(
a+ bi c+ di
c+ di a+ bi

)
where a, b, c, d are real numbers. When both b = 0 and d = 0 , the result-
ing real tessarines were called split-complex numbers by later authors. The
complex plane of split-complex numbers has a certain hyperbolic structure
and is sometimes called the hyperbolic plane [24]. In order to emphasize
the “hyperbolic” character of these split-complex numbers, we shall use the
symbol h in place of j in what follows. The term h-complex algebra has also
been used [14]. Split-complex numbers are a type of generalized complex
number or hypercomplex number. In [25] I. M. Yaglom termed them double
numbers. Even today, their terminology has not stabilized. In [15], Robson
cites a litany of names that have been applied to these numbers includ-
ing Cockle, Lorentz, dual, perplex, algebraic motor and anormal-complex
amongst others. The quaternions are another, possibly more familiar, hyper-
complex number. See also [11].

hyperbolic geometric functions, as multiplication by i would give periodic trigono-
metric functions (and multiplication by hi gives a combination of both), whereas
having rendered the functions real by the Wick rotation, this subtlety is lost and
would not be seen.
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Split-complex numbers and Dirac bra-kets 137

3. A modern algebra view of split-complex numbers

An algebra is a vector space in which, quoting Halmos [7], there is a decent
notion of multiplication. A ring, if you will, in which we can scalar multiply
elements using scalars in some field. One way they arise is to take a field F
and let it act on a ring R. The resulting F-algebra will be a vector space
over the field F in which vector multiplication is defined by multiplication
in R.

The complex numbers can be identified in the obvious way with points
(vectors) in the plane R2. They form a real algebra using ordinary vector
addition and the product (a, b) · (c, d) = (ac− bd, ad+ bc) which extends in
a natural way to a complex algebra. We usually don’t refer to C as a complex
algebra because it has the richer structure of being a field. It is a natural
question to ask what sort of mathematical system ensues if we instead con-
sider the ostensibly simpler product (a, b)~ (c, d) = (ac, bd). What we get is
no longer a field but can be viewed as a real or complex algebra. In fact it
is the split-complex numbers in disguise.

Suppose we take the real numbers R. We may view R as a field, but also
as a vector space over R itself or even as an algebra. As a field, it is, a fortiori,
a commutative ring. Algebraists recognize the mathematical system defined
above by (a, b) + (c, d) = (a+ b, c+ d), (a, b)~ (c, d) = (ac, bd) as the direct
product of rings R× R. Notice that the direct product is not an integral
domain. It’s multiplicative identity is (1, 1). So elements (a, 0) or (0, b) are
not units. Thus it is not a field. It is however a commutative ring, in fact an
algebra over R.

Suppose now we take the complex numbers C. We may view C as a field.
But we may also view it as a vector space over the real numbers. It is the
two dimensional real vector space spanned by the basis {1, i}. Suppose we
replace this usual basis by the basis {ι, ι∗} where ι = 1+i

2 and ι∗ = 1−i
2 , its

complex conjugate. That is, rather than represent complex numbers in the
form a+ bi, we will represent them in the form Aι+Bι∗, with A, B real
numbers. Now the complex number system, described in this way is a real
vector space and can be given the structure of a real algebra by defining a
product on the basis vectors ι, ι∗ and then extending it to all of C. Motivated
by the h as a hidden root of 1 idea above, we define, using the symbol h in
place of i,

ι~ ι = ι, ι∗ ~ ι∗ = ι∗, ι~ ι∗ = 0

and denote the resulting real algebra by Cι. We note that this implies that
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138 S. Deckelman and B. Robson

ι =
1 + h

2
and ι∗ =

1− h
2

where h2 = 1.
R× R and Cι are isomorphic real algebras. The isomorphism is of course

Φ(a, b) = aι+ bι∗. It may also be described as the quotient ring

R[h]/〈h2 − 1〉.

In this case the isomorphism Φ : R[h]/〈h2 − 1〉 → Cι may be described by

Φ(x+ yh) = (x+ y)ι+ (x− y)ι∗

or by Φ−1 : Cι → Φ : R[h]/〈h2 − 1〉 where

Φ−1 : (Aι+Bι∗) =

(
A+B

2

)
+

(
A−B

2

)
h.

Cι may of course be extended to a complex algebra by simply enlarging
the field. That is,

C[h]/〈h2 − 1〉.

4. The hyperbolic character of split-complex numbers

In addition to the algebraic description of the split-complex numbers, there
are also geometric and function theoretic ways of thinking about them. They
are in some sense hyperbolic analogues of ordinary complex numbers. For
example, consider C equipped with the usual addition and ~ multiplication.
For z = x+ iy, z ~ z = x2 − y2. The set of “unit vectors” in this plane will
be the points on the unit hyperbola x2 − y2 = 1. Students of of physics will
recognize the split-complex number “norm” as the non-Euclidean Minkowski
norm of special relativity.

Suppose now that Ω ⊂ C is a domain (open connected set) and consider
the class of analytic (or holomorphic) functions on f : Ω→ C, O(Ω). Let H
(for hyperbolic) denote the operator

H(f(σ + it)) = f(σ + ht).
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Split-complex numbers and Dirac bra-kets 139

H : O(Ω)→ H(Ω) will be a linear operator whereH(Ω) is the class of smooth
(e.g. C2) functions f = u+ hv : Ω→ C satisfying the “hyperbolic Cauchy-
Riemann equations”

∂u

∂x
=
∂v

∂y
,

∂u

∂y
=
∂v

∂x
.

That is, H maps analytic functions of a complex variable in the classical
plane into “hyperbolically analytic” functions in the hyperbolic plane. We
may define a complex function to be hyperbolically analytic at z in the
hyperbolic plane if

lim
η→0

f(z + η)− f(z)

η
exists

where we define the limit only for units η which approach 0 in such as way
as to avoid points on the “null cone” {z : z = cι or z = cι∗} (for example by
approach within sectors) and where the operations are understood to be in
the hyperbolic plane, e.g. the η in the denominator signifies η−1 in the split-
complex number system. See [8] for more details. As an example consider
f(z) = z2 defined by f(x+ iy) = x2 − y2 + 2xyi. Then Hf(x+ ih) = x2 +
y2 + 2xyh which is different. For example f(i) = −1 but Hf(i) = 1. We
justify the use of the term hyperbolic since for f(z) = ez, we see

H(ex+iy) = ex+hy = exehy = ex(cosh y + h sinh y).

In particular,

H(cosx) = coshx and H(sinx) = sinhx, for real x.

The AMS subject classification category 30Gxx, “Generalized Function The-
ory”, comprises this area of mathematical research.

5. Split-complex numbers are not natural

Perhaps one reason split-complex numbers are not better known is that
lacking the structure of a field, they are not a particularly natural mathe-
matical system for applications. In particular the split-complex numbers do
not form a division ring. Although a commutative ring, real scalar multi-
ples of the quantities 1 + h and 1− h fail to be units(e.g. have multiplica-
tive inverses). Of course this does not detract from their intrinsic interest
as a purely mathematical object. But it can be a delightful surprise when
the unexpected utility of an idea in pure mathematics arises in applied
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mathematics. For remainder of this paper we work exclusively in the split-
complex number system and so will drop the ~. For example we will write
(aι+ bι∗)~ (cι+ dι∗)(= acι+ bdι∗) simply as (aι+ bι∗)(cι+ dι∗).

6. Hyperbolic Dirac nets

Physical analogy and intuition has a long and distinguished tradition as a
source of inspiration and deep mathematical insights. Take, for example,
Jean Bernoulli’s ingenious solution to the brachistochrone problem, based
on the path light takes through an inhomogeneous stratified medium as
described in [12] or the original solution of the Dirichlet problem based on
physical reasoning for a physical electrical potential being determined by
the laws of electrostatics given a charge distribution on the boundary. Or
recall P.A.M. Dirac’s “function” from the early days of quantum mechanics
δ(x),[13], which is supposed to be zero for x 6= 0 and ∞ at x = 0 together
with the property that

∫∞
−∞ δ(x)dx = 1 which later gave rise to the theory

of distributions or generalized functions. Or consider Wiener’s development
of stochastic processes based on trying to model physical Brownian motion.
We could, of course, go on and on. Recently Barry Robson [14] has proposed
using quantum mechanics as a basis for heuristics with the design and imple-
mentation of inference nets. The resulting net, called a Hyperbolic Dirac
net, is based on split-complex numbers. Inference nets, a topic in artificial
intelligence, are very important in bioinformatics, data mining and biomed-
ical analytics as well as having many other applications. An example from
biomedical informatics would be a patient record database. The science of
designing and implementing such nets in a computationally tractable way
is a nontrivial problem in computer science. In Section 10 below we give a
more detailed example.

For our purposes an inference net may be thought of as a probabilistic
graphical model. That is a graph G = (χ, E) with nodes χ = {X1, X2, . . . , Xn}
and edges E . G may be directed or undirected or partially directed. The
presence of an edge between two nodes indicates a direct probabilistic inter-
action. Each node represents a (discrete) random variable and it is assumed
there corresponds a joint probability distribution P (X1, X2, . . . , Xn) and
underlying sample space. A sine qua non for such a net is that the joint be
encoded in a computationally tractable way in a set of conditional probabil-
ity tables. For more details we refer the readers to the excellent sources [9],
[23], [10]. In a biomedical context, we may think of the random variables
as representing states, events, or measurements that are subject to clini-
cal and biomedical rules. We want to be able to build the net, modify the
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Split-complex numbers and Dirac bra-kets 141

net and perform queries on the net. The canonical example of a directed
inference net is called a Bayes net while the canonical example of an undi-
rected net is called a Markov net. For example we might be interested in
the probability that a patient has sleep apnea given the symptoms of snor-
ing and fatigue. In principle, every probabilistic query can be answered if
the joint P (X1, X2, . . . , Xn) is available. The process of evaluating queries
involves computations with sums of real number products of probabilities
involving the joint P (X1, X2, . . . , Xn). By a query we mean a conditional
probability P (X|Y ) where X and Y can be lists of random variables. In
a hyperbolic Dirac net we replace P (X|Y ) by 〈X|Y 〉 where the X and Y
can be lists of random variables. In [14] Barry Robson describes the imple-
mentation of such a net. There is good reason to believe that the physical
analogies between quantum mechanics and inference nets will be fruitful
because both of these fields are concerned with questions about identical
character, distinguishability of states, events or measurements, correlation,
mutual information and orthogonal character. For example the net might
represent a database consisting of records in which we want to be able to
analyze relationships between attributes or parameters of patients. Think
of a stack of records to analyze, one row being a record and one patient,
and what is on each same record is a “co-event”, a joint occurrence because
it comes together in one patient. The random variables above would corre-
spond to the values of various fields and may “recur”, that is appear more
than once as for example what might happen if a person had a broken leg
twice.

7. Dirac’s bra-ket formalism

Quantum mechanics uses what can be thought of as a special notation
to handle quantum uncertainty. This is called the Dirac bra-ket notation.
P.A.M. Dirac introduced the bra-ket notation in [3] to the study of quan-
tum mechanics2. Much more than a mere notation, the Dirac notation has
been compared to the transition from Roman numerals to Arabic numerals
in its power to express and conceptualize the ideas of quantum mechanics.

2In quantum mechanics Dirac’s system is a system of inference. That is, it is a
system for drawing conclusions about probabilities of events. If a particle that is
prepared with momentum p on a circular track of circumference L and is observed
at position x, 〈x|p〉 denotes the wave function for the pure momentum state given
by

〈x|p〉 =
1√
L
exp

(
ixp

~

)
,
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[1] gives a very readable introduction to the Dirac formalism in quantum
mechanics for nonspecialists. From the perspective of linear algebra, given
a vector space V , a ket is a vector, a bra is a dual vector. In the case of a
finite dimensional vector space, we may identify kets |y〉 with column vec-
tors and bras 〈x| with row vectors. 〈x|y〉 is then a product of a row vector
against a column vector-an inner product in effect. |y〉〈x| is called the outer
product and corresponds to a matrix product of a column vector against a
row vector-a matrix, or operator in effect. Much more can be said. One can
discuss forms like 〈x|A|y〉 where A is a matrix representing some operator.

8. Hyperbolic Dirac nets: using Dirac’s bra-ket notation
with inference nets

In [14],[20], [22], Barry Robson proposes a general approach to inference nets
based on the Dirac notation by building both P (X|Y ) and P (Y |X) into a
single inference engine. Because our purpose is expository our descriptions
will be informal. Robson’s approach suggests packaging both probabilities
together by ordered pair

(P (X|Y ), P (Y |X)) .

One of the things this will enable is the ability to model relations involving
reversed causality or conditionality as in “Disease X causes symptom Y ”
vs. ”Symptom Y causes (a diagnosis of) Disease X” . To wit,

(1) 〈X|Y 〉 =
√
P (X|Y )ι+

√
P (Y |X)ι∗

or equivalently

〈X|Y 〉 = (
√
P (X|Y ),

√
P (Y |X)).

where ~ is the reduced Planck’s constant. 〈x|p〉 describes the “de Broglie wave”.
The

√
L is included as an L2 normalization factor to ensure∫ L

0

|〈x|p〉|2dx = 1.

|〈x|p〉|2 in effect gives the probability density that the particle prepared with
momentum p will be observed at position x. This is quantum uncertainty: the act of
observing the bead is an interaction with it that changes its momentum (destroys
the momentum measurement.) The analogy that 〈x|p〉 represents the square root
of a probability (density) will be mentioned again below. It is also a system of
expectations(averages) of values when in 〈X|R|Y 〉, R is a Hermitian operator of
observation.
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Split-complex numbers and Dirac bra-kets 143

Actually, the square root is not strictly necessary, and is sometimes left off,
i.e.

〈X|Y 〉 = P (X|Y )ι+ P (Y |X)ι∗.

Ignoring the square root seems to work perfectly well3 Either way, we can
project out the ι or ι∗ components: the projection functions R and R∗,
defined by

(2) R(aι+ bι∗) = a, R∗(aι+ bι∗) = b,

are analogues of the Penrose reduction operator in quantum mechanics,
although we should perhaps think of that here as including a Lorenz rotation
i→ h along with considerations discussed in 1 on page 135.

Note further that 〈X|Y 〉 will have hermitian symmetry, i.e. 〈Y |X〉 =
〈X|Y 〉∗.

More generally, forms of the type

〈X|R|Y 〉

3This seems more a matter of the choice of units by which we chose to repre-
sent distinguishable information [22], but this is also a matter of normalization and
method of computation of component probabilities. Here the procedures of physi-
cists, but now applied to purely h-complex amplitudes, are surprisingly insightful,
suggesting that we should drop the square root. Of course, if our empirical proba-
bilities are replaced by exponentials of i-complex quantities, it can be argued that
the square root is physical in that periodic wave function case, but consider the
following. Whilst extractable weights of vectors 〈A| and |B〉 are seen as related
to square roots of probabilities, 〈A|B〉 is their product, and if we allow A to recur
independently such that P (A,A) = P (A)2 as if A is countable like ”male” in a sam-
ple of a population, 〈A|A〉 = P (A), not

√
P (A). Application of Dirac’s recipe to

extract an observable probability [3] means ket normalization to prepare B to mea-
sure A conditional upon it, i.e. P (B) = P (B|A) = 1 so that 〈A|B〉′ = P (A|B)ι+ ι∗,
and the Born rule as 〈A|B〉′(〈A|B〉′)∗then gives P (A|B). Similarly, if physical,
P (A) = P (A|B) = 1 means ′〈A|B〉(〈A|B〉′)∗ = P (B|A)(though Robson feels that
in the special case of conjugate variables A and B like momentum and position ι and
ι∗should be switched to permit general normalization of P (A|B) = P (B|A) without
breaching the uncertainty principle). There is a simple and persuasive eigensolution
interpretation: Dirac noted that h (his σ such that σσ = 1) can be seen as a linear
operator which, unlike i with eigenvalues +i and −i, has real eigenvalues +1 and
−1, and replacing h by each of these in turn gives eigensolutions 〈A|B〉 = P (A|B)
and 〈A|B〉 = P (B|A) respectively.
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are also permitted where R is interpreted as a relator, i.e. a relationship
between X and Y . 〈X|Y 〉 represents the default case where the relator R
indicates “is directly influenced by”.

To understand this better, we describe how to convert a Bayes net to
an HDN. By an HDN we mean, as a provisional definition, a Dirac bra-ket
factorization of the joint. Let’s first consider the very simplest case of only
two nodes X and Y with corresponding joint distribution defined by

(3) P (X,Y ) = P (Y |X)P (X).

Since by Bayes Rule in probability, P (X|Y )P (Y ) = P (Y |X)P (X) and ι+
ι∗ = 1 we may write4

P (X,Y ) = P (X,Y )ι+ P (X,Y )ι∗ = P (X|Y )P (Y )ι+ P (Y |X)P (X)ι∗

= [P (X|Y )ι+ P (Y |X)ι∗][P (Y )ι+ P (X)ι∗] = 〈X|Y 〉〈X|?〉 〈?|Y 〉

where ? is understood to be a dummy5 node for which P (?) = 1. In effect
〈Y |?〉 = P (Y )ι+ ι∗ and 〈?|X〉 = ι+ P (X)ι∗. In this way one may think of
constructing the corresponding HDN for (3) by the analogous product

P (X,Y ) = 〈Y |?〉〈X|Y 〉〈?|X〉

For our next example consider the Bayes net defined by the factorization

P (X1, X2, X3, X4, X5) = P (X1|X2, X3)P (X2|X4)P (X4)P (X3|X5)P (X5).

By its dual P ∗ we mean the measure (pre-normalized joint) defined by

P ∗(X1, X2, X3, X4, X5) = P (X1)P (X2, X3|X1)P (X4|X2)P (X5|X3).

As before we write down the analogous split number factorization

H(X1, X2, X3, X4, X5) = 〈?|X1〉〈X1|X2, X3〉〈X2|X4〉〈X4|?〉〈X3|X5〉〈X5|?〉

while noting that H = Pι+ P ∗ι∗.

4Recall products are now in the split-complex number system.
5Physicists would demur from using this language. “?” would be viewed the act

of preparation or observation of the state, which we usually can assume occurs
with certainty even if the probability set or measured doesn’t. You can’t of course
distinguish in an HDN really between preparation and observation, which is sort of
true in physics too, keeping in mind entanglement as ”spooky action as a distance”
is what would be meant.
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Note that by (2) P = RH and P ∗ = R∗H.
More generally by a Hyperbolic Dirac net we mean a data structure

obtained by a dualization procedure performed on a given net that consists
of a pair of split-complex number factorizations of a joint and it’s dual. By
the dual of a net we mean the new net we obtain by reversing the direction of
the edges such as (8). That is, a a factorization into split-complex numbers
of bra-kets of the form 〈A|B〉 of the quantity

H = Pι+ P ∗ι∗.

In computational practice this could be implemented by a dualization oper-
ation performed on the individual conditional probability tables used to
implement the original net.

An HDN is a dualization6 procedure performed on a given inference net
that consists of a pair of split-complex number factorizations of the joint
probability and its dual (adjoint, reverse direction of conditionality).

9. HDN queries and further analogies with
quantum mechanics

As with classical probabilistic graphical models a fundamental operation on
an HDN is that of a query 〈A|B〉. These often lead to formulas reminiscent of

6The inference net on which this dualization is performed is defined as an estimate
of a probability as an expression comprising simpler probabilities and or association
measures, i.e. each with fewer attributes (i.e. arguments, events, states, observations
or measurements) that the joint probability estimated, where each attribute corre-
sponds to nodes of a general graph and the probabilities or association measures
represent their interdependencies as edges. It is not required that the inference net
be an acyclic directed graph, but the widely used BN that satisfies that description
by definition is a useful starting point for making use of the given probabilities to
address the same or similar problems. Specifically for the estimation of a joint prob-
ability, and HDN properly constructed with prior probabilities, and whether or not
it contains cyclic paths, is purely real valued and its construction principles repre-
sent a generalization of Bayes Theorem. Any imaginary part indicates the degree
of departure from Bayes Theorem over the net as a whole, and the direction of
conditionality in which the degree of departure occurs, and thus the HDN provides
an excellent book-keeping tool that Bayes Theorem is satisfied overall. Specifically
for the estimation of a conditional probability, it follows conversely from the above
that any expression for a joint probability validated by the above means can serve
as the generator of an HDN for the estimation of a conditional probability simply
by dividing it by the HDN counterparts of prior probabilities, whence the resulting
net is not purely real save by coincidence of probability values.
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formulae from quantum mechanics. We will illustrate this in the very special
but simple case of a three node Bayes net:

(4) A χoo Boo .

with corresponding joint P (A,χ,B) = P (A|χ)P (χ|B)P (B) and HDN struc-
ture Pι+ P ∗ι∗.

Proposition. Let Pι+ P ∗ι∗ be the HDN constructed from the BN (4).
Then

(5) 〈A|B〉 =
∑
χ

〈A|χ〉〈χ|B〉

The identity (5) is known as the Law of Composition of Probability
Amplitudes7 in quantum mechanics. The sum is understood to be taken
over all states of an intermediate node χ. (5) can be viewed as an exam-
ple of a Feynman path integral(see [5]). A physical example of the equation
would be the behavior of electrons in a the classical experiment in quantum
mechanics in which stream of electrons are fired toward a backstop with a
mounted detector obstructed by a wall with multiple holes through which
the electrons may pass through. (See ([6]) volume III chapter 3.)

7The quantum mechanical composition law holds because quantum mechanics
is defined in a vector space. Indeed, the composition law is the same as the dot
product of two vectors [〈A|X1〉, 〈A|X2, . . .] and [〈X1|B〉, 〈X2|B〉, . . .] (although we
should not use the term ”dot product” when multiplying a row and column vector).
That a vector space is the right thing to use in quantum mechanics is a matter of
agreement with experiment. It can be shown that classically it is not a matter of
”coherence” (probability bookkeeping to satisfy Bayes rule and marginal summa-
tion) as its appearance might suggest, but rather of the quality of the estimate of the
implied joint probability, since it works classically under the assumption of certain
independencies. The implications are interesting because these interdependencies
must therefore hold in quantum mechanics, in the vector space, in stark contrast
to the strong interdependencies between quantum mechanical conjugate variables
such as p and x, which is not seen classically except in certain special cases (e.g. the
gas law PV = RT for constant temperature T, Ohm’s electrical law V = IR, and
so on), and certainly not for p and x. It is almost as if degrees of interdependency
are much more discrete, all-or-nothing and almost ”quantized”, for fundamental
particles but not for things and events involving vast numbers of them. However, it
is not perhaps surprising because we see this discreteness already in the degree of
distinguishability of fundamental particles, i.e. as in fermion and boson statistics.
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Proof. Note first that

P (A|B) =
P (A,B)

P (B)
=

1

P (B)

∑
χ

P (A,χ,B)

=
1

P (B)

∑
χ

P (A|χ)P (χ|B)P (B)

=
∑
χ

P (A|χ)P (χ|B).

At the same time

P (B|A) = P (A|B)
P (B)

P (A)
=
P (B)

P (A)

∑
χ

P (A|χ)P (χ|B)

=
P (B)

P (A)

∑
χ

P (χ|A)
P (A)

P (χ)

P (B|χ)P (χ)

P (B)

=
∑
χ

P (χ|A)P (B|χ).

Thus

〈A,B〉 = P (A|B)ι+ P (B|A)ι∗

=

(∑
χ

P (A|χ)P (χ|B)

)
ι+

(∑
χ

P (χ|A)P (B|χ)

)
ι∗

=
∑
χ

〈A|χ〉〈χ|B〉.

�

Actually, we mean here not “P (A|B) =” and “P (B|A) =” but estimates
of them, recalling that an inference network is an estimate of a conditional
or joint probability which is therefore of direct interest here. As proof of
an exact law of composition of probabilities, it is easy to show that we
must have

∑
χ[P (A|B,χ)− P (A|χ)] = 0. Since any component P (A|B,χ)−

P (A|χ) can be positive or negative leading to overall cancelation, this is pos-
sible, and less restrictive than various assumptions about A, B, and inde-
pendencies.

Something may be said about information theoretic and thermodynamic
models and analogies that facilitate conceptual and operational aspects of
these HDNs, and they are insightful in many respects. In physics, P (A|B)
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is essentially represented by P (A)eI(A;B), where P(A) represent the prob-
ability of A prior to the information obtained from measurement (when
I(A;B) = 0), as determined by the structure and scale of the system of
interest. Mutual information I(A;B) = I(B;A) = ln(P (A,B)/P (A)P (B))
is in quantum mechanics A/~ where A is the physical action such as energy
E times time, or momentum times position, and ~ is reduced Planck’s con-
stant. For purposes below we note here the atomic form for more than two
arguments: I(A;B;C . . . ) = ln(P (A,B,C, . . . )/P (A)P (B)P (C) . . . ) ”from
which other forms like from which other forms like I(A,B;C,D) = I(A;B;
C;D)− I(A;B)− I(C;D) are readily produced. These examples describe,
however, pairs of physical conjugate variables in quantum mechanics, where
one determines the other such that P (A|B) = P (B|A), and indeed we are
really dealing with ehI(A;B) and for our analogy focusing on ehI(A;B) =
e+I(A;B)ι+ e−I(A;B)ι∗ where, as in Dirac’s system, a special form of normal-
ization is required to generate P (A|B) (Dirac’s normalization followed by
the Born rule) as the observable probability. To break conjugate symmetry
we have to introduce an external interaction, of which an act of observation
of the wave as a particle is one example, or simply think classically from the
outset. Classically, the above examples are no longer conjugate variables,
and in any event for many physical systems it is sufficient for our purposes,
and well known, that we can write I(A;B) = E/kT where E is the energy,
T absolute temperature, and k is Boltzmann’s constant. In both quantum
and classical cases the divisor (~ or kT ) represents the uncertainty or noise
which dictate how accurately the information can actually be measured,
and ensure that the information I(A;B) is expressed in dimensionless units
(though we speak of ”bits”, binary log units, or ”nats”, natural log units,
of information) Note that consideration of the normalization for conjugate
variables for the purely h-complex case does not suggest a need for square
roots of probabilities, but that nonetheless we are free to use any root or
power to express the units based on the accuracy with which we can mea-
sure. One of several consistent reasons for appearance of the square root in
quantum mechanics is that the lower limit of fineness of measuring action
A is actually A = ∆2~. Importantly note also that the self probabilities and
mutual information or association constants can be used to express an HDN,
because we can also equivalently write

〈A|B〉 = [P (A)ι+ P (B)ι∗]eI(A;B) = [P (A)ι+ P (B)ι∗]K(A;B)

As a consequence of the algebra of h, we can also write
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kT ln〈A|B〉 = E(A)ι+ E(B)ι∗ + E(A;B)

which provides the energy model, since E(A) and E(B) are the energies inter-
nal to a particle, atom, or molecule A or B respectively, and E(A; B) = E(B;
A) is the interaction energy between A and B. Perhaps the most important
conceptual aid provided is when considering that an HDN is a bidirectional
general graph, in contrast to a BN as a unidirectional acyclic graph. It is is
the cyclic aspect that is controversial, but it is evident that all of A, B, C,
D, etc. in a system can have some degree of energy of interaction involving
two or more of them, implying multiple cycles. To make use of this concept,
there are rules to follow. Objects such as A and B can clearly appear more
than once in all the interaction terms added up, say E(A; B) + E(A; C;
D) + E(B; F), but what we cannot do is count an interaction more than
once. For example, E(A; B; C) + E(A; C; D; F) would count the A with
C interaction twice. Similarly, but perhaps less obviously as it is somehow
less visual, we cannot count mutual information between entities twice. The
recipe for an HDN is obvious, although in HDNs we apply it to the prod-
uct of all association constants such as K(A;B;C) = eE(A;B;C)/kT that we
consider as departing significantly from 1 (i.e. I(A;B;C) and E(A;B;C)
departing significantly from 0), multiplied by all the self probabilities P(A),
P(B), P(C) etc. That gives a valid estimate joint probability for which con-
ditionals can be readily formed, considerably simpler than the way in which
we normally think about constructing a BN. It could of course be argued
that this is a defect of BNs arising from their acyclic philosophy, rather than
an advantage of HDNs. However, it does take two directions of conditionally
and an h-complex algebraic treatment to see it. That is, to see and prove
that cyclic paths (without branches or with branches corrected for symme-
try) are purely real valued and in effect valid joint probabilities. For further
background on these matters we refer the reader to [4],[16],[17],[18].

10. An example

10.1. A homeostasis problem starting from a Bayes net

By way of example, we should consider the computation of joint probabil-
ities, which is one of the main functions of a BN. Compared with a con-
ditional probability where we have an h-complex value, a properly com-
puted joint probability based on coherent probabilities must be real, so
that appears to be the boring case. The issue is, of course, is it purely
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real, i.e. is it properly computed and based on coherent probabilities? This
also brings to light other issues of probabilistic modeling that are, per-
haps, not at all obvious. To illustrate this, we will use a problem posed
in the Wikipedia entry of BNs [26]. Although about keeping a lawn well-
watered, it has a form common to probabilistic models of homeostasis.
Suppose that there are two events which could cause grass to be wet [G]:
either the sprinkler is on [S] or it’s raining [R]. Also, suppose that the rain
has a direct effect on the use of the sprinkler (namely that when it rains,
the sprinkler is usually not turned on). The joint probability function is:
P (G,S,R) = P (G|S,R)P (S|R)P (R). As regards estimating joint probabili-
ties by means of a BN, Rebonato has noticed that human experts are rather
bad at assigning probabilities that are coherent, i.e. satisfying both marginal
summation and Bayes rule. Robson has given several worked HDN exam-
ples [19] that highlight this and show how an HDN can repair the diffi-
culty, as well as providing a broader set of examples that highlight issues in
relating HDNs to probabilities of statements in natural language [21]. The
above sprinkler example is, however, of interest in illustrating key differences
between a BN and an HDN because it is already coherent. The issues here
therefore relate to alternative representations and new insight, not repair.
We know that it is coherent because(assuming no trivial erros in proba-
bility assignments) the above expansion is exact: P (G|S,R)P (S|R)P (R) =
P (G,S,R)P (S,R)P (R)/P (S,R)P (R) = P (G,S,R). The solution for a joint
probability, using the probabilities given in this source, is

P (G,S,R) = P (G|S,R)P (S|R)P (R) = 0.99× 0.01× 0.2 = 0.00198.

That a BN represents an exact solution is less common (except for intro-
ductory and educational purposes). That is because if we have enough data
to count and obtain P (G|S,R), then we have enough to obtain joint prob-
ability P (G,S,R) directly, and therefore no BN is required to provide an
estimate per se. Note also that, in the above P(G,S,R) expansion example,
the following rule for a joint probability is satisfied. We write every proba-
bility as self or joint probability by removing the conditional bar if present,
and divide by the probabilities of single or joint events on which they are
conditional. This will apply to brakets like 〈A|B,C〉, although there we have
two directions of conditionality to worry about, relating to P (A|B,C) and
P (B,C|A). When written in a numerator-divisor form using only joint and
self-probabilities, each state or event A, B, etc. must occur once more in
the numerator than denominator. Re-expressing probabilities as informa-
tion I(x) = − lnP (x) where x is a self or joint probability, shows that this
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makes sense. We can represent information contributions as we wish, e.g.
isolated or I(A) or jointly as in I(A,B) and in I(A,B,C) which progres-
sively recognize more interdependencies, but we add or remove information
so that it is not counted twice. Incidentally, this is not an absolute rule for
an HDN. 〈A,A|A,A,A〉 can make sense just as P (A,A|A,A,A) can and
counting does: what is the probability of seeing A twice after seeing it three
times? It might be noted that this breaks the rule ”each interaction once”
by analogy with thermodynamics. Strictly speaking, that is so, but only in
the sense that some particles, molecules or other entries appear with the
same name and we chose not to distinguish them, as in counting black balls
from an urn or in counting white balls from an urn, or males in a room.
Dependent on the nature of the sampling and size of sample, we may still
need to be careful not to count a same thing twice and thereby to avoid
including more than once interactions involving it. See the very end of our
paper for comment on this!

10.2. HDN solutions

In one sense the obvious solution is that P (G|S,R)P (S|R)P (R) directly
suggests 〈G|S,R〉〈S|R〉〈R|?〉. That it does so is an example of a first step
in forming a HDN when one wants to start from a BN, which is obviously
a highly automatable approach. However, it has certain asymmetries con-
travening coherence that will need repairing as discussed later below. That
is, the conditional probabilities will be implied in at least one direction
and we not have the purely real value implied by the dual (x, y) = x = y.
In another sense, when entering the problem with a basic awareness of
probability theory and need for coherence, there are two other obvious
direct solutions. They might be also considered as obvious basic repairs to
〈G|S,R〉〈S|R〉〈R|?〉. The first and simplest preserves the interdependency
between S and R from the outset. That it is coherent with respect to Bayes
rule can be seen because the dual balances and implies a purely real number:

〈?|G〉〈G|S,R〉〈S,R|?〉
=
(
P (G)P (G,S,R)P (S,R)/P (S,R)P (G),

P (G)P (G,S,R)P (S,R)/P (G)P (S,R)
)

=
(
P (G,S,R), P (G,S,R)

)
= P (G,S,R) = 0.00198.

In practice, this approach is reasonable. If we have data to evaluate
P (G|S,R) and P (G,S,R) we certainly have data to evaluate P (S,R) and
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hence〈S,R|?〉. The second solution follows the BN example more closely by
having a dependency on rain with the self-probability P(R) as adjustable
input. If we wish we can write 〈?|G〉〈G|S,R〉〈S|?〉〈R|?〉, however, the HDN
sees explicitly that there is an asymmetry. S and R are interdependent in
one direction of conditionality, and conditional in another. We are in effect
repairing the branch (. . . R, S)→ (R, . . . ), (S, . . . ) so that to the right of the
arrow, R and S are not seen as independent. We introduce (multiply by)

〈S;R|?〉 = (K(S;R), 1)

to achieve this repair. Note that association constant K(S;R) = P (S,R)/
P (S)P (R).

〈?|G〉〈G|S,R〉〈S,R|?〉〈S|?〉〈R|?〉
=
(
P (G)P (G,S,R)P (S)P (R)/P (S,R)P (G),

P (G)P (G,S,R)P (S)P (R)/P (G)P (S)P (R)
)
× (P (S,R)/P (S)P (R), 1)

=
(
P (G,S,R), P (G,S,R)

)
= P (G,S,R) = 0.00198.

10.3. A step by step example

We should illustrate the above by a step by example, as we would reach
P (G,S,R) = 0.00198 in practice. Unfortunately, while the BN example
allows, in effect, the calculation of P (G,S,R) given P (R), effectively using
P (G,S,R) = P (G,S|R)P (R), the BN describes only one direction of con-
ditionality. Therefore, there are some required probabilities unspecified and
which are not totally determined by the above. For example we cannot
use P (G,S,R) = P (S,R|G)P (G) without assigning values to P (S,R|G) and
to P (G). In the absence of such information, one might use logic as a
guideline. Using wet grass for G etc. explicitly for clarity, we should not
expect P(wet grass) to be less or significantly more than (using inclusive
OR) P (rain OR sprinkler) = P (rain) + P (sprinkler)P (sprinkler, rain) = 0.2
+ 0.322 × 0.022 = 0.5. However, we here try to make it a little more inter-
esting, since it would seem that there should be sufficient degrees of freedom
to express say P(wet grass) = 0.8, indicating that there could be another
reason for wet grass such as dew, flooding from a stream, a water mains
leak, and so on. For the model

〈?|G〉〈G|S,R〉〈S;R|?〉〈S|?〉〈R|?〉 =
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the following assignments are then consistent with the joint probability of
0.00198 obtained by Ref. [26] and the probabilities given there or deducible
from them.

〈rain|?〉 = (0.2, 1)× 〈sprinkler|?〉
= (0.322, 1)× 〈wet grass | sprinkler, rain〉
= (0.99, 0.002475)

= (0.063756, 0.002475)× (K(sprinkler; rain), 1)

= (P (sprinkler, rain)/P (sprinkler)P (rain), 1)

= (0.002/0.3220.2, 1) = (0.03106, 1)

= (0.00198, 0.002475)× 〈?|wet grass〉
= (1, 0.8) = (0.00198, 0.00198) = 0.00198

To ask the what is the probability that there is wet grass and the sprin-
kler is on given that it is raining are involved in the grass being wet, divide
by 〈rain|?〉 = (0.2, 1), i.e.

〈rain, sprinkler |wet grass〉 = 0.00198/(0.2, 1) = (0.0099, 0.00198).

The probability that there is rain and wet grass if the sprinkler is on is

〈rain, wet grass | sprinkler〉 = 0.00198/(0.322, 1) = (0.00615, 0.00198).

The following requires the HDN, at least in the sense that the original
BN cannot answer it without acknowledging P(wet grass). To ask the new
question, what is the probability that is raining and the sprinkler is on if
the grass is wet, divide by 〈?|wet-grass〉 = (1, 0.8), i.e.

〈rain, sprinkler |wet grass〉 = 0.00198/(1, 0.8) = (0.00198, 0.002475).

How generally does this hold for the sprinkler example? To compute all
possible 8 combinations of rain/not rain, sprinkler/not sprinkler/ wet grass/
not wet grass we initially had to guess at some probabilities not given or
deducible from the source reference. These include P (not wet grass |not
sprinkler, not rain) and P (not sprinkler, not rain | not wet grass). To pro-
ceed more objectively, an automatic marginalization procedure was devel-
oped to give consistent marginalization results. This gave a balanced, purely
real dual (x, y) = x = y up to at least three significant digits d in d.dd× 10−e

exponent format for all 8 combinations of negation, marginalization involved
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not only deducing implied probability values but also adjustment to the
given probabilities including the above guesses if they were no fully coher-
ent with respect to known probabilities overall. One solution for a full set
of coherent and realistic probabilities is P (R) = 0.2008, P (S) = 0.32,
P (G) = 0.5295, P (R,S) = 0.0007161, P (R,not S) = 0.2003, P (not R,S) =
0.35105, P (not R,not S) = 0.4490, P (G,S,R) = 0.0007160, P (R,S, not G)
= 6.11510−008. Note that P (wet grass) = 0.5295, and recall that we should
not expect P(wet grass) to be less or significantly more than (using inclusive
OR) P(rain OR sprinkler) = P(rain) +P(sprinkler) P(sprinkler, rain) = 0.2
+ 0.322 × 0.022 = 0.5.

10.4. An alternative model solution

If one is seeking to reproduce the full sprit of the original BN example, how-
ever, there is a less obvious solution or family of solutions based on the above
mentioned fact that P (G|S,R)P (S|R)P (R) directly suggests 〈G|S,R〉〈S|R〉
〈R|?〉. We might then seek to repair by thinking about the following. (a)
The self-probability of wet grass, i.e. input in the other direction already
discussed above, so that we need to introduce (multiply by) 〈?|G〉. (b) Sprin-
kler and rain are again interdependent in one direction and not another, so
that we require introducing (and multiplying by) 〈R;S|?〉 again. (c) Most
controversially, the fact that the sprinkler BN is an exact expansion makes
the input of the BN is somewhat unusual, and we need two conditionalities
on rain, otherwise the R in 〈G|S,R〉 has a prior input via 〈S|R〉〈R|?〉 but is
left hanging without an implied input prior probability P(R) represented by
〈R|?〉. The latter is a common structure and intuitive interpretation, so it is
useful to consider the consequences. Writing the using round brackets in such
a way where we can see the implied branch to which (c) relates, the repaired
HDN is 〈?|G〉〈G|S,R〉〈R;S|?〉(〈R|?〉, 〈S|R〉〈R|?〉). The bracket contents are
not a dual, we simply mean 〈?|G〉〈G|S,R〉〈R;S|?〉〈R|?〉〈S|R〉〈R|?〉. Again,
to make it more readable, we will use wet grass for G, R for rain, and S for
sprinkler. For the rain, sprinkler, and wet grass case, the joint probability is
no longer 0.00198, 〈rain|?〉 = (0.2, 1), 〈sprinkler | rain〉 = (0.01, 0.00621),

〈wet grass | sprinkler, rain〉 = (0.99, 0.002475)

= (0.00198, 0.00001537)× (K(sprinkler; rain), 1)

= (P (sprinkler, rain)/P (sprinkler)P (rain, 1))

= (0.002/0.3220.2, 1) = (0.03106, 1)× 〈?|wet grass〉 = (1, 0.8)

= (0.0000614988, 0.000012296)× 〈rain|?〉 = (0.2, 1)

= (0.00001229976, 0.000012296) = 0.0000123.
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Briefly stated, such a symmetric dual above holds reasonably over all 8
combinations of negation. Using the above probability assignments obtained
by marginal summation and notably with P(wet grass) = 0.5295, we again
obtained the more precise result (x, y) = x = y up to at least three significant
digits d in d.dd x 10-e format. More important here, however, is the question
of how such a result can possibly be correct, even if it does exhibit reason-
able choices of probability that are coherent. We obtained earlier above
the solution 〈?|G〉〈G|S,R〉〈S;R|?〉〈S|?〉〈R|?〉 = 0.00198. It is even easier to
show also that 〈?|G〉〈G|S,R〉〈S,R|?〉 = 0.00198. These agree with the orig-
inal BN calculation. For 〈?|G〉〈G|S,R〉〈R;S|?〉(〈R|?〉, 〈S|R〉〈R|?〉), however,
we obtained 0.0000123. Evidently, we cannot of course be calculating the
same thing. Indeed, it is readily shown that

〈?|G〉〈G|S,R〉〈R;S|?〉(〈R|?〉, 〈S|R〉〈R|?〉)
=P (G,S,R)P (R|S).

Consequently, one might see the correction required as simply

P (rain | sprinkler) = P (sprinkler, rain)/P (sprinkler)

= 0.002/0.322 = 0.00621

P (G,S,R)P (R|S) = 0.0000123, so P (G,S,R) = P (G,S,R)P (R|S)/0.00621
= 0.00198. From one perspective, therefore, this is not so much wrong as
a miscalculation of P(G,S,R) but a correct estimate of something other
than P(G,S,R). It may be considered as one particular kind of estimate
of P(G,S,R, R), recalling the validity of 〈A,A|A,A,A〉 and P (A,A|A,A,A)
discussed above. Perhaps more reasonably in this case, it might be consid-
ered the impact of two manifestations or interpretation of rain, R as rain that
wets the grass, but also RS that may or not identify with the same rain but
is rain as perceived as relative to the sprinkler, giving us P (G,S,R,RS). At
the same time, noting the above correction of diving by P (R|S), it may be
said that we were initially estimating some kind of joint probability and then
considering what it becomes given that there is rain relevant to the action of
the sprinkler. After all, it may be that the owner or automatic device shuts
down the sprinkler if it detects dull light and light rain in the air as humidity.
We have in effect split R into two subclasses R (perhaps conceptually closer
to the original R) and RS for which we can write 〈RS |R〉 = P (RS |R) with-
out necessarily saying or finding that 〈RS |R〉 = P (RS |R) = 1. The situation
is not qualitatively different from separating female patients into pregnant
and not-pregnant. Certainly the following where RS is held distinct from R
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exemplifies a graph structure that, with other symbols than G, S, and R of
course, is not uncommon, and is valid:

〈?|G〉〈G|S,R〉〈R;S|?〉(〈R|?〉, 〈S|RS〉〈RS |?〉).

This is yet another appearance of a reference to counting and distin-
guishability, and how much we choose to distinguish things. We chose now
to distinguish two kinds of rain, and the Inuit are reported to have a whole
of words for distinguishing kinds of snow. It is quite a common issue that
come up on the HDN and with the hyperbolic bracket, which seems to give
greater power, if indeed imposing more responsibility and need for effort,
to manage such issues. All real values of 〈A|B〉 lie on a continuum from 1
(the case of absolute identity between A and B, they are the same thing)
to 〈A|B〉 = 0 where A and B are absolutely distinguishable: classical prob-
ability theory would say mutually exclusive, while QM would speak of 〈A|
and |B〉 as orthogonal vectors. To ensure we do mean real values, we can
perhaps better speak of 〈A|A〉, which with a value 〈A|A〉 = 1 means abso-
lute equivalence, cannot be meaningfully considered as occurring a second
time and countable, while 〈A|A〉 = 0, means that A cannot occur more than
once, ...and so cannot be meaningfully considered as occurring a second time
and countable. This is a curious full circle, operationally, at least, bringing
0 and 1 in some sense together. It is one of many interesting things that
can emerge from considering number systems with an extra and imaginary
dimension, and hence a richer information content and perspective.

Note added in press

On reflection, one of the things that we feel that we have learned from
these studies is that the Bayes net, being traditionally confined to a directed
acyclic graph, is not only unnecessarily restrictive, but also at risk of being
severely unrealistic by neglecting so many interactions in order to satisfy
that restriction. Most notably, it cannot traditionally have cyclic paths. Also
by being unidirectional, it is easy to make mistakes: in many respects the
matter of coherence regarding Bayes rule and marginal summation is very
important, but in a Bayes Net it cannot be seen, because it is purely unidi-
rectional in conditionality, and so ironically has little to do with Bayes rule.
One could say that Bayes rule is really all about the duals (P (A|B), P (B|A))
and (P (B), P (A)), and their product.
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