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The embedding of the equations of polyconvex elastodynamics to
an augmented symmetric hyperbolic system provides in conjunc-
tion with the relative entropy method a robust stability framework
for approximate solutions [18]. We devise here a model of stress re-
laxation motivated by the format of the enlargement process which
formally approximates the equations of polyconvex elastodynam-
ics. The model is endowed with an entropy function which is not
convex but rather of polyconvex type. Using the relative entropy
we prove a stability estimate and convergence of the stress relax-
ation model to polyconvex elastodynamics in the smooth regime.
As an application, we show that models of pressure relaxation for
real gases in Eulerian coordinates fit into the proposed framework.
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1. Introduction

The mechanical motion of a continuous medium with nonlinear elastic re-
sponse is described by the system of partial differential equations

(1.1)
∂2y

∂t2
= ∇ · T (∇y)

where y : R3 × R
+ → R

3 describes the motion, T is the Piola–Kirchhoff
stress tensor, v = ∂ty is the velocity and F = ∇y the deformation gradient.
Motivated by the requirements imposed on the theory of thermoelasticity
from consistency with the Clausius-Duhem inequality of thermodynamics,
one often imposes the assumption of hyperelasticity, i.e. that T is expressed
as a gradient T (F ) = ∂W

∂F (F ) of the stored energy function W : Mat3×3 →
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[0,∞). The principle of material frame indifference dictates that W remains
invariant under rotations

W (OF ) = W (F ) for all orthogonal matrices O ∈ O(3).

Convexity of the stored energy W is too restrictive and even incompati-
ble with certain physical requirements: First, it conflicts with frame indiffer-
ence in conjunction with the requirement that the energy increase without
bound as detF → 0+. Second, convexity of the energy together with the ax-
iom of frame indifference impose restrictions on the induced Cauchy stresses
that rule out certain naturally occurring states of stress (e.g. [8, Sec 8], [6,
Sec 4.8]). As a result, it has been replaced in the theory of elastostatics by
various weaker notions such as quasi-convexity, rank-1 convexity or poly-
convexity, see [1] or [2] for a recent survey. Here, we adopt the assumption
of polyconvexity which postulates that

W (F ) = g(F, cof F, detF ) ,

where g is a strictly convex function of Φ(F ) = (F, cof F, detF ), and encom-
passes various interesting models (e.g. [6]).

The system (1.1) may be recast as a system of conservation laws, for the
velocity v = ∂ty and the deformation gradient F = ∇y, in the form

(1.2)
∂tFiα = ∂αvi

∂tvi = ∂αTiα(F ) ,

i, α = 1, . . . , 3. The equivalence holds for solutions (v, F ) with F = ∇y, i.e.
subject to the set of differential constraints

(1.3) ∂βFiα − ∂αFiβ = 0 .

Equation (1.3) is an involution: if it holds initially it is propagated by (1.2)1
to hold for all times. The system (1.2) is endowed with an additional con-
servation law

(1.4) ∂t(
1

2
v2 +W (F ))− ∂α(viTiα(F )) = 0

manifesting the conservation of mechanical energy. When W is convex the
“entropy” E = 1

2v
2+W (F ) is a convex function. Convexity of the entropy is

known to provide a stabilizing mechanism for thermomechanical processes,
and entropy inequalities for convex entropies have been employed in the
theory of hyperbolic conservation laws as an admissibility criterion for weak
solutions [19] and provide powerful stability frameworks for approximations
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of classical solutions [11], [16]. Such stability is attained via the relative
entropy method and applies in particular to viscosity or even relaxation
approximations of the system (1.2), [18], [13, Ch V].

By contrast, when W is not convex the entropy E = 1
2v

2+W (F ) is also
non-convex, what induces an array of questions regarding the stability of
the model within its various approximating theories. One should distinguish
between models where one tries to model inherently unstable phenomena
(like for example phase transitions) and models where one expects stable
response but where the invariance under rotations imposes degeneracies (like
the problem of elasticity). Our objective is to contribute to a program [20,
14, 18] of understanding such issues and to suggest remedies especially as it
pertains to the stable approximation of elastodynamics by stress relaxation
theories.

Relaxation approximations encompass many physical models and have
proved useful in designing efficient algorithms for systems of conservation
laws (e.g. [10, 3, 5]) while convexity of the entropy is known to provide
a stabilizing effect for general relaxation approximations (e.g. [7], [25]). A
natural relaxation approximation of (1.2) is given by the stress relaxation
theory

(1.5)

∂tFiα = ∂αvi

∂tvi = ∂αSiα

∂t(Siα − fiα(F )) = −1

ε
(Siα − Tiα(F )).

This model may be visualized within the framework of viscoelasticity with
memory

S = f(F ) +

∫ t

−∞

1

ε
e−

1

ε
(t−τ)h(F (·, τ)) dτ

with the equilibrium stress T (F ) decomposed into an elastic and viscoelas-
tic contribution, T (F ) = f(F ) + h(F ), where f = ∂WI

∂F and T = ∂W
∂F , and a

kernel exhibiting a single relaxation time ε. It belongs to the class of ther-
momechanical theories with internal variables which have been extensively
studied in the mechanics literature e.g. [9, 17, 23, 24].

The approximation (1.5) is consistent with the second law of thermo-
dynamics, provided the potential of the instantaneous elastic response WI

dominates the potential of the equilibrium response W . When W is convex
the relaxation theory has a convex entropy and a relative entropy calcula-
tion indicates that (1.5) stably approximates (1.2) [18]. On the other hand,
for polyconvex W , the consistency with thermodynamics is still attained
but the entropy of the relaxation system loses convexity and the stability
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of the approximating system is questionable. Convexity of the entropy is a
dictum of stability for relaxation approximations; at the same time it is not
a consequence of thermodynamical consistency of relaxation theories with
the Clausius-Duhem inequality [23, 18]. As convexity is largely incompati-
ble with material frame indifference, the effect of adopting weaker notions of
convexity on the stability of thermomechanical processes needs to be further
understood.

Our objective is to propose a stable relaxation approximation scheme for
the equations of polyconvex elasticity. We will be guided by the embedding
of polyconvex elasticity to an augmented strictly hyperbolic system: Due to
nonlinear transport identities of the null-Lagrangians, the system (1.2) with
polyconvex stored energy can be embedded into an augmented symmetric
hyperbolic system

(1.6)

∂tvi = ∂α

(
∂g

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)
∂tΞ

A = ∂α

(
∂ΦA

∂Fiα
(F )vi

)
and be visualized as constrained evolution thereof (see [20, 14] and sec-
tion 2 for an outline). The augmented system admits the convex entropy
η = 1

2 |v|2+g(Ξ) and is symmetrizable. The idea of symmetrizable extensions
of (1.2) has important implications on the equations of polyconvex elasticity,
providing stability frameworks between entropy weak and smooth solutions
[18], [13, Ch V] or even between entropic measure-valued and smooth solu-
tions [15]. The idea of enlarging the number of variables and extending to
symmetrizable hyperbolic systems has been fruitful in other contexts like for
nonlinear models of electromagnetism [4, 21] or for the isometric embedding
problem in geometry [22].

In the sequel, we consider the stress relaxation system

(1.7)

∂tvi − ∂α

(
TA ∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

∂t

(
TA − ∂σI

∂ΞA
(Φ(F ))

)
= −1

ε

(
TA − ∂σE

∂ΞA
(Φ(F ))

)
∂βFiα − ∂αFiβ = 0 .

The format of (1.7) is motivated by an attempt to transfer the geometric
structure of the limit to the approximating relaxation system. Note that
(1.7) formally approximates as ε → 0 the equations of polyconvex elas-
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todynamics and retains the property of embedding into to an augmented
relaxation system (see (3.6)) with the latter endowed with an entropy dis-
sipation inequality for a convex entropy. The reduced entropy inherited by
(1.7) is of the form

E =
1

2
|v|2 +Ψ(Φ(F ), τ)

with Ψ(Ξ, τ) a convex function, Φ(F ) = (F, cof F, detF ), and thus E is of
polyconvex type. We prove using a relative entropy computation and the
null-Lagrangian structure that this theory approximates in a stable way
smooth solutions of (1.2) with polyconvex stored energy. Our analysis indi-
cates that it is possible to stabilize a relaxation model via a globally defined,
polyconvex entropy.

The system (1.7) appears unconventional as it mixes geometric and me-
chanical properties. Nevertheless, it contains a very interesting example.
When the equations of isentropic gas dynamics in Eulerian coordinates are
adapted to this model, and after performing the proper transformations from
Eulerian to Lagrangean coordinates, one achieves a model of relaxation of
pressures (see (5.19)) with an instantaneous and an equilibrium pressure
response. The latter is endowed with a globally defined, dissipative, convex
entropy. Models of pressure relaxation have been considered before in [9, 23].
The novelty of the present one is the existence of a global, convex entropy.
This is in a similar spirit (but a different model) as the model of internal
energy relaxation for gas dynamics pursued in [10].

The article is organized as follows. In Section 2 we present the embedding
of (1.2) into the augmented system (1.6) and define the relative entropy. In
section 3 we state the augmented relaxation system (3.6), show that it is
endowed with a convex entropy, and exhibit the inherited relative entropy
calculation (3.24) for the system (1.7). This culminates into the stability and
convergence Theorem 4.1 between solutions of the relaxation model (1.7) and
the polyconvex elastodynamics system (1.2). As an application of the theory,
in section 5, we develop an example of pressure relaxation that converges
to the equations of isentropic gas dynamics in Eulerian coordinates and is
endowed with a convex entropy function.

The results of sections 3 and 4 are taken from an earlier unpublished
version of this manuscript [26].

2. The symmetrizable extension of polyconvex
elastodynamics

The system of elastodynamics (1.1) is expressed in the form of a system
of conservation laws (1.2), (1.3). As already noted, the equivalence of the
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two formulations holds for functions F that are gradients, but as the rela-
tion F = ∇y propagates from the initial data, relation (1.3) is viewed as
a constraint on the initial data and is usually omitted. We work under the
framework of polyconvex hyperelasticity: the Piola-Kirchoff stress is derived

from a potential T (F ) = ∂W (F )
∂F and the stored energy W : Mat3×3 → [0,∞)

factorizes as a function of the minors of F ,

(2.1) W (F ) =
(
g ◦ Φ

)
(F ) , where Φ(F ) = (F, cof F, detF ) ,

with g : Mat3×3 ×Mat3×3 × R → R convex. The cofactor matrix cof F and
the determinant detF are

(cof F )iα =
1

2
εijkεαβγFjβFkγ ,

detF =
1

6
εijkεαβγFiαFjβFkγ =

1

3
(cof F )iαFiα .

We review a symmetrizable extension of polyconvex elastodynamics [14],
based on certain kinematic identities on detF and cof F from [20]. The
components of Φ(F ) are null Lagrangians and satisfy the identities

∂

∂xα

(
∂ΦA

∂Fiα
(∇y)

)
≡ 0

for any smooth map y(x, t). Equivalently, this is expressed as

(2.2) ∂α

(
∂ΦA

∂Fiα
(F )

)
= 0 , ∀F with ∂βFiα − ∂αFiβ = 0 .

The kinematic compatibility equation (1.2)1 implies

(2.3) ∂tΦ
A(F )− ∂α

(
vi
∂ΦA

∂Fiα
(F )

)
= 0 .

Strictly speaking (2.3) do not form what is called in the theory of conser-
vation laws entropy – entropy flux pairs as they hold only for F that are
gradients, i.e. ∀F with ∂βFiα − ∂αFiβ = 0.

This motivates to embed (1.2), (2.3) into the system of conservation laws

(2.4)

∂tvi = ∂α

(
∂g

∂ΞA
(Ξ)

∂ΦA

∂Fiα
(F )

)
∂tΞ

A = ∂α

(
∂ΦA

∂Fiα
(F )vi

)
.
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Note that Ξ = (F,Z,w) takes values in Mat3×3 × Mat3×3 × R 	 R
19 and

is treated as a new dependent variable. The extension has the following
properties:

(i) If F (·, 0) is a gradient then F (·, t) remains a gradient ∀t.
(ii) If Ξ(·, 0) = Φ(F (·, 0)) with F (·, 0) = ∇y0, then Ξ(·, t) = Φ(F (·, t))

where F (·, t) = ∇y(·, t). In other words, the system of elastodynamics
can be visualized as constrained evolution of (2.4).

(iii) The enlarged system admits a strictly convex entropy

η(v,Ξ) =
1

2
|v|2 + g(Ξ)

and is thus symmetrizable (along solutions that are gradients).
(iv) The system is endowed with a relative entropy calculation, detailed

below.

Property (iii) is based on the null-Lagrangian structure and η is not an
entropy in the usual sense of the theory of conservation laws. Rather, the
identity

(2.5) ∂t

[
1

2
|v|2 + g(Ξ)

]
− ∂α

⎡⎣∑
i,A

vi
∂g(Ξ)

∂ΞA

∂ΦA(F )

∂Fiα

⎤⎦ = 0

holds for F ’s that are gradients.
Property (iv) pertains to the following relative energy calculation [18],

[13, Ch V]. Let y be an entropic weak solution satisfying the weak form of
(1.2), (1.3) and the weak form of the entropy inequality

∂t

[
1

2
|v|2 + g(Φ(F ))

]
− ∂α

⎡⎣∑
i,A

vi
∂g(Φ(F ))

∂ΞA

∂ΦA(F )

∂Fiα

⎤⎦ ≤ 0 in D′.

Then provided F = ∇y enjoys sufficient integrability properties, F also
satisfies the weak form of (2.3). As a result (v,Ξ) with Ξ = Φ(F ) is a weak
solution of (2.4) which is entropic in the sense that

∂t

[
1

2
|v|2 + g(Ξ)

]
− ∂α

⎡⎣∑
i,A

vi
∂g(Ξ)

∂ΞA

∂ΦA(F )

∂Fiα

⎤⎦ ≤ 0 in D′.

Let ŷ be a smooth solution of (1.1). Then (v̂, F̂ ) satisfy (1.2), (1.3) and the
augmented function (v̂, Ξ̂) with Ξ̂ = Φ(F̂ ) satisfies the energy conservation
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(2.5). Then, the two solutions (v,Φ(F )) and (v̂,Φ(F̂ )) can be compared via
the relative energy formula

(2.6) ∂t

(
η(v,Φ(F ) | v̂,Φ(F̂ ))

)
−∇ ·

(
q(v,Φ(F ) | v̂,Φ(F̂ ))

)
≤ Q ,

where

η(v,Ξ | v̂, Ξ̂) := 1

2
|v − v̂|2 + g(Ξ)− g(Ξ̂)− ∂g(Ξ̂)

∂ΞA
(ΞA − Ξ̂A) ,

qα(v,Ξ | v̂, Ξ̂) :=
(
∂g(Ξ)

∂ΞA
− ∂g(Ξ̂)

∂ΞA

)
(vi − v̂i)

∂ΦA(F )

∂Fiα
, α = 1, 2, 3 ,

and Q is a quadratic error term of the form

Q :=
[ ∂2g

∂ΞA∂ΞB
(Φ(F̂ ))

]
∂α(Φ

B(F̂ ))

(
∂ΦA(F )

∂Fiα
− ∂ΦA(F̂ )

∂Fiα

)
(vi − v̂i)

(2.7)

+ (∂αv̂i)

(
∂g(Φ(F ))

∂ΞA
− ∂g(Φ(F̂ ))

∂ΞA

)(
∂ΦA(F )

∂Fiα
− ∂ΦA(F̂ )

∂Fiα

)

+ (∂αv̂i)
(∂g(Ξ)

∂ΞA
− ∂g(Ξ̂)

∂ΞA
− ∂2g(Ξ̂)

∂ΞA∂ΞB
(ΞB − Ξ̂B)

)∣∣∣∣∣
Ξ=Φ(F ), ̂Ξ=Φ( ̂F )

∂ΦA(F̂ )

∂Fiα
.

Details of the lengthy computation can be found in [18] and use in a sub-
stantial way the null-Lagrangian identity (2.2). There is also available an
analogous formula for comparing entropic (or dissipative) measure-valued
solutions to smooth solutions of (1.2), see [15].

3. A relaxation model for polyconvex elastodynamics

We next consider the stress relaxation model

(3.1)

∂tvi − ∂α

(
TA ∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0

∂t

(
TA − ∂σI

∂ΞA
(Φ(F ))

)
= −1

ε

(
TA − ∂σE

∂ΞA
(Φ(F ))

)
∂βFiα − ∂αFiβ = 0 ,
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and wish to compare it to the equations of elastodynamics

(3.2)
∂tvi − ∂α

(
∂σE
∂ΞA

(Φ(F ))
∂ΦA

∂Fiα

)
= 0

∂tFiα − ∂αvi = 0 .

The stress in the model (3.2) satisfies

S∞ =
∂

∂F
σE(Φ(F ))

and thus, when σE is convex, the model (3.2) corresponds to polyconvex
elasticity.

The model (3.1) corresponds to a stress relaxation theory where the
stress is decomposed into an instantaneous and a viscoelastic part

(3.3) S = TA∂ΦA

∂F
=

∂(σI ◦ Φ)
∂F

+ τA
∂ΦA

∂F

and where the instantaneous elasticity is derived from a polyconvex potential
σI(Φ(F )) while the viscoelastic part is determined by internal variables τA

evolving according to the model

(3.4) ∂tτ
A = −1

ε

(
τA − ∂(σE − σI)

∂ΞA
(Φ(F ))

)
.

Note that when expressed in terms of the motion y the model (3.1) takes
the form

(3.5)

∂2y

∂t2
= ∇ ·

(∂(σI ◦ Φ)
∂F

(∇y) + τA
∂ΦA

∂F
(∇y)

)
∂τA

∂t
= −1

ε

(
τA − ∂(σE − σI)

∂ΞA
(Φ(∇y))

)
Of course it may recast in the form of a theory with memory by integrat-
ing (3.4). We will see that the model (3.1) has very interesting structural
properties.

3.1. The augmented relaxation system

The format of the stress relaxation model (3.1) is motivated (and was guided)
by the enlargement structure of the polyconvex elastodynamics system (3.2)
described in section 2.

Indeed, (3.1) can be embedded into the augmented relaxation system
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(3.6)

∂tvi − ∂α

( ∂ΦA

∂Fiα
TA
)
= 0

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

∂t

(
TA − ∂σI

∂ΞA
(Ξ)
)
= −1

ε

(
TA − ∂σE

∂ΞA
(Ξ)
)

The stress function in the model (3.6) reads:

(3.7) Siα = TA ∂ΦA

∂Fiα
.

Note that as ε → 0 the stress Siα formally approximates the limiting stress

Siα,∞ = TA(Ξ)
∣∣∣
eq

∂ΦA

∂Fiα
=

∂σE
∂ΞA

(Ξ)
∂ΦA

∂Fiα

and thus (3.6) will approximate the extended elastodynamics system

(3.8)

∂tvi − ∂α

(∂σE
∂ΞA

(Ξ)
∂ΦA

∂Fiα

)
= 0

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

Observe also that solutions of (3.1) satisfy the kinematic constraints (2.3)
and thus, for a polyconvex stored energy, the relaxation system (3.1) en-
joys the same relation with the system (3.6) as the equations of polyconvex
elastodynamics (1.2) have with the system (2.4).

Next, we develop the Chapman-Enskog expansion for the relaxation limit
from (3.6) to (3.8). Introduce the expansion for the internal variable TA

TA,ε = TA
0 + εTA

1 +O(ε2)

and, accordingly,

Sε
iα = TA

0

∂ΦA

∂Fiα
+ εTA

1

∂ΦA

∂Fiα
+O(ε2)

to (3.6) in order to obtain

TA
0 =

∂σE
∂ΞA

(Ξ)

∂t

(∂σE
∂ΞA

(Ξ)− ∂σI
∂ΞA

(Ξ)
)
= −TA

1 +O(ε)
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The effective momentum equation becomes

∂tvi − ∂α

(
TA
0

∂ΦA

∂Fiα

)
= ε∂α

(
TA
1

∂ΦA

∂Fiα

)
+O(ε2)

= ε∂α(D
jβ
iα∂βvj) +O(ε2)

where

(3.9) Djβ
iα :=

∂2(σI − σE)

∂ΞA∂ΞB

∂ΦA

∂Fiα

∂ΦB

∂Fjβ

In summary, the Chapman-Enskog expansion shows that as ε → 0 the re-
laxation process is approximated by the hyperbolic-parabolic system

∂tΞ
A − ∂α

( ∂ΦA

∂Fiα
vi

)
= 0

∂tvi − ∂α

(
TA
0

∂ΦA

∂Fiα

)
= ε∂α(D

jβ
iα∂βvj)

Note that for Σ := σI − σE convex the diffusivity tensor D satisfies the
ellipticity condition Djβ

iαMiαMjβ ≥ 0 , ∀M ∈ R
3×3 . The latter is stronger

than the Legendre-Hadamard condition, and is achieved when both the in-
stantaneous potential σI ◦Φ and the equilibrium potential σE ◦Φ are poly-
convex.

3.2. Entropy of the augmented relaxation system

We next construct an entropy for the augmented relaxation system: If a
function Ψ(Ξ, τ) can be constructed defined ∀ (Ξ, τ) and satisfying

(3.10)

∂Ψ

∂ΞA
(Ξ, τ) = TA =

∂σI(Ξ)

∂ΞA
+ τA

∂Ψ

∂τA

(
τA − ∂(σE − σI)

∂ΞA

)
≥ 0 ∀ (Ξ, τ) ,

then the relaxation system is endowed with an H-theorem

(3.11) ∂t

(1
2
|v|2 +Ψ(Ξ, τ)

)
− ∂α

(
viSiα

)
+

1

ε

∂Ψ

∂τA
(
τA − ∂(σE − σI)

∂ΞA

)
= 0 .

This entropy identity is based on the null-Lagrangian property (2.2) and
follows, using (3.6), (2.2) and (3.10), by the computation
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∂t

(1
2
|v|2 +Ψ(Ξ, τ)

)
= vi∂tvi +

∂Ψ

∂ΞA
∂tΞ

A +
∂Ψ

∂τA
∂tτ

A

= vi∂αSiα +
∂Ψ

∂ΞA
∂α(

∂ΦA

∂Fiα
vi) +

∂Ψ

∂τA
∂tτ

A

= vi∂αSiα +
∂Ψ

∂ΞA

∂ΦA

∂Fiα
∂αvi +

∂Ψ

∂τA
∂tτ

A

= ∂α(viSiα)−
1

ε

∂Ψ

∂τA
(
τA − ∂(σE − σI)

∂ΞA

)
Our next objective is to examine the solvability of (3.10) and study the

convexity of the entropy. Integrating (3.10)1, we see that

(3.12) Ψ(Ξ, τ) = σI(Ξ) + Ξ · τ +G(τ)

where the integrating factor G(τ) has to be selected so that it satisfies the
inequality

(3.13) (Ξ +∇τG) · (τ +∇ΞΣ) ≥ 0 ∀ (Ξ, τ)

where Σ = σI − σE . Regarding the solvability of (3.13), we show

Lemma 3.1. The functions G(τ) and Σ(Ξ) in C2(Rm) satisfy (3.13) if and
only if

(3.14)

⎧⎪⎨⎪⎩
Ξ +∇τG = 0 iff τ +∇ΞΣ = 0

G is convex

Σ is convex

Equation (3.14)1 indicates that G(τ) and Σ(Ξ) are connected through the
Legendre transformation.

Proof. We first show that (3.13) implies (3.14). Fix Ξ0, τ0 such that Ξ0 +
∇τG(τ0) = 0. Consider a fixed direction eA and the increment along this
direction Ξ = Ξ0 + teA. Then (3.13) implies that eA · (τ0 +∇ΞΣ(Ξ

0)) = 0
for every direction eA and thus τ0 +∇ΞΣ(Ξ

0) = 0. Similarly, if Ξ0, τ0 are
such that τ0 +∇ΞΣ(Ξ

0) = 0 then also Ξ0 +∇τG(τ0) = 0. This proves the
first statement in (3.14).

Fix now Ξ1, Ξ2 and let τ2 = −∇ΞΣ(Ξ2). Then Ξ2 = −∇τG(τ2), (3.13)
is rewritten as

(3.15) (Ξ1 − Ξ2) ·
(
∇ΞΣ(Ξ1)−∇ΞΣ(Ξ2)

)
≥ 0

and Σ is convex. A similar argument shows that G is convex.
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The converse is proved by re-expressing the convexity inequality (3.15)
in the form (3.13) by using the first statement in the right of (3.14).

Lemma 3.1 indicates that the solvability of (3.10) is equivalent to the
convexity of Σ := σI −σE . To complete the details of the construction of Ψ,
we assume for simplicity that

(h0) ∇2
ΞΣ > 0 and ∇ΞΣ : RD → R

D is onto,

with D = 19 for d = 3 and D = 5 for d = 2. Define the inverse map
(∇ΞΣ)

−1 : RD → R
D, and let h(τ) = −(∇ΞΣ)

−1(−τ). Then ∇τh is sym-
metric and the differential system ∇τG = h is solvable. Its solution G is a
convex function and satisfies

(3.16)
∇τG(τ) = − (∇ΞΣ)

−1 (−τ)

∇2
τG(τ) =

[
∇2

ΞΣ(−∇τG)
]−1

Ψ is defined by (3.12) with G as above. Observe that, by (3.10) and (3.14),

(3.17)

∂Ψ

∂ΞA
(Ξ,−∇ΞΣ) =

∂σE
∂ΞA

(Ξ)

∂Ψ

∂τA
(Ξ,−∇ΞΣ) = ΞA +

∂G

∂τA

∣∣∣
τA=− ∂(σI−σE)

∂ΞA

= 0

and, by selecting a normalization constant,

(3.18) Ψ(Ξ,−∇ΞΣ) = σE(Ξ)

We next consider the convexity of Ψ(Ξ, τ) determined by the matrix

∇2
(Ξ,τ)Ψ =

[
∇2

ΞσI I

I ∇2
τG

]
Lemma 3.2. Let Σ = σI − σE satisfy (h0) and assume that σI , Σ satisfy
for γI > γv > 0

(h1) ∇2
ΞσI ≥ γIIm > γvIm ≥ ∇2

ΞΣ > 0

Then for some δ > 0 we have

∇2
(Ξ,τ)Ψ ≥ δ I(Ξ,τ)
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Proof. Using (h1) and (3.16)2 we estimate the Hessian of Ψ as follows(
∇2

(Ξ,τ)Ψ
)

(Ξ, τ) · (Ξ, τ) = (∇2
ΞσI)Ξ · Ξ + 2Ξ · τ +

(
∇2

ΞΣ
)−1

τ · τ

≥ γI |Ξ|2 + 2Ξ · τ +
1

γv
|τ |2

≥ (γI − δ)|Ξ|2 +
( 1

γv
− 1

δ

)
|τ |2 .

The coefficients can be made positive definite by selecting γI > δ > γv.

Remark 3.3. Hypothesis (h1) implies that σE must be convex, which dictates

that the limiting equations arise from a polyconvex energy.

3.3. Relative entropy for the augmented system

Next we compare a solution (v,Ξ, τ) of the system (3.6) with a solution

(v̂, Ξ̂) of the extended elastodynamics system (3.8), using a relative entropy

calculation in the spirit of [18, 25].

The relative entropy is defined by taking the Taylor polynomial of a

nonequilibrium relative to a Maxwellian solution

Er :=
1

2
|v − v̂|2 +Ψ(Ξ, τ)−Ψ

(
Ξ̂,

∂(σE − σI)

∂Ξ
(Ξ̂)
)

− ∂Ψ

∂Ξ
(Ξ̂,−∂Σ

∂Ξ
(Ξ̂)) · (Ξ− Ξ̂)− ∂Ψ

∂τ

(
Ξ̂,−∂Σ

∂Ξ
(Ξ̂)
)
·
(
τ − ∂(σE − σI)

∂Ξ
(Ξ̂)
)

where Σ = σI − σE . By (3.17), (3.18), Er has the simple form

(3.19) Er =
1

2
|v − v̂|2 +Ψ(Ξ, T − ∂σI

∂Ξ
)− σE(Ξ̂)−

∂σE
∂Ξ

(Ξ̂) · (Ξ− Ξ̂)

We now recall the identities: The H-theorem for the relaxation approxi-

mation

∂t

(1
2
|v|2 +Ψ(Ξ, τ)

)
− ∂α(viSiα) +

1

ε

∂Ψ

∂τA
(
τA − ∂(σE − σI)

∂ΞA

)
= 0(3.20)

and the energy equation for the extended elastodynamics system

∂t

(1
2
|v̂|2 + σE(Ξ̂)

)
− ∂α

(∂σE
∂ΞA

(Ξ̂)
∂ΦA

∂Fiα
(F̂ )v̂i

)
= 0(3.21)
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Finally we form the difference equations

∂t (vi − v̂i)− ∂α

(
TA ∂ΦA

∂Fiα
(F )− ∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)
= 0,

∂t(Ξ
A − Ξ̂A)− ∂α

(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)
= 0

and compute using (3.6) and (3.8) to obtain

∂t

[
v̂i(vi − v̂i) +

∂σE
∂ΞA

(Ξ̂) (ΞA − Ξ̂A)
](3.22)

− ∂α

[
v̂i

(
TA ∂ΦA

∂Fiα
(F )− ∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)
+

∂σE
∂ΞA

(Ξ̂)

(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)]
= (∂tv̂i)(vi − v̂i) + ∂t

(
∂σE
∂ΞA

(Ξ̂)

)
(ΞA − Ξ̂A)

− ∂αv̂i

(
TA ∂ΦA

∂Fiα
(F )− ∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )

)
− ∂α

(
∂σE
∂ΞA

(Ξ̂)

)(
∂ΦA

∂Fiα
(F ) vi −

∂ΦA

∂Fiα
(F̂ ) v̂i

)
= −∂α

(
∂σE
∂ΞA

(Ξ̂)

)( ∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )
)
vi

− ∂αv̂i

[
TA ∂ΦA

∂Fiα
(F )− ∂σE

∂ΞA
(Ξ̂)

∂ΦA

∂Fiα
(F̂ )− ∂2σE(Ξ̂)

∂ΞA∂ΞB

∂ΦA

∂Fiα
(F̂ )(ΞB − Ξ̂B)

]
=: I

By rearranging the terms and using the null-Lagrangian property (2.2)

we may rewrite I in the form

I = −∂α

[
v̂i
∂σE
∂ΞA

(Ξ̂)

(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)]
(3.23)

− ∂α

(
∂σE
∂ΞA

(Ξ̂)

)(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)
(vi − v̂i)

− (∂αv̂i)
∂ΦA

∂Fiα
(F̂ )
(∂σE
∂ΞA

(Ξ)− ∂σE
∂ΞA

(Ξ̂)− ∂2σE
∂ΞA∂ΞB

(Ξ̂)(ΞB − Ξ̂B)
)
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− (∂αv̂i)

(
∂σE
∂ΞA

(Ξ)− ∂σE
∂ΞA

(Ξ̂)

)(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)
− (∂αv̂i)

(
TA − ∂σE

∂ΞA
(Ξ)

)
∂ΦA

∂Fiα
(F )

= −∂α

[
v̂i
∂σE
∂ΞA

(Ξ̂)

(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)]
−Q1 −Q2 −Q3 − L

That is the term I is written as the sum of a divergence term plus the
quadratic terms Qi plus a linear term L that is controlled by the distance
from equilibrium.

Combining (3.20), (3.21), (3.22) and (3.23) we arrive at the relative
entropy identity

(3.24) ∂tEr − ∂αFα,r +
1

ε
D = Q1 +Q2 +Q3 + L

where the flux is

(3.25) Fα,r :=

(
TA − ∂σE

∂ΞA
(Ξ̂)

)
(vi − v̂i)

∂ΦA

∂Fiα
(F )

the dissipation is

(3.26)
1

ε
D =

1

ε

∂Ψ

∂τA

(
Ξ, T − ∂σI

∂Ξ

) (
TA − ∂σE

∂ΞA

)
the quadratic errors Qi are

(3.27)

Q1 = ∂α

(
∂σE
∂ΞA

(Ξ̂)

)(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)
(vi − v̂i)

Q2 = (∂αv̂i)
∂ΦA

∂Fiα
(F̂ )
(∂σE
∂ΞA

(Ξ)− ∂σE
∂ΞA

(Ξ̂)− ∂2σE(Ξ̂)

∂ΞA∂ΞB
(ΞB − Ξ̂B)

)
Q3 = (∂αv̂i)

(
∂σE
∂ΞA

(Ξ)− ∂σE
∂ΞA

(Ξ̂)

)(
∂ΦA

∂Fiα
(F )− ∂ΦA

∂Fiα
(F̂ )

)
and the linear error L is

(3.28) L = (∂αv̂i)

(
TA − ∂σE

∂ΞA
(Ξ)

)
∂ΦA

∂Fiα
(F )

Identity (3.24) is the key on which the stability and convergence analysis of
section 4 is based.
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4. Stability theorem

Consider a family of smooth solutions {(vε, F ε, τ ε)}ε>0, τ
ε = T ε − ∇ΞσI

(Φ(F ε)), to the relaxation system (3.1). We wish to compare them with a
smooth solution (v̂, F̂ ) of the equations of polyconvex elastodynamics (3.2).
For simplicity of notation, we drop the ε-dependence from the solution of
the relaxation system. The data F0 and F̂0 are taken gradients; this property
is propagated by (3.2)2 and both F and F̂ are gradients for all times. The
function (v,Φ(F ), τ) is a smooth solution of the augmented relaxation sys-
tem (3.6) while the function (v̂,Φ(F̂ )) satisfies the extended elastodynamics
equations (3.8). From the results of section 3.3, smooth solutions of (3.6)
and (3.8) satisfy (3.24).

The identity (3.24) is inherited by (v,Φ(F ), τ) and (v̂,Φ(F̂ )). The re-
sulting relative energy and associated flux,

er = Er
(
v,Φ(F ), τ

∣∣ v̂,Φ(F̂ ),
∂(σE − σI)

∂Ξ
(Φ(F̂ ))

)
(4.1)

=
1

2
|v − v̂|2 +Ψ

(
Φ(F ), T − ∂σI

∂Ξ
(Φ(F ))

)
− σE(Φ(F̂ ))

− ∂σE
∂ΞA

(Φ(F̂ ))(Φ(F )A − Φ(F̂ )A) ,

fα = Fα,r

(
v,Φ(F ), τ

∣∣ v̂,Φ(F̂ ),
∂(σE − σI)

∂Ξ
(Φ(F̂ ))

)
(4.2)

=

(
TA − ∂σE

∂ΞA
(Φ(F̂ ))

)
(vi − v̂i)

∂ΦA

∂Fiα
(F ) ,

satisfy

(4.3) ∂ter − ∂αfα +
1

ε
D = Q1 +Q2 +Q3 + L

where the Qi, L and D are now computed for Ξ = Φ(F ) and Ξ̂ = Φ(F̂ ).
We prove convergence of the relaxation system to polyconvex elastody-

namics so long as the limit solution is smooth.

Theorem 4.1. Let (vε, F ε, T ε), F ε = ∇yε, be smooth solutions of (3.1)
and (v̂, F̂ ), F̂ = ∇ŷ, a smooth solution of (3.2), defined on R

d × [0, T ] and
decaying fast as |x| → ∞. The relative energy er defined in (4.1) satisfies
(4.3). Assume that σI , σE satisfy for some constants γI > γv > 0 and M > 0
the hypotheses

∇2σI ≥ γII > γvI ≥ ∇2(σI − σE) > 0 ,(h1)
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|∇2σE | ≤ M , |∇3σE | ≤ M .(h2)

There exists a constant s and C = C(T, γI , γv,M,∇v̂,∇F̂ ) > 0 independent
of ε such that ∫

Rd

er(x, t)dx ≤ C

(∫
Rd

er(x, 0)dx+ ε

)
.

In particular, if the data satisfy∫
Rd

eεr(x, 0)dx −→ 0 , as ε ↓ 0 ,

then

sup
t∈[0,T ]

∫
Rd

|vε − v̂|2 + |F ε − F̂ |2 + |τ ε − τ∞(F̂ )|2dx −→ 0 ,

where τ∞(F̂ ) = ∂(σE−σI)
∂Ξ (Φ(F̂ )).

Proof. The equation (4.3),

∂ter + ∂αfα +
1

ε
D = J ,

is integrated on R
d × (0, t) and gives∫

Rd

er(x, t)dx−
∫
Rd

er(x, 0)dx(4.4)

+
1

ε

∫ t

0

∫
Rd

Ddxdτ =

∫ t

0

∫
Rd

Jdxdτ

From lemma 3.2 and (3.19) we see that there exists a positive constant
c = c(γI , γv) such that

Er ≥ c

(
|v − v̂|2 + |Ξ− Ξ̂||2 + |τ − ∂(σE − σI)

∂Ξ
(Ξ̂)|2

)
and thus, by (4.1),

er ≥ c
(
|v − v̂|2 + |Φ(F )− Φ(F̂ )|2 + |τ − τ∞(F̂ )|2

)
.

Note that
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D :=
∂Ψ

∂τA

(
τA − ∂(σE − σI)

∂ΞA

)
(4.5)

= (Ξ +∇τG) · (τ +∇ΞΣ)

= (∇τG(τ)−∇τG(−∇ΞΣ)) · (τ +∇ΞΣ)

≥
(
min∇2

τG
)
|τ +∇ΞΣ|2

≥ 1

γv
|τ −∇Ξ(σE − σI)|2

Let now C be a positive constant depending on the L∞-norm of v̂, F̂ ,
∂αv̂, ∂αF̂ and the constants γI , γv and M . On account of (h2) and the
smoothness of (v̂, F̂ ), the term Q2 is of quadratic growth on |Ξ − Ξ̂| =
|Φ(F )− Φ(F̂ )|. Using (3.27), (h2), and (3.28) we have∫

Rd

|Q1|dx ≤ C

∫
Rd

|v − v̂|2 +
∣∣∣∂Φ
∂F

(F )− ∂Φ

∂F
(F̂ )
∣∣∣2dx ,∫

Rd

|Q2|dx ≤ C

∫
Rd

|Φ(F )− Φ(F̂ )|2dx ,∫
Rd

|Q3|dx ≤ C

∫
Rd

|Φ(F )− Φ(F̂ )|2 +
∣∣∣∂Φ
∂F

(F )− ∂Φ

∂F
(F̂ )
∣∣∣2dx ,

and ∫
Rd

|L|dx ≤ 1

ε

1

2γv

∫
Rd

|τ −∇Ξ(σE − σI)|2dx+ Cε

∫
Rd

|∂Φ
∂F

(F )|2dx .

From the identities

∂ detF

∂Fiα
= (cof F )iα ,

∂(cof F )iα
∂Fjβ

= εijkεαβγFkγ ,

we have ∣∣∣∂Φ
∂F

(F )− ∂Φ

∂F
(F̂ )
∣∣∣ ≤ C|Φ(F )− Φ(F̂ )| .

Combining with (4.5) and (4.4) we obtain∫
Rd

er(x, t)dx+
1

2εγv

∫
Rd

|τ −∇Ξ(σE − σI)|2dx(4.6)

=

∫
Rd

er(x, 0)dx+ C

∫ t

0

∫
Rd

er(x, τ)dxdτ

+ εC

∫ t

0

∫
Rd

|∂Φ
∂F

(F )|2dxdτ
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The H-estimate implies that solution of the relaxation system (3.1) sat-
isfy the uniform (in ε) bounds∫

Rd

|v|2 + |Φ(F )|2 + |τ |2dx+
1

εγv

∫
Rd

|τ −∇Ξ(σE − σI)|2dx(4.7)

≤ C

∫
Rd

|v0|2 +Ψ(Φ(F0), τ0)dx ≤ O(1)

The result then follows from (4.6) via Gronwall’s inequality.

5. Gas dynamics in Eulerian coordinates

As an example we work out the relaxation model that results when applying
(3.1) to the equations of isentropic gas dynamics. In preparation, we review
the classical transformation of a balance law from Lagrangean to Eulerian
coordinates (e.g. [13, Sec 2.2]).

5.1. Transformation from Lagrangean to Eulerian coordinates

Consider a motion y(·, t) : R → Rt that maps a reference configuration
R onto the current configuration Rt, for each t ∈ [0, T ]. The Lagrangean
coordinates in the reference configuration are denoted by x = (xα)α=1,...,d

and the Eulerian coordinates in the current configuration by y = (yj)j=1,...,d

with d the (common) dimension of the ambient spaces. The map y(·, t)
is assumed globally invertible and a bi-Lipschitz homeomosphism, and we
denote by

vi =
∂yi
∂t

, Fiα =
∂yi
∂xα

the velocity and deformation gradient respectively.
Suppose the fields φ = φ(x, t), ψα = ψα(x, t) and p = p(x, t) are defined

in the Lagrangian frame and satisfy the balance law

(5.1) ∂tφ(x, t) = ∂αψα(x, t) + p(x, t) .

The fields φ, ψα and p can be scalar or vector fields. The Lagrangian balance
law (5.1) can be transformed to an equivalent balance law expressed on the
Eulerian coordinate frame

∂t

(
φ

detF
◦ y−1

)
+ ∂yj

(( φ

detF
vj
)
◦ y−1

)
(5.2)

= ∂yj

((ψαFjα

detF

)
◦ y−1

)
+

p

detF
◦ y−1 .
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In expressing (5.2) we have used y−1(y, t) to be the inverse (in x) map
of y(x, t). This dependence is often implied when stating the balance law in
Eulerian coordinates and it is commonplace to write (5.2), using a somewhat
ambivalent notation, in the form

(5.3) ∂t

(
φ

detF

)
+ ∂yj

(
φ

detF
uj

)
= ∂yj

(
ψαFjα

detF

)
+

p

detF
,

where uj = vj ◦ y−1 (or equivalently uj(y(x, t), t) = vj(x, t)) stands for the
velocity expressed in Eulerian coordinates.

5.2. Expression of gas dynamics in Lagrangean coordinates

Consider now the system of isentropic gas dynamics in Eulerian coordinates

∂tρ+ ∂j(ρuj) = 0(5.4)

∂t(ρui) + ∂j(ρuiuj) + ∂ip(ρ) = 0(5.5)

where ρ = ρ(y, t) the density, u = u(y, t) the velocity, y ∈ R
3, and the

pressure p(ρ) > 0 satisfies p′(ρ) > 0 which guarantees hyperbolicity. The
system of isentropic gas dynamics satisfies the energy conservation equation

(5.6) ∂t(
1

2
ρ|u|2 + ρe(ρ)) + ∂j

(
uj(

1

2
ρ|u|2 + ρe(ρ))

)
+ ∂j(p(ρ)uj) = 0

where the internal energy function e(ρ) is related to the pressure through
the usual relation

(5.7) e′(ρ) =
p(ρ)

ρ2
> 0 .

Note that (ρe)′′ = p′

ρ > 0 and that η(ρ,m) = 1
2
|m|2
ρ + ρe(ρ) is convex in the

variables (ρ,m), m = ρu the momentum.
We proceed to calculate the associated Lagrangian form of the system

(5.4)–(5.5). For the velocity field u(y, t) the initial value problem

(5.8)

{
∂tyi = ui(y, t)

y(x, 0) = x x ∈ R

determines the motion y(x, t). The local solvability of (5.8) is guaranteed
for sufficiently smooth vector fields u but the solution is not necessarily
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globally well defined. Here we will not discuss these important aspects and

will proceed formally. Given y(x, t) we define F = ∇y, v = ∂ty and recall

Abel’s formula

∂t detF = divyu detF .

Using the correspondence between the Lagrangean (5.1) and Eulerian (5.3)

form of the balance law, we transform the balance of mass equation (5.4) to

the form

∂t(ρdetF ) = 0

This implies that ρdetF =: ρ0(x) is independent of time. By assigning the

reference density of the current configuration (here selected as the t = 0

instance of the current configuration) to be ρ0(x) = 1, we obtain

(5.9) ρ =
1

detF
.

In turn, using the relations

(F−1)αiFjα = δij , (F−1)αi =
1

detF
(cof F )αi ,

and (5.9), (5.5) is transformed into the Lagrangian form

(5.10) ∂tvi = ∂α
(
− p(ρ)(detF )(F−1)αi) = ∂α

(
− p(ρ)(cof F )iα)

Note the correspondence with the standard definition of the Cauchy stress

for gas dynamics Tij = −p(ρ)δij and its association with the Piola-Kirchhoff

stress

Siα = Tij(detF )(F−1)αj = −p(ρ)(detF )(F−1)αi

Similarly, the energy equation (5.6) transforms to the Lagrangean form

∂t
(1
2
|v|2 + e(ρ)

)
= ∂α

(
− p(ρ)vi(cof F )iα

)
To the above equations we may add the nonlinear transport relation

∂t detF = ∂α(vi(cof F )iα)

which is a consequence of the null Lagrangians (2.2) and part of (2.3).

In summary, the full set of Lagrangean equations for gas dynamics is
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∂tFiα = ∂αvi(5.11)

∂t detF = ∂α(vi(cof F )iα)(5.12)

∂tvi = ∂α
(
− p
( 1

detF

)
(cof F )iα

)
(5.13)

and the Lagrangean form of the energy is

(5.14) ∂t

(1
2
|v|2 + e

( 1

detF

))
= ∂α

(
− p
( 1

detF

)
vi(cof F )iα

)
.

The stored energy W is of the form

(5.15) W (F ) = e
( 1

detF

)
= g(detF )

where

g(w) := e

(
1

w

)
dg

dw
= e′

( 1
w

)(
− 1

w2

)
= −p

( 1
w

)
,

d2g

dw2
= p′

( 1
w

) 1

w2
> 0 ,

Hence W is polyconvex, the system (5.11)–(5.13) fits into the framework of
polyconvex elasticity with the identification g(w) := e

(
1
w

)
, and of course it

is associated with an extended symmetrizable system of the form (2.4) for
the variables (F,Ξ) with Ξ = (F,w) in the present case.

5.3. A relaxation model for gas dynamics in Lagrangean
coordinates

We consider now the relaxation model

(5.16)

∂tvi = ∂α

([
− pI

( 1

detF

)
+ τ
]
cof Fiα

)
∂tFiα = ∂αvi

∂tτ = −1

ε

(
τ + pE

( 1

detF

)
− pI

( 1

detF

))
This model is a special case of the model (3.1) with a scalar internal variable

T = −pI
( 1

detF

)
+ τ
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We assume that the instantaneous pI(ρ) and equilibrium pE(ρ) pressure

functions are strictly positive and satisfy

(a0)

p′I(ρ) > 0 , e′I(ρ) =
pI(ρ)

ρ2

p′E(ρ) > 0 , e′E(ρ) =
pE(ρ)

ρ2

with eI(ρ) and eE(ρ) the associated instantaneous and equilibrium internal

energy functions.

Furthermore, (5.16) is associated with the augmented relaxation system

(cf (3.6))

(5.17)

∂tvi = ∂α

([
− pI

( 1
w

)
+ τ
]
cof Fiα

)
∂tFiα = ∂αvi

∂tw = ∂α
(
(cof F )iαvi

)
∂tτ = −1

ε

(
τ + pE

( 1
w

)
− pI

( 1
w

))
with w > 0, and the theory developed in section 3 can be applied directly

to (5.17) with the following identifications

σI(w) = eI(
1

w
) ,

dσI
dw

= −pI(
1

w
)

σE(w) = eE(
1

w
) ,

dσE
dw

= −pE(
1

w
)

where by (a0) both σI(w) and σw(w) are convex.

Following the procedure of section 3.2, we obtain an entropy for the

augmented relaxation system and in turn for the reduced system (5.16).

By multiplying (5.17)1 by vi, (5.17)3 by
(
− pI

(
1
w

)
+ τ
)
, and (5.17)4 by

(w +G′(τ)) we obtain the entropy equation

(5.18)

∂t

(1
2
|v|2 + eI

( 1
w

)
+ wτ +G(τ)

)
= ∂α

([
− pI

( 1
w

)
+ τ
]
(cof F )iαvi

)
− 1

ε

(
w +G′(τ)

)(
τ + (pE − pI)

( 1
w

))
where
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σI(w) := eI
( 1
w

)
= −

∫ w

1
pI
(1
s

)
ds

G(τ) := −
∫ τ

1

1

(pI − pE)−1(s)
ds

Indeed, if the pressure functions satisfy the hypothesis

(a1) (pI − pE)
′(ρ) > 0 ∀ρ > 0

then (pI − pE)
−1 and G(τ) are well defined, Σ(w) = (σI − σE)(w) is convex

and Lemma 3.1 guarantees the existence of a global, dissipative entropy

Ψ(w, τ) = σI(w) + wτ +G(τ) .

Using Lemma 3.2 it follows that the entropy Ψ(w, τ) is convex in (w, τ)

provided

(a2)
p′I(

1
w )

w2
≥

(pI − pE)
′( 1

w̄ )

w̄2
, ∀w, w̄ > 0 .

5.4. Expression of the relaxation model in Eulerian coordinates

We next apply again the transformation procedure from Lagrangean to Eu-

lerian coordinates to express the model (5.16) in Eulerian coordinates. We

recall the expression ρ = 1
detF and note that (5.16) when expressed in Eu-

lerian coordinates gives

(5.19)

∂tρ+ ∂j(ρuj) = 0

∂t(ρui) + ∂j(ρuiuj) = ∂j
(
(−pI(ρ) + τ)δij

)
∂t(ρτ) + ∂j(ρujτ) = −1

ε
ρ
(
τ − pI(ρ) + pE(ρ)

)
This is a pressure relaxation model with two pressures an instantaneous and

an equilibrium pressure. Models of that general type have previously been

observed in the literature, see for example [9, 23]. Such models correspond to

a mechanism of relaxation of pressures with an instantaneous and an equi-

librium pressure response, the latter associated with the long time response

of the model in the way outlined in section 3, and are endowed with and

entropy function defined locally (near equilibrium) which is dissipative [23].

The present model is endowed with a globally defined entropy function. This
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can be seen by reverting the entropy dissipation identity (5.18) into Eulerian
coordinates. The process gives
(5.20)

∂t

[
1

2
ρ|v|2 + ρ

(
eI(ρ) +

1

ρ
τ +G(τ)

)]
+ ∂j

(
uj
[1
2
ρ|v|2 + ρ

(
eI(ρ) +

1

ρ
τ +G(τ)

)])
= ∂j ((−pI(ρ) + τ)uj)−

1

ε
ρ
(
τ − (pI − pE)(ρ)

)(1

ρ
− 1

(pI − pE)−1(τ)

)
The existence of globally defined entropy relaxation functions is noted in
[10] in the context of internal energy relaxation models for gas dynamics
and for general models with internal variables in [24]. The present model
provides another example that enjoys this feature and is associated with
pressure relaxation and is related to the polyconvexity property of the elas-
ticity system.

We finish by checking the conditions under which the above expressions
are well defined. It is instructive to check that directly. We always operate
under the framework of (a0) and let P (ρ) = (pI − pE)(ρ). The entropy will
be dissipative provided

(5.21) ρ(τ − P (ρ))
(1
τ
− 1

P−1(ρ)

)
≥ 0 , ∀ρ, τ > 0 .

The equation (5.21) holds if and only if the function P is strictly increasing,
that is if (a1) holds.

Next, we examine the convexity of the function

(5.22) ρE(ρ, τ) := ρ

(
eI(ρ) +

1

ρ
τ +G(τ)

)
by checking the eigenvalues of the Hessian matrix⎛⎝ d2

dρ2
(ρeI) G′(τ)

G′(τ) ρG′′(τ)

⎞⎠ .

The eigenvalues are strictly positive if

(ρeI)
′′ =

p′I
ρ

> 0 ,

(ρeI)
′′ρG′′(τ)− (G′(τ))2 > 0 .
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To express the second condition, note that if τ = P (ρ̄) then ρ̄ = P−1(τ) and

G′(τ) = − 1

P−1(τ)
= −1

ρ̄
, G′′(τ) =

1

[P−1(τ)]2
1

P ′(P−1(τ))
=

1

ρ̄2P ′(ρ̄)

In view of (a0), the convexity of ρE(ρ, τ) is equivalent to the condition

(a3) p′I(ρ) > (p′I − p′E)(ρ̄) > 0 , ∀ρ, ρ̄ > 0 .

This can be combined with the fact that the function |m|2
ρ is convex in (ρ,m)

to conclude that the under (a3) the entropy

(5.23) H(ρ, τ,m) :=
1

2

|m|2
ρ

+ ρ
(
eI(ρ) +

1

ρ
τ +G(τ)

)
is convex in (ρ, τ,m) with m = ρu the momentum.
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