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Ratio and difference of l1 and l2 norms and sparse
representation with coherent dictionaries
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The ratio of l1 and l2 norms has been used empirically to en-
force sparsity of scale invariant solutions in non-convex blind source
separation problems such as nonnegative matrix factorization and
blind deblurring. In this paper, we study the mathematical the-
ory of the sparsity promoting properties of the ratio metric in the
context of basis pursuit via over-complete dictionaries. Due to the
coherence in the dictionary elements, convex relaxations such as l1
minimization or non-negative least squares may not find the spars-
est solutions. We found sufficient conditions on the nonnegative
solutions of the basis pursuit problem so that the sparsest solu-
tions can be recovered exactly by minimizing the nonconvex ratio
penalty. Similar results hold for the difference of l1 and l2 norms. In
the unconstrained form of the basis pursuit problem, these penal-
ties are robust and help select sparse if not the sparsest solutions.
We give analytical and numerical examples and introduce sequen-
tially convex algorithms to illustrate how the ratio and difference
penalties are computed to produce both stable and sparse solu-
tions.
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1. Introduction

The ratio of l1 and l2 norms is a widely used empirical nonconvex scale-
invariant penalty for encouraging sparsity for nonconvex problems such as
nonnegative matrix factorization (NMF) and blind deconvolution applica-
tions [11, 12, 13]. A related metric that is homogeneous of degree one is the
difference of l1 and l2 norms. Both appear to encourage sparse solutions to
non-negative least squares (NNLS) type problems of the form

(1.1) min
x≥0

λ

2
‖Ax− b‖2 +R(x) ,
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where R(x) = ‖x‖1

‖x‖2
or R(x) = ‖x‖1 −‖x‖2. If A satisfies certain incoherence

properties, then sufficiently sparse nonnegative solutions to Ax = b are
unique [1], which is why solving the convex NNLS problem often works well
without the additional sparsity penalty R(x). A coherence measure of matrix
A is ρ(A) defined as the maximum of the cosine of pairwise angles between
any two columns of A. Let tA = ρ

1+ρ , as in [1]. A sufficient incoherence

condition [1] for uniqueness of the sparsest solution x0 ≥ 0 is that ‖x0‖0 <
1

2tA
. However, such conditions are often not satisfied in practice, in which

case including R(x) can yield much sparser solutions. Likewise, minimizing
the convex metric, the l1 norm, can effectively recover sparse solutions to
the underdetermined system Ax = b when columns of the matrix A satisfy
certain incoherence conditions [2, 3, 4].

We are interested in understanding the sparsity promoting properties
of the ratio and difference metrics theoretically and computationally in a
highly coherent (over-complete) dictionary. Over-complete dictionaries occur
in human visual and auditory systems [14, 10, 16], and in discretization
of continuum imaging problems such as radar and medical imaging when
the grid spacing is below the Rayleigh threshold [7]. Band exclusion and
local optimization techniques are introduced to image objects sufficiently
separated with respect to the coherence bands in [7].

Computationally, the two non-convex penalties can be treated as follows.
Since ‖x‖1 − ‖x‖2 is a difference of convex functions, stationary points of
the resulting nonconvex model are computed by difference of convex (DC)

programming [15]. The model with the ratio penalty ‖x‖1

‖x‖2
can be minimized

using a related gradient projection strategy. In the general dictionary case,
the exact l1 recovery of sparse solutions is studied in [5] where a main result
is that if Ax0 = f , ‖x0‖0 < 1+M−1

2 , M being an upper bound of off diagonal
entries of the Gram matrix AT A, then x0 is the unique solution given by l1
norm minimization. The columns of A are more coherent if M is larger. In
this case, l1 minimization is less effective.

The organization of the paper is as follows. In section 2, we begin with
examples of the basis pursuit problem of the form minxR(x) subject to
Ax = b to compare l1 or lp (p ∈ (0, 1)) minimization with that of the ratio
or difference of l1 and l2 norms, and with the ground truth to understand
the properties and limitations of each metric. These analytical examples
help to introduce the coherence issues in finding sparse solutions. We leave
as a future work to investigate similar phenomena in physical data sets. In
section 3, we show that mimimizers of the ratio or difference of l1 and l2
norms must be locally the sparsest feasible solution. We then formulate a
uniformity condition on a particular subset FL of the feasible solutions and
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prove the exact recovery of the sparsest solution x0 of Ax = b by mini-
mizing the ratio of l1 and l2 norms. The uniformity condition essentially
says that the ratio of the minimum and maximum of the nonzero entries
of any solution x from FL is bounded from below by a constant that de-
pends on ‖x0‖0 and ‖x‖0. Interestingly, a similar condition appears in [7]
for the band-excluded orthogonal matching pursuit method to recover the
support of the solution up to the coherence band. The ratio of the maxi-
mum and minimum over the support of a vector is referred to as dynamic
range in optical imaging [7]. For the difference of l1 and l2 norms, the ex-
act recovery condition is that the minimum of the nonzero entries of any

solution x �= x0 from FL be above
2(
√

‖x0‖0−1)

‖x‖0−1 ‖x0‖2. Our theoretical results

shed light on the sparsity promoting capability of the ratio and difference
penalties. In section 4, we show numerical examples optimizing (1.1) with
A being a coherent dictionary such that the ratio and difference of l1 and
l2 norms regularization outperform NNLS. More comparisons with l1 min-
imization for imaging data can be found in [6]. Concluding remarks are in
section 5.

2. Examples of basis pursuit in coherent dictionaries

The examples below will show a couple of situations where l1 or lp (p ∈ (0, 1))
minimization ceases to be effective. Though these examples are mathemati-
cal in nature, they help to illustrate the coherence induced issues in finding
sparse solutions. Imaging examples can be found in [7, 6] where the sparse
solutions are more complicated and not in closed analytical form.

Example 1: Let p ∈ (0, 1] and two distinct dense vectors b1, b2 ∈ Rn

(n ≥ 2). so that b = b1 + b2 is also dense; Let ‖bi‖1

‖bi‖2
be close to their upper

bound O(
√
n), i = 1, 2. a = ‖(b1, b2)‖p, A = [b1, b2, a In, a In], where In is

n×n identity matrix. Consider the linear system Ax = b, x ∈ R2+2n, which
has a 2-sparse solution:

x0 = [1, 1, 0, · · · , 0]′.

The other sparse solutions are: x1 = [0, 1, (b
1)′

a , 0]′, x2 = [1, 0, 0, (b
2)′

a ]′, x3 =

[0, 0, (b
1)′

a , (b
2)′

a ]′, the first two are at least 3-sparse, the last one is at least
4-sparse. The lp norm of xs is:

‖x0‖p = 21/p,
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while:

‖x1‖p = (1 +
‖b1‖pp
ap

)1/p ∈ (1, 21/p),

‖x2‖p = (1 +
‖b2‖pp
ap

)1/p ∈ (1, 21/p),

‖x3‖p =
‖[(b1)′, (b2)′]′‖p

a
= 1.

Thus, x0 cannot be recovered by minimizing lp norm subject to Ax = b.
There are at least three less sparse solutions with smaller lp norm than x0.

Now let p = 1, the l2 norms of x0 and x3 are:

‖x0‖2 =
√
2, ‖x3‖2 =

‖[(b1)′, (b2)′]′‖2
‖[(b1)′, (b2)′]′‖1

.

So the ratio of l1 and l2 norms are:

‖x0‖1
‖x0‖2

=
√
2,

‖x1‖1
‖x1‖2

=
‖[a′, (b1)′]′‖1
‖[a′, (b1)′]′‖2

,

‖x2‖1
‖x2‖2

=
‖[a′, (b2)′]′‖1
‖[a′, (b2)′]′‖2

,
‖x3‖1
‖x3‖2

=
‖[(b1)′, (b2)′]′‖1
‖[(b1)′, (b2)′]′‖2

∼
√
n.

We want to have ‖x1‖1

‖x1‖2
>

√
2 or:

‖[a′, (b1)′]′‖1
‖[a′, (b1)′]′‖2

=
2‖b1‖1 + ‖b2‖1√

(‖b1‖1 + ‖b2‖1)2 + ‖b1‖22
>

√
2,

or:

2‖b1‖21 > ‖b2‖21 + 2‖b1‖22.
Likewise ‖x2‖1

‖x2‖2
>

√
2 requires:

2‖b2‖21 > ‖b1‖21 + 2‖b2‖22.

The above inequalities reduce to:

‖bi‖1 >
√
2‖bi‖2, i = 1, 2,

if we assume that the first two columns of A satisfy ‖b1‖1 = ‖b2‖1, b1 �= b2. It
follows that x0 has the smallest ratio of l1 and l2 norms. So l1

l2
minimization

can recover x0 in the counterexample where l1 minimization could not.
Let us look at difference of l1 and l2 norms at p = 1.



Ratio and difference of l1 and l2 norms and sparse representation 91

‖x0‖1 − ‖x0‖2 = 2−
√
2.

‖x3‖1 − ‖x3‖2 = 1− ‖[(b1)′, (b2)′]′‖2
‖[(b1)′, (b2)′]′‖1

= 1−O(n−1/2) > 2−
√
2,

if n is large enough. However,

‖x1‖1 − ‖x1‖2 = 1 +
‖b1‖1
a

−
√

1 +
‖b1‖22
a2

.

‖x2‖1 − ‖x2‖2 = 1 +
‖b2‖1
a

−
√

1 +
‖b2‖22
a2

.

If both were above 2 −
√
2 so that xs has the least difference of l1 and l2

norms, we would have by adding the two expressions:

4− 2
√
2 ≤ 3−

∑
i=0,1

√
1 +

‖bi‖22
‖[(b1)′, (b2)′]′‖21

≤ 3−
∑
i=0,1

1,

or:

4− 2
√
2 ≈ 1.1716 ≤ 1,

which is impossible. Hence minimizing the difference of l1 and l2 norms gives
either x1 or x2, the 2nd sparsest solution, but not the sparsest solution x0
in this example. It is better than minimizing l1 which gives the 3rd sparsest
solution x3.

Since the l1
l2

penalty tends to get larger for more dense vectors, it is

plausible that x0 is recovered by minimizing l1
l2

if n is large enough. How-

ever, this cannot happen without proper conditions on b1, b2. We show a
counterexample below.

First, we note that

Ker(A) = span{[1, 0,−(b1)′

a
, 0]′, [0, 1,−(b2)′

a
, 0]′, [0, 0,−c′, c′]′}, ∀ c ∈ Rn.

Let

x4 = x0 + [1, 0,−(b1)′

a
, 0]′ − [0, 1,

(b2)′

a
, 0]′ = [2, 0,

(b2 − b1)′

a
, 0]′.

Then

‖x4‖1
‖x4‖2

≤
2 + ‖b2−b1‖1

a

2
<

‖x0‖1
‖x0‖2

=
√
2,

if
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‖b2 − b1‖1
a

< 2
√
2− 2 ≈ 0.828.

Since ‖b2−b1‖1

a ≤ ‖b2‖1+‖b1‖1

a = 1, this is not a stringent condition. Thus x4 is

a less sparse solution than x0 with smaller ratio of l1
l2
norm. Minimization of

l1
l2
does not yield x0. On the other hand, x4 contains a large peak (height 2),

and many smaller peaks ( b
1−b2

a ), resembling a perturbation of the 1-sparse
solution [2, 0, · · · , 0]′ in the case of b1 = b2.

In particular, if b2 is a small perturbation of b1, then ‖b2−b1‖1

a ≈ 0. So x4
is close to the 1-sparse vector [2, 0, · · · , 0]′ with the ratio of l1

l2
norm slightly

above 1, the least value of the ratio among all nonzero vectors. We observe

here that minx:Ax=b
‖x‖1

‖x‖2
is continuous with respect to the perturbations of

A. The minimizer goes from exact 1-sparse structure when b1 = b2 to an
approximate 1-sparse structure when b1 ≈ b2. In contrast, the l0 minimizer
x0 experiences a jump from [2, 0, 0, 0]′ to [1, 1, 0, 0]′. The discrete character
of l0 makes it non-trival to recover the least l0 solution from minimizing l1

l2
.

If we view b1 and b2 as dictionary elements in a group, then minimizing l1
l2

selects only one of them (intra sparsity). Similarly, if we view corresponding
columns (1st and (n+1)-th, 2nd and (n+2)-th, etc) of [αIn αIn] as vectors
in a group (of 2 elements), then x4 selects one member out of each group.
The examples here show that minimizing l1

l2
has the tendency of removing

redundencies or preferring intra-sparsity in a coherent and over-determined
dictionary. The l1 minimization does not do as well in terms of intra-sparsity,
using all group elements except for knocking out the b1, b2 group.

Let us look closer at the solutions in the non-negative orthant. Such
vectors are:

x = [1 + t1, 1 + t2, −(t1
b1

a
− c)′, −(t2

b2

a
+ c)′]′,

satisfying:

1 + t1 ≥ 0, 1 + t2 ≥ 0, t2
b2

a
≤ c ≤ −t1

b1

a
,

which is valid if:

(2.2) b1 < 0, t1 ∈ (0,
2

3
), b2 = (1− ε)b1, 0 < ε � 1, t2 ≈ −t1.

The kernel is an (n+2)-dimensional plane which contains a lower dimensional
affine subspace parallel to the unit l1 ball if the vectors on the plane:

v = [t1, t2,−(t1
b1

a
− c)′,−(t2

b2

a
+ c)′]′,
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Figure 1: Illustration of the advantage of minimizing l1
l2

over l1 when data
points (on x1 + x2 = 2 in the first quadrant) lie parallel to the l1 unit
ball. Minimization of l1

l2
is same as projection onto the unit l2 ball then

intersecting with the unit l1 ball to select sparse solutions. In contrast, l1
minimization cannot distinguish sparse data points.

are orthogonal to the one vector [1, 1, · · · , 1, 1]′ ∈ R2n+2, in other words,

(2.3)
∑
i=1,2

⎛
⎝1−

∑
j

bij
a

⎞
⎠ ti = 0,

which holds with essentially an (n + 1)-dimensional free parameter (t1, c),
under constraints in (2.2). If the minimal l1 ball intersects the kernel at a
point p, the line at p in the direction v lies on the l1 ball. Then l1 mini-
mization is not effective, there are infinitely many non-sparse minimizers.
An illustration in two dimensions is in Fig. 1, where all points on x1+x2 = 2
in the first quadrant are minimizers of l1 norm. Using the scale invariance
of l1

l2
, minimizing l1

l2
can be viewed as first projecting data points (feasible

vectors) onto the l2 unit ball, then intersecting with the minimal l1 ball,
which leads to sparse solutions.

Example 2: Let p ∈ (0, 1] and a dense vector b ∈ Rn (n ≥ 2), a = ‖(b, b)‖p =
21/p‖b‖p, A = [b, b, a In, a In], where In is n × n identity matrix. The linear
system Ax = 2b, x ∈ R2+2n has a 1-sparse solution:

x0 = [2, 0, · · · , 0]′.
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There is also a 2-sparse solution

x1 = [1, 1, 0, · · · , 0]′.

Some other solutions are: x2 = [1, 0, b
′

a , 0]
′, x3 = [0, 0, b

′

a ,
b′

a ]
′, Then mini-

mizing l1
l2

and l1 − l2 both give the sparsest solution x0, since both ‖x0‖1

‖x0‖2

and ‖x0‖1 − ‖x0‖2 attain their possible lower bounds 1 and 0. However, for
lp-norm minimization (p ∈ (0, 1]),

‖x0‖p = 2,

‖x1‖p = 21/p ≥ 2,

‖x2‖p = (1 +
‖b‖pp
ap

)1/p = (
3

2
)1/p ≥ 3

2
,

‖x3‖p =
‖[b′, b′]′‖p

a
= 1.

For p = 1, x0 has the largest l1 norm among these solutions. For p ∈ (0, 1],
‖x0‖p > ‖x3‖p. So lp-norm minimization fails to find the sparsest solution.

Example 3: Let A = [b1, b2, In, a In] be the same from Example 1 and
b = b1 + e1, where e1 = [1, 0, · · · , 0]′, a = 21/p‖b1‖p (p ∈ (0, 1]), b2 �= b1,
both dense. The aim is to represent data b with columns of A to have both
intra-sparsity and inter-sparsity across the groups.

The 2-sparse solutions with perfect intra and inter sparsity (at most 1
in each group and least number of groups) are:

x10 = [1, 0, (e1)′, 0]′, x20 = [1, 0, 0,
(e1)′

a
]′,

some much less sparse solutions are (good intra-sparsity, almost no inter-
sparsity):

x1 = [0, 0, (e1)′,
(b1)′

a
]′,

x2 = [0, 0, 0,
(e1 + b1)′

a
]′.

We have:

‖x10‖pp = 2 > 1 +
1

2
= ‖x1‖pp
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‖x20‖pp = 1 +
1

ap
>

1

2
+

1

ap
≥ ‖x2‖pp.

So lp minimization will miss the 2-sparse solutions.

Let p = 1, in view of:

‖x10‖1
‖x10‖2

=
√
2 ≈ 1.414,

‖x20‖1
‖x20‖2

=
1 + a−1

√
1 + a−2

≤
√
2,

‖x1‖1
‖x1‖2

=
1.5√

1 + ‖b1‖2
2

4‖b1‖2
1

≈ 1.5−,

if ‖b1‖1 � ‖b1‖2 by the assumption, l1
l2

of x10 or x20 can be smaller. If a

is large, l1
l2

minimization prefers x20 because it is a small perturbation of

a 1-sparse vector [1, 0, 0, 0]′. However, minimizing l1
l2

does not always lead

to x20 if a is small enough. We show a counterexample as below: Let x3 =

[0, 0, (b1)′, (e
1)′

a ]′, then

‖x3‖1
‖x3‖2

≤
a
2 + a−1

a−1
<

‖x20‖1
‖x20‖2

=
1 + a−1

√
1 + a−2

,

if

a < 0.908.

Notice that x3 has one large peak and many (relatively speaking) smaller
peaks, resembling a small perturbation of a 1-sparse vector if a is small
enough.

The solutions are of the form:

x = [1, 0, 0,
(e1)′

a
]′ + t1[1, 0,−(b1)′, 0]′ + t2[0, 1,−(b2)′, 0]′ + [0, 0, a c′, c′]′,

nonnegativity constraints are:

(2.4) 1 + t1 ≥ 0, t2 ≥ 0, −t1b
1 − t2b

2 + a c ≥ 0,
e1

a
+ c ≥ 0.

In particular, consider

t2 ≥ 0, c ≥ 0.
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At any point p on the plane Ax = b, we seek a direction

v = t1[1, 0,−(b1)′, 0]′ + t2[0, 1,−(b2)′, 0]′ + [0, 0, a c′, c′]′,

so that v · [1, · · · , 1] = 0, or:

t1 + t2 +
∑
j

−t1 b
1
j − t2 b

1
j + (a+ 1)cj = 0,

or:

(1−
∑
j

b1j ) t1 + (1−
∑
j

b2j )x2 + (a+ 1)
∑
j

cj = 0,

which admits nontrivial solutions satisfying (2.4) if

c = 0,
∑
j

b1j = 0,
∑
j

b2j = 0,

t1 = −t2, t2 ∈ (0, 1),

− t1b
1 − t2b

2 = t2(b
1 − b2) > 0.

So the intersection of the l1 minimal ball with the kernel is at least a line
segment, rendering l1 minimizers non-unique and most of the l1 minimizers
non-sparse.

In summary, the examples here indicate that minimizing the ratio of
l1 and l2 norms is more likely to get a sparser solution than minimizing lp
(p ∈ (0, 1)) when the column vectors of matrix A are structured or coherent.
The geometric reason is that the l1 unit ball with corners and edges tend to
hit the unit sphere on axes or coordinate planes resulting in sparse solutions.
Intersecting the l1 unit ball with another high dimensional plane may have
multiple non-sparse minimizers (as shown in Fig. 1). Minimizing the differ-
ence of l1 and l2 norms is better than minimizing lp norms, and appears
no better than minimizing the ratio of l1 and l2 norms. Computationally
though, the difference has better analytical structure for algorithm design
as we shall explore later.

3. Exact recovery theory

In this section, we show that it is possible to recover the sparsest solution
exactly by minimizing the ratio and difference of l1 and l2 norms, thereby
establishing the origin of their sparsity promoting property.
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3.1. Exact recovery of l1
l2

Suppose A ∈ Rm×n and x0 ≥ 0 ∈ Rn, wherem < n. Let b = Ax0, we exclude

the case b = 0 throughout this paper and study the following problems:

P0 : min
x≥0

‖x‖0 subject to Ax = b

Pr : min
x≥0

‖x‖1
‖x‖2

subject to Ax = b

Pd : min
x≥0

‖x‖1 − ‖x‖2 subject to Ax = b

Denote by F = {x ∈ Rn : Ax = b, x ≥ 0} the set of feasible solutions, and

let S(x) denote the support of x.

Definition 3.1. x ∈ F is called locally sparse if � y ∈ F \ {x} such that

S(y) ⊆ S(x). Denote by FL = {x ∈ F : x is locally sparse} the set of locally

sparse feasible solutions.

The following lemma says that any locally sparse solution is in essence

locally the sparsest solution.

Lemma 3.1. ∀ x ∈ FL, ∃ δx > 0 such that ∀ y ∈ F , if 0 < ‖y − x‖2 < δx,

we have S(x) ⊂ S(y).

Proof. Let y = x+ v and choose δx = mini∈S(x){xi}, then

‖v‖∞ ≤ ‖v‖2 < min
i∈S(x)

{xi}

So

yi ≥ xi − ‖v‖∞ > xi − min
i∈S(x)

{xi} ≥ 0, ∀ i ∈ S(x)

which implies

S(x) ⊆ S(y).

And S(x) �= S(y) since x ∈ FL. Then the claim follows.

The following theorem states that the solutions of Pr, Pd and P0 must

be locally sparse, thereby being at least locally the sparsest feasible solution.

Theorem 3.1. If x∗ solves Pr, Pd or P0, then x∗ ∈ FL.
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Proof. Suppose x∗ solves Pr or Pd and it is not locally sparse, then ∃ y∗ ∈
F \ {x∗} such that S(y∗) ⊆ S(x∗). Thus there exists a small enough ε > 0,
such that x∗ − εy∗ ≥ 0. Let

z∗ =
x∗ − εy∗

1− ε
≥ 0

or equivalently,

x∗ = εy∗ + (1− ε)z∗

then Az∗ = b and thus z∗ ∈ F .
By the nonnegativity of y∗ and z∗,

‖x∗‖1 = ε‖y∗‖1 + (1− ε)‖z∗‖1

Moreover, since y∗ �= x∗ both satisfying Ax = b, they are linearly inde-
pendent. So y∗ and z∗ are also linearly independent, and

‖x∗‖2 < ε‖y∗‖2 + (1− ε)‖z∗‖2

Thus
‖x∗‖1
‖x∗‖2

>
ε‖y∗‖1 + (1− ε)‖z∗‖1
ε‖y∗‖2 + (1− ε)‖z∗‖2

≥ min{‖y
∗‖1

‖y∗‖2
,
‖z∗‖1
‖z∗‖2

}

and

‖x∗‖1 − ‖x∗‖2 > ε(‖y∗‖1 − ‖y∗‖2) + (1− ε)(‖z∗‖1 − ‖z∗‖2)
≥ min{‖y∗‖1 − ‖y∗‖2, ‖z∗‖1 − ‖z∗‖2}

Contradiction.
Now suppose x∗ solves P0 and it is not in FL, then ∃ y∗ ∈ F \ {x∗} such

that S(y∗) ⊆ S(x∗). Since no nonnegative solution of Ax = b is sparser than
x∗, we have S(y∗) = S(x∗) = S. So mini∈S{x∗

i

y∗
i
} < 1 or mini∈S{ y∗

i

x∗
i
} < 1 must

be true. Without loss of generality, let mini∈S{x∗
i

y∗
i
} = x∗

k

y∗
k
= r < 1 for some

index k ∈ S. Then z∗ = 1
1−rx

∗ − r
1−ry

∗ ≥ 0 since z∗i = x∗
i−ry∗

i

1−r ≥ 0, ∀ i ∈ S.

Moreover, Az∗ = 1
1−rAx∗ − r

1−rAy∗ = 1
1−r b −

r
1−r b = b which implies

z∗ ∈ F . But S(z∗) ⊆ S and z∗k = 0, thus S(z∗) ⊂ S which contradicts with
x∗ being the solution of P0.

By Theorem 3.1, all the minimizers of Pr, Pd and P0 are contained in
FL. From now on, we no longer care about those feasible solutions outside
FL.
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For any x ≥ 0 ∈ Rn, suppose (S(x), Z(x)) is a partition of the index set
of x, i.e., {1, 2, · · · , n}, where S(x) = {i : xi > 0}, Z(x) = {i : xi = 0}.
Definition 3.2. The uniformity of x, U(x), is the ratio between the smallest
nonzero entry and the largest one, i.e.

0 < U(x) :=
mini∈S(x) xi
maxi∈S(x) xi

≤ 1.

Theorem 3.2. If x0 uniquely solves P0 and ‖x0‖0 = s, if U(x) >√
‖x‖0−

√
‖x‖0−s√

‖x‖0+
√

‖x‖0−s
, ∀x ∈ FL \ {x0}, then x0 also uniquely solves Pr. In partic-

ular, if any feasible solution x is a binary vector with all entries either 0 or

1, then the above inequality holds since U(x) = 1 >

√
‖x‖0−

√
‖x‖0−s√

‖x‖0+
√

‖x‖0−s
. Clearly

P0 and Pr are equivalent as we note that ‖x‖1

‖x‖2
=

√
‖x‖0.

Since ‖x‖1

‖x‖2
is scale-invariant, ∀x ≥ 0 ∈ Rn, without loss of generality, we

assume maxi∈S(x) xi = 1 and 0 < mini∈S(x) xi = U(x) ≤ 1. By the Cauchy-

Schwarz inequality, ‖x‖1

‖x‖2
≤

√
‖x‖0. Starting with the following lemma, we

first estimate the lower bound of ‖x‖1

‖x‖2
.

Lemma 3.2. Let x = [x1, · · · , xj−1, xj , xj+1, · · · , xn]′, where U(x) < xj <
1.
Let x− = [x1, · · · , xj−1, U(x), xj+1, · · · , xn]′ and x+ = [x1, · · · , xj−1, 1, xj+1,
· · · , xn]′, then we have

‖x‖1
‖x‖2

> min{‖x−‖1‖x−‖2
,
‖x+‖1
‖x+‖2

}

Proof. Since U(x) < xj < 1, ∃λ > 0, such that xj = λU(x) + (1− λ)1 and
x = λx−+(1−λ)x+. Given that x− and x+ are nonnegative but not linearly
dependent, we have

‖x‖1 = ‖λx− + (1− λ)x+‖1 = λ‖x−‖1 + (1− λ)‖x+‖1

and

‖x‖2 = ‖λx− + (1− λ)x+‖2 < λ‖x−‖2 + (1− λ)‖x+‖2
So

‖x‖1
‖x‖2

>
λ‖x−‖1 + (1− λ)‖x+‖1
λ‖x−‖2 + (1− λ)‖x+‖2

≥ min{‖x−‖1‖x−‖2
,
‖x+‖1
‖x+‖2

}
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By the above lemma, in order for x to obtain its minimum of ‖x‖1

‖x‖2
, every

nonzero entry in x should be either ‘U(x)’ or ‘1’. Then we have the following
lemma:

Lemma 3.3. Let U(x) = U . Then

2
√
U

1 + U

√
‖x‖0 ≤

‖x‖1
‖x‖2

≤
√

‖x‖0

Proof. To estimate the lower bound, it is reasonable to assume the number
of ‘1’ in x is l and the number of ‘U ’ is ‖x‖0 − l. Then

g(l) :=
‖x‖1
‖x‖2

=
(1− U)l + U‖x‖0√
(1− U2)l + U2‖x‖0

Set g
′
(l) = 0, we have l = U

1+U ‖x‖0, and the inequality of lower bound
follows.

We now prove Theorem 3.2:

Proof. Suppose x0 is the unique solution of P0 with a sparsity of s. First of
all, by Theorem 3.1, the minimizer of Pr must be in FL. If any other solution

x ∈ FL satisfies U(x) >

√
‖x‖0−

√
‖x‖0−s√

‖x‖0+
√

‖x‖0−s
, by solving the inequality for s, we

have the following:

√
s <

2
√

U(x)

1 + U(x)

√
‖x‖0.

By Lemma 3.3,

‖x0‖1
‖x0‖2

≤
√
s <

2
√

U(x)

1 + U(x)

√
‖x‖0 ≤

‖x‖1
‖x‖2

Hence solving Pr will yield the sparest solution x0.

3.2. Exact recovery of l1 − l2

In this subsection, we show similar exact recovery results for the difference
l1 and l2 norms.

Lemma 3.4. Suppose x ≥ 0 ∈ Rn, then

‖x‖0 − 1

2
min
i∈S(x)

{xi} ≤ ‖x‖1 − ‖x‖2 ≤ (
√

‖x‖0 − 1)‖x‖2
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Proof. It suffices to show the lower bound given that the upper bound is
directly by the Cauchy-Schwarz inequality.

‖x‖1 − ‖x‖2 =
‖x‖21 − ‖x‖22
‖x‖1 + ‖x‖2

=

∑n
i �=j xixj

‖x‖1 + ‖x‖2

=

∑
i �=j∈S(x) xixj

‖x‖1 + ‖x‖2

≥
(‖x‖0 − 1)‖x‖1mini∈S(x){xi}

‖x‖1 + ‖x‖2

=
‖x‖0 − 1

1 + ‖x‖2

‖x‖1

min
i∈S(x)

{xi}

≥ ‖x‖0 − 1

2
min
i∈S(x)

{xi}

Theorem 3.3. If x0 uniquely solves P0 with a sparsity of s, and if

mini∈S(x){xi} > 2(
√
s−1)

‖x‖0−1 ‖x0‖2, ∀x ∈ FL \ {x0}, then x0 also uniquely

solves Pd.

Proof. Suppose mini∈S(x){xi} > 2(
√
s−1)

‖x‖0−1 ‖x0‖2, ∀x ∈ FL \ {x0}, then by
Lemma 3.4,

‖x0‖1 − ‖x0‖2 ≤ (
√
s− 1)‖x0‖2

<
‖x‖0 − 1

2
min
i∈S(x)

{xi}

≤ ‖x‖1 − ‖x‖2, ∀x ∈ FL \ {x0}

Moreover, the solution of Pd is contained in FL by Theorem 3.1. Hence x0
is the unique solution of Pd.

4. Numerical approach

In this section, we consider the numerical aspects of minimizing l1/l2 and
l1 − l2 penalties for finding sparse solutions. The setting where it is most
effective computationally is in the unconstrained optimization model:

(4.5) min
x∈X

F (x) :=
1

2
‖Ax− b‖2 +R(x),
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where R(x) = γ ‖x‖1

‖x‖2
or R(x) = γ(‖x‖1 − ‖x‖2), and X = {x ∈ RN : xi ≥

0,
∑

i xi ≥ r > 0}. Due to the nonnegativity constraint, R(x) simplifies to

γ 〈1,x〉
‖x‖2

, where 1 denotes the constant vector in RN consisting of all ones. The

model (4.5) allows some measurement error in representing b in terms of the
coherent dictionary, and helps to regularize the ill-conditioning of A.

Under the nonnegative constraints, it is reasonable to assume that F (x)
is coercive on X in the sense that for any x0 ∈ X the set {x ∈ X : F (x) ≤
F (x0)} is bounded. This is true if there are no nonnegative vectors in ker (A),
which follows for example if A has only nonnegative elements and no columns
that are identically zero. Let us consider the more challenging ratio penalty
first. Since R is differentiable on X, it is natural to use a gradient projection
approach to solve (4.5). We will use the scaled gradient projection method
proposed for a similar class of problems in [6]. The approach is based on the
estimate

F (y)− F (x) ≤ (y − x)T ((λR − 1

2
λr)I − C)(y − x)

+ (y − x)T (
1

2
ATA+ C)(y − x) + (y − x)T∇F (x),

where λr and λR are lower and upper bounds respectively on the eigenvalues
of ∇2R(x) for x ∈ X and C is any matrix. This leads naturally to the
strategy of iterating

(4.6) xn+1 = argmin
x∈X

(x− xn)T (
1

2
ATA+ cnI)(x− xn) + (x− xn)T∇F (xn).

To ensure convergence and a monotonically decreasing objective F (xn), it
suffices to choose cn > 0 such that there is a sufficient decrease in F accord-
ing to

F (xn+1)− F (xn) ≤ σ[(xn+1 − xn)T (
1

2
ATA+ cnI)(xn+1 − xn)(4.7)

+ (xn+1 − xn)T∇F (xn)]

for some σ ∈ (0, 1]. To improve the method’s overall efficiency, cn can be
adjusted every iteration to prefer smaller values while still ensuring a suf-
ficient decrease in F . The complete algorithm from [6] is shown below for
reader’s convenience.

Algorithm 1. A Scaled Gradient Projection Method for Solving (4.5) with

R(x) = γ ‖x‖1

‖x‖2
.
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Define x0 ∈ X, c0 > 0, σ ∈ (0, 1], ε1 > 0, ρ > 0, ξ1 > 1, ξ2 > 1 and set n = 0.

while n = 0 or ‖xn − xn−1‖∞ > ε1

y = argmin
x∈X

(x− xn)T (
1

2
ATA+ cnI)(x− xn) + (x− xn)T∇F (xn)

if F (y)−F (xn)>σ

[
(y−xn)T (

1

2
ATA+ cnI)(y−xn)+ (y−xn)T∇F (xn)

]
cn = ξ2cn

else

xn+1 = y

cn+1 =

{
cn
ξ1

if smallest eigenvalue of cn
ξ1
I + 1

2A
TA is greater than ρ

cn otherwise.

n = n+ 1

end if

end while

Any limit point x∗ of the sequence of iterates {xn} satisfies
(y − x∗)T∇F (x∗) ≥ 0 for all y ∈ X and is therefore a stationary point
of (4.5) [6]. Note that every iteration requires solving the convex problem

min
x∈X

(x− xn)T (
1

2
ATA+ cnI)(x− xn) + (x− xn)T∇F (xn).

As in [6] we can solve this using the Alternating Direction Method of Multi-
pliers (ADMM) [8, 9]. The explicit iterations are described in the following
algorithm.

Algorithm 2. ADMM for solving convex subproblem.

Define δ > 0, ε2 > 0, v0 and p0 arbitrarily and let k = 0.

while k = 0 or ‖‖v
k − vk−1‖

‖vk − xn‖ > ε2 or
‖vk − uk‖
‖vk − xn‖ > ε2

uk+1 = xn + (ATA+ (2cn + δ)I)−1
(
δ(vk − xn)− pk −∇F (xn)

)
vk+1 = ΠX

(
uk+1 +

pk

δ

)
pk+1 = pk + δ(uk+1 − vk+1)

k = k + 1

end while

xn+1 = vk.
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Figure 2: Estimated x using non-negative least squares.

Here, ΠX denotes the orthogonal projection onto X. Note that if AAT is
much smaller in size than ATA we can use the Woodbury identity to rewrite
the inverse that appears in Algorithm 2.

As numerical experiments we apply these algorithms to Examples 2 and
3, with both of the A matrices defined using values of n = 100, p = 0.95
and b a vector of n random numbers uniformly distributed on [0, 1]. The
coherence and ill-conditioning of these matrices make these examples nu-
merically challenging. Non-negative least squares, often a good method for
finding sparse nonnegative solutions when they exist [1], fails to find sparse
solutions for these examples as shown in Figure 2. Solving the l1

l2
model (4.5)

on the other hand, while it does not identify the sparsest solutions, does find
solutions with much better sparsity properties. The results for Examples 2
and 3 are shown in Figure 3. The model parameters used were γ = 0.1 and
r = 0.05. For the algorithm parameters, δ = 1, c0 = 10−9, ξ1 = 2, ξ2 = 10
and σ = 0.01. The most important of the algorithm parameters is δ, which
affects the efficiency of ADMM on the convex subproblem. The tolerances
for the stopping conditions were set to ε1 = 10−8 and ε2 = 10−4.

For Example 2, Algorithm 1 recovered the 2-sparse solution [1, 1, 0, · · · ,
0]′. For Example 3 it approximately recovered [0, 0, (e1)′, (b

1)′

a ]′, which has
the property that one coefficient is much larger than all the others.

These results are initialization dependent. Here we initialized x0 to be
a constant vector, which is partly to blame for finding a 2-sparse solution
to Example 2 that is a stationary point but not a local minimum. Instead,
consider initializing x0 to be a small perturbation of a constant vector, for
instance x0i = r(100 + 0.01ηi) with ηi sampled from a normal distribution
with mean zero and standard deviation 1. With such an initialization, we
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Figure 3: Estimated x using Algorithm 1 on (4.5).

are far more likely to find one of the 1-sparse solutions [2, 0, 0, · · · , 0]′ or
[0, 2, 0, · · · , 0]′.

Another important numerical consideration is the parameter r that acts
as a lower bound on the l1 norms of the possible solutions. Because of the
way the matrices A are scaled for Examples 2 and 3, the sparsest solutions
also have larger l1 norms. In this case, larger values of r promote sparsity.
Choosing r = 0.05 is still much less than the norms of the NNLS solutions,
so it is not the case here that those potential solutions were eliminated by
the choice of constraint set.

Minimizing the difference of l1 and l2 norms is easier than minimizing
the ratio because the objective becomes a difference of convex functions.
In particular we can set cn = c for any c > 0 in the iteration (4.6) and
be guaranteed to satisfy the sufficient decrease inequality (4.7) with σ = 1.
Moreover, since the difference penalty is better behaved at the origin, we
could consider simplifying the constraint set X and letting it be the entire
nonnegative orthant. However, we choose to leave X as previously defined
since it may be advantageous to disallow solutions whose l1 norms are below
some threshold r. Using a constant c, Algorithm 1 can be simplified to the
following.

Algorithm 3. SGP Method for Solving (4.5) with R(x) = γ(||x||1− ||x||2).
Define x0 ∈ X, c > 0, ε1 > 0 and set n = 0.

while n = 0 or ‖xn − xn−1‖∞ > ε1

xn+1 = argmin
x∈X

(x− xn)T (
1

2
ATA+ cI)(x− xn) + (x− xn)T∇F (xn)

n = n+ 1

end while
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Figure 4: Estimated x using Algorithm 3 on (4.5).

Algorithm 2 can again be used to solve the convex subproblem in Algo-
rithm 3.

We repeat the experiments on Examples 2 and 3 using Algorithm 3 to
numerically compare how well the l1− l2 penalty is able to promote sparsity.
We first attempt to use the same parameters as before, setting γ = 0.1,
r = 0.05, δ = 1 and c = 10−9. We again set the tolerances for the stopping
conditions to be ε1 = 10−8 for the outer iterations and ε2 = 10−4 for the
inner iterations. Unfortunately, with these parameters l1 − l2 minimization
does not yield sparse solutions for either Example 2 or 3. Two approaches
to improve sparsity are to increase γ or to increase r. Using large values of γ
does yield sparse vectors, but they are highly sensitive to the initialization
and are often not close to the correct sparse solutions. On the other hand, if
we keep all the parameters the same but increase r to r = 0.5, then we are
able to get the sparse solutions shown in Figure 4, which are similar to those
generated by Algorithm 1. For Example 2, the l1 norm of the NNLS solution
is approximately 0.76, so it is still in our constraint set. For Example 3,
however, the l1 norm of the NNLS solution is approximately 0.39, which
falls outside our constraint set when we set r = 0.5. So the sparse result for
Example 3 shown in Figure 4 is special to this problem and probably has
more to do with the constraint set than it does with l1 − l2 minimization.
But for Example 2, l1− l2 minimization did help find a good sparse solution.

5. Discussion and conclusion

We studied properties of the ratio and difference of l1 and l2 norms in finding
sparse solutions from a representation with coherent and redundant dictio-
naries. We presented an exact recovery theory and showed both anlaytical
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and numerical examples. In future work, we plan to investigate further the
mathematical theory and computational performance of the related algo-
rithms based on these sparsity promoting measures, also apply them to
data in applications. A work along this line is [6].
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