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Localization of Floer homology of engulfed
topological Hamiltonian loop
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In honor of Marshall Slemrod’s 70-th birthday

Localization of Floer homology is first introduced by Floer [Fl2] in
the context of Hamiltonian Floer homology. The author employed
the notion in the Lagrangian context for the pair (φ1

H(L), L) of
compact Lagrangian submanifolds in tame symplectic manifolds
(M,ω) in [Oh1, Oh2] for a compact Lagrangian submanifold L and
C2-small Hamiltonian H. In this article, motivated by the study of
topological Hamiltonian dynamics, we extend the localization pro-
cess for any engulfed Hamiltonian path φH whose time-one map
φ1
H is sufficiently C0-close to the identity (and also to the case of

triangle product), and prove that the local Lagrangian spectral in-
variant defined on a Darboux-Weinstein neighborhood of L is the
same as the global one defined on the full cotangent bundle T ∗L.
Such a Hamiltonian path naturally occurs as an approximating se-
quence of engulfed topological Hamiltonian loop. We also apply
this localization to the graph of φt

H in (M × M,ω ⊕ −ω) and lo-
calize the Hamiltonian Floer complex of such a Hamiltonian H.
We expect that this study will play an important role in the study
of homotopy invariance of the spectral invariants of topological
Hamiltonian.
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1. Introduction and the main results

Construction of the local version of the Floer homology was introduced by
Floer [Fl2]. The present author applied this construction to the Lagrangian
context and defined the local Floer homology, denoted by HF (H,L;U),
which singles out the contribution from the Floer trajectories whose im-
ages are contained in a given Darboux neighborhood U of L in M . Such
an isolation of the contribution is proven to be possible and the resulting
Floer homology is isomorphic to the singular homology H∗(L) (with Z2-
coefficients) in [Oh2], provided H is C2-small. This C2-smallness is used,
conspicuously in [Oh2], so that first

(1.1) φHt(L) ⊂ V ⊂ V ⊂ U

holds for all t ∈ [0, 1], and then the ‘thick-thin’ dichotomy of the Floer
trajectories exists. The necessity of such a dichotomy is highlighted for the
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Floer moduli space of the boundary map, but its necessity is less conspicuous

for that of the chain map in [Oh2].

But this latter was further scrutinized and exploited by Chekanov in his

study of displacement energy in [Che1, Che2]. It follows from his argument

in [Che1] that the quasi-isomorphism property of thin part of Floer chain

maps between the local Floer complex H and the Morse complex of f holds

for the Hamiltonian H satisfying ‖H‖ < 1
2A(M,L, J0) provided the thick-

thin dichotomy exists for the chain map. Here A(M,L, J0) is the smallest

area of the non-constant J0-holomorphic spheres or discs attached to L.

(Chekanov denotes σ(M,L, J0) instead of A(M,L, J0).) The required thick-

thin dichotomy was established via the thick-thin dichotomy of associated

Floer moduli spaces into those with big areas and those with very small

areas. It was proved in [Oh2] that this dichotomy exists when H is C2-

small by proving that all the thick trajectories have symplectic area greater

than, say 1
2A(M,L, J0), by a variation of Gromov-Floer compactness as

φ1
H(L) → L in C1-topology (or H → 0 in C2-topology). (We would like to

emphasize that this convergence argument is not the standard Gromov-Floer

type compactness argument since the limiting configuration is degenerate.

The precise study of this convergence belongs to the realm of the so called

adiabatic limit in the sense of [FO, Oh1, Oh7]. In [Oh2], it was enough to

establish a non-constant component in the ‘limit’ which can be proved by a

simple convergence argument under an energy bound.)

However such a dichotomy via the area does not exist when the conver-

gence φ1
H(L) → L is assumed in C0-topology (or H → 0 in C1-topology). We

recall that understanding the behavior of various analytically constructed

symplectic invariants via the Floer homology under the C0 change of Hamil-

tonian diffeomorphisms is an important subject of study in symplectic topol-

ogy. We now motivate such a study in relation to topological Hamiltonian

dynamics á la [OM], [Oh9].

1.1. Topological Hamiltonian loops

In [OM], Müller and the author introduced the notion of hamiltonian topol-

ogy on the space

Pham(Symp(M,ω), id)

of Hamiltonian flows λ : [0, 1] → Symp(M,ω) with λ(t) = φt
H for some time-

dependent Hamiltonian H. We first recall the definition of this hamiltonian

topology.
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Following the notations of [OM], we denote by φH the Hamiltonian path

φH : t �→ φt
H ; [0, 1] → Ham(M,ω)

and by Dev(λ) the associated normalized Hamiltonian

(1.2) Dev(λ) := H, λ = φH

where H is defined by

(1.3) H(t, x) = H(t, x)− 1

volω(M)

∫
M

H(t, x)ωn.

Definition 1.1. Let (M,ω) be a closed symplectic manifold. Let λ, μ be
smooth Hamiltonian paths. The hamiltonian topology of Hamiltonian paths
is the metric topology induced by the metric

(1.4) dham(λ, μ) := d(λ, μ) + leng(λ−1μ).

Now we recall the notion of topological Hamiltonian flows and Hamilto-
nian homeomorphisms (abbreviated as hameomorphisms) which was intro-
duced in [OM].

Definition 1.2 (L(1,∞) topological Hamiltonian flow). A continuous map
λ : R → Homeo(M) is called a topological Hamiltonian flow if there exists a
sequence of smooth Hamiltonians Hi : R×M → R satisfying the following:

(1) φHi
→ λ locally uniformly on R×M .

(2) the sequence Hi is Cauchy in the L(1,∞)-topology locally in time and
so has a limit H∞ lying in L(1,∞) on any compact interval [a, b].

We call any such φHi
or Hi an approximating sequence of λ. We call a

continuous path λ : [a, b] → Homeo(M) a topological Hamiltonian path if it
satisfies the same conditions with R replaced by [a, b], and the limit L(1,∞)-
function H∞ called a L(1,∞) topological Hamiltonian or just a topological
Hamiltonian.

We call a topological Hamiltonian path λ a loop if λ(0) = λ(1). Any
approximating sequence φHi

of a topological Hamiltonian loop λ has the
property φ1

Hi
→ id in addition to the properties (1), (2) of Definition 1.2.

The following question is an important question to study in relation to the
simpleness question of the area-preserving homeomorphism group of 2 disc
D2.
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Definition 1.3 (Hameotopy). Let λ0, λ1 ∈ Pham(Sympeo(M,ω), id). A
hameotopy Λ : [0, 1]2 → Sympeo(M,ω) between λ0 and λ1 based at the
identity is the map such that

(1.5) Λ(0, t) = λ0(t), Λ(1, t) = λ1(t),

and Λ(0, s) ≡ id for all s ∈ [0, 1], and arises as follows: there is a sequence
of smooth maps Λj : [0, 1]

2 → Ham(M,ω) that satisfy

(1) Λj(s, 0) = id,
(2) Λj → Λ in C0-topology,
(3) Any ‘horizontal’ section Λj,s : {s} × [0, 1] → Ham(M,ω) converges in

hamiltonian topology in the following sense: If we write

Dev
(
Λj,sΛ

−1
j,0

)
=: Hj(s),

thenHj(s) converges in hamiltonian topology uniformly over s ∈ [0, 1].
We call any such Λj an approximating sequence of Λ.

When λ0(1) = λ1(1) = ψ, a hameotopy relative to the ends is one that
satisfies Λ(s, 0) = id, Λ(s, 1) = ψ for all s ∈ [0, 1] in addition.

We say that λ0, λ1 ∈ Pham(Sympeo(M,ω), id) are hameotopic (resp.
relative to the ends), if there exists a hameotopy (resp. a hameotopy relative
to the ends).

We emphasize that by the requirement (3),

(1.6) Hj(0) ≡ 0

in this definition. We say that a topological Hamiltonian loop contractible,
if it is hameotopic to the constant loop.

All the above definitions can be modified to handle the case of open
manifolds, either noncompact or compact with boundary, by consideringH’s
compactly supported in the interior as done in section 6 [OM]. We recall the
definitions of topological Hamiltonian paths and Hamiltonian homeomor-
phisms supported in an open subset U ⊂ M from [OM].

We first define Pham(SympU (M,ω), id) to be the set of smooth Hamilto-
nian paths supported in U . The following definition is taken from Definition
6.2 [OM] to which we refer readers for more detailed discussions. First for
any open subset V ⊂ U with compact closure V ⊂ U , we can define the
completion of Pham(SympV (M,ω), id) using the same metric above which
we denote by

Pham(SympK(M,ω), id), K = V .
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Definition 1.4. Let U ⊂ M be an open subset. Define
Pham(SympeoU (M,ω), id) to be the union

Pham(SympeoU (M,ω), id) :=
⋃

K⊂U

Pham(SympeoK(M,ω), id)

with the direct limit topology, where K ⊂ U is a compact subset. We define
Hameoc(U, ω) to be the image

Hameoc(U, ω) := ev1(Pham(SympeoU (M,ω), id).

We would like to emphasize that this set is not necessarily the same
as the set of λ ∈ Pham(Sympeo(M,ω), id) with compact suppλ ⊂ U . The
same definition can be applied to general open manifolds or manifolds with
boundary.

Question 1.5. Let H be a contractible topological Hamiltonian loop and
let ρ(H; 1) be the spectral invariant defined by

ρ(H; 1) = lim
i→∞

ρ(Hi; 1)

for a (and so any) approximating sequence Hi. Is ρ(H; 1) = 0?

We refer to [Oh6] for the definition of spectral invariant ρ(H; 1) of
smooth HamiltoniansH. Besides its intrinsic interest in C0 symplectic topol-
ogy, it has been shown by the author in [Oh9] and [Oh12] that the affir-
mative answer to this question implies that Hameo(D2, ∂D2) is a proper
normal subgroup of the group HomeoΩ(D2, ∂D2) of area-preserving home-
omorphisms of D2 supported in the interior. This in particular implies that
the latter group is not simple. Whether the latter group is simple or not is a
prominent open problem in dynamical systems. (See [Oh9] for some history
and ideas of the problem.)

Then in [Oh13], the author reduced the question to the case where the
loop is sufficiently C0-small so that the graph of the whole flow φt

H is con-
tained in a (uniform) Darboux neighborhood of the diagonal in the product
M ×M and the Lagrangian spectral invariants of the C0-small topological
Hamiltonian deformations of the diagonal can be studied. This led us to
study whether the Floer complex can be localized in a Darboux-Weinstein
neighborhood in the way that the associated localized Lagrangian spectral
invariant can be compared with the global Lagrangian spectral invariant in
full cotangent bundle T ∗Δ.
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1.2. Thick-thin dichotomy for C0-small Lagrangian isotopy

Motivated by the discussion laid out in the previous subsection, we are led to
analyze the behaviors of the Floer moduli space and of the Floer complex as
the boundary Lagrangian submanifold φ1

Hi
(L) for a sequence of Hamiltonian

diffeomorphisms φ1
Hi

→ id in C0-topology.
Unlike the case of C2-small Hamiltonians, the dichotomy via the ar-

eas described in the beginning of the present paper does not exist for the
case of C1-small Hamiltonian H. The main purpose of the present paper
is to generalize the construction of local Floer homology and its compu-
tation for the case where the C2-smallness of H (or C1-smallness of φH)
is replaced by the weaker hypothesis, the C0-smallness of the time-one
map φ1

H : t �→ φt
H for any engulfed Hamiltonian path φH . There are

two major differences between the cases of C1-topology and of the C0-
topology of Hamiltonian paths (or between the C2-smallness of H and
C1-smallness of φH). The first fundamental issue is that thin trajectories
might not have small area but could have large area for the C0-close La-
grangian submanifolds unlike the C1-close case of Lagrangian submanifolds.
Because of this, instead of using the areas as in [Oh2], we will use the
maximum principle to single out ‘thin’ trajectories which turns out to be
the best way of obtaining such a dichotomy even for the C2-small H’s in
hindsight. However the thick-thin dichotomy acquired via the maximum
principle does not differentiate the action filtration any more. The second
more technical issue is that the C0-topology is a priori too weak to uni-
formly control the analytical behavior of pseudo-holomorphic curves with
boundary lying on φ1

H(L) in general partially because we cannot estab-
lish uniform area bounds even for the thin trajectories, while C1-topology
of Lagrangian boundary condition controls analysis of pseudo-holomorphic
curves.

To describe the problem in a precise manner, we need some digres-
sion.

Let L ⊂ (M,ω) be a compact Lagrangian submanifold and let V ⊂ V ⊂
U be a pair of Darboux neighborhoods of L. We denote ω = −dΘ on U
where Θ is the Liouville one-form on U regarded as an open neighborhood
of the zero section of T ∗L. Following [Oh7], [Sp], we introduce the following
notion.

We measure the size of the Darboux neighborhood V by the following
constant

(1.7) d(V,Θ) := max
x∈V

|p(x)|, x = (q(x), p(x)).
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This constant is bounded away from 0 and so there exists some η > 0 depend-
ing only on (V,−dΘ) (and so only on (M,ω)) such that if dC0(φ1

H , id) < η,
then φ1

H(L) ⊂ V .

Definition 1.6. We call an isotopy of Lagrangian submanifold {Lt}0≤s≤1

of L is called V -engulfed if there exists a Darboux neighborhood V of L such
that Ls ⊂ V for all s. When we do not specify V , we just call the isotopy
engulfed for L.

We call a (topological) Hamiltonian path φH engulfed if its graph
Graphφt

H is engulfed in a Darboux neighborhood of the diagonal Δ of
(M ×M,ω ⊕−ω).

Following Weinstein’s notation, we denote by Iso(L) the set of Hamil-
tonian deformations of L. Define

Hengulf
δ (L;V ) = {H | φt

H(L) ⊂ V ∀t ∈ [0, 1], d(φ1
H , id) ≤ δ}(1.8)

Iso
engulf
δ (L;V ) = {L′ ∈ Iso(L) | L′ = φ1

H(L), H ∈ Hengulf
δ (L;V )}.(1.9)

One of the main goals of the present paper is to extend the notion of
local Floer homology introduced in [Fl2, Oh2] for the C2-small Hamiltonian
H to the case of H such that

(1) its Hamiltonian paths φH are V -engulfed,
(2) its time-one map φ1

H is C0-small.

Such a sequence of smooth Hamiltonian paths naturally occurs as an ap-
proximating sequence of engulfed topological Hamiltonian loop (based at
the identity).

We would like to remark that it is established in [Oh2] that if ‖H‖C2 < C
for sufficiently small C > 0, then the following automatically hold:

(1) its Hamiltonian paths φH is V -engulfed,
(2) and the uniform area bounds of the associated connecting Floer trajec-

tories on V , where we regard V as a neighborhood of the zero section
in the cotangent bundle so that we use the classical action functional
to measure the actions.

(3) The path spaces P(φ1
H(L), L) or P(L,L) carry a distinguished con-

nected component on which the actions of any Hamiltonian chord be-
come uniformly small.

In [Oh2], we mainly used the area of Floer trajectories to obtain the thick-
thin decomposition of the Floer boundary operator ∂ = ∂0 + ∂′, which is
equivalent to the corresponding decomposition in terms of filtration changes
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under the boundary map (or the Floer chain map) for a C2-small Hamilto-
nian H.

However for the HamiltonianH of our interest in the present paper, both
properties (2) and (3) fail to uniformly hold even when we let dC0(φ1

H , id) →
0. Therefore there do neither exist a uniform gap in the filtration nor uniform
control of the filtration of the Floer complex (or of the action bounds of the
associated Hamiltonian chords). This is a new phenomenon for the localiza-
tion in the current topological Hamiltonian context. Because of this lack of
control of the filtration, we will instead use the more geometric version of
thick-thin dichotomy mainly using the C0 property of φ1

H by exploiting the
maximum principle.

For this purpose, we fix a time-independent almost complex structure
J0 that satisfies J0 ≡ Jg on V where Jg is the canonical (Sasakian) almost
complex structure on V as a subset T ∗L which is induced by a Riemannian
metric g on L, and suitably interpolated to one defined on the complement
of U . (We refer to [Fl3], [Oh2] for the precise description of Jg and J0
respectively.) We may assume V has J0-convex boundary. We denote by

Jω(V, Jg)

the set of such almost complex structures.

1.3. Comparison of two Cauchy-Riemann equations

For each given pair (J,H), we consider the perturbed Cauchy-Riemann equa-
tion

(1.10)

{
∂u
∂τ + J

(
∂u
∂t −XH(u)

)
= 0

u(τ, 0)u(τ, L1) ∈ L

which defines the Floer complex CF∗(L,L;H) generated (over a suitable
Novikov ring) by the set Chord(H;L,L) defined by

(1.11) Chord(H;L,L)) := {z : [0, 1] → M | ż = XH(t, z), z(0), z(1) ∈ L}.

We call any such element z in Chord(H;L,L)) a Hamiltonian chord of L.
This Cauchy-Riemann equation is called the dynamical version in [Oh3].

Equivalently one can also consider the genuine Cauchy-Riemann equa-
tion

(1.12)

{
∂v
∂τ + JH ∂v

∂t = 0

v(τ, 0) ∈ φ1
H(L), v(τ, 1) ∈ L
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for the path u : R → P(φ1
H(L), L)

P(φ1
H(L), L) = {γ : [0, 1] → T ∗N | γ(0) ∈ φ1

H(L), γ(1) ∈ L}

and JH
t = (φt

H(φ1
H)−1)∗Jt. We note that whenever suppφH ⊂ V , JH

t ∈
Jω(V, Jg) for all t ∈ [0, 1]. We call this version the geometric version. The
upshot is that there is a filtration preserving isomorphisms between the dy-
namical version and the geometric version of the Lagrangian Floer theories.

We now describe the geometric version of the Floer homology in some
more details. We denote by M̃(LH , L; JH) the set of finite energy solutions
and M(LH , L; JH) to be its quotient by R-translations. In the unobstructed
case [FOOO1], this gives rise to the geometric version of the Floer homology
HF∗(φ1

H(L), L, J̃) of the type [Fl1] whose generators are the intersection
points of φ1

H(L)∩L. An advantage of this version is that it depends only on
the Lagrangian submanifold (φ1

H(L), L) depending loosely on H.
The following is a straightforward to check but is a crucial lemma.

Lemma 1.7. (1) The map ΦH : φ1
H(L) ∩ L → Chord(H;L,L) defined by

x �→ zHx (t) = φt
H

(
(φ1

H)−1(x)
)

gives rise to the one-one correspondence between the set φ1
H(L) ∩ L ⊂

P(φ1
H(L), L) as constant paths and the set of solutions of Hamilton’s

equation of H.
(2) The map a �→ ΦH(a) also defines a one-one correspondence from the

set of solutions of (4.1) and that of

(1.13)

{
∂v
∂τ + JH ∂v

∂t = 0

v(τ, 0) ∈ φ1
H(L), v(τ, 1) ∈ L

where JH = {JH
t }, JH

t := (φt
H(φ1

H)−1)∗Jt. Furthermore, (1.13) is reg-
ular if and only if (1.10) is regular.

Once we have transformed (1.10) to (1.13), we can further deform JH

to the constant family J0 inside Jω(V, Jg) and consider

(1.14)

{
∂v
∂τ + J0

∂v
∂t = 0

v(τ, 0) ∈ φ1
H(L), v(τ, 1) ∈ L

for each given J0 ∈ Jω, a time-independent family. We will fix a generic J0 in
the rest of the paper and assume L is transversal to φ1

H(L) by considering a
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C∞-small perturbation of H if necessary. This latter deformation preserves
the filtration of the associated Floer complexes [Oh3]. A big advantage of
considering this equation is that it enables us to study the behavior of spec-
tral invariants for a sequence of Li converging to L in Hausdorff distance.

1.4. Statement of main results

The following thick-thin dichotomy of the Floer moduli spaces is a crucial
ingredient. This is a variation of Proposition 4.1 [Oh2] in the C0 context.

Theorem 1.8 (Compare with Proposition 4.1 [Oh2]). Let L ⊂ (M,ω) be
a compact Lagrangian submanifold and let V ⊂ V ⊂ U be a pair of Dar-
boux neighborhoods of L. Consider a V -engulfed Hamiltonian path φH . Then
whenever d(φ1

H , id) ≤ δ for any δ < d(V,Θ), any solution of v of (1.14) sat-
isfies one of the following alternatives:

(1) Either

(1.15) Image v ⊂ Dδ(L) ⊂ V

where Dδ(L) is the δ-neighborhood of L.
(2) or Image v �⊂ V . In this case, we also have

∫
v∗ω ≥ C(J0, V ) where

C(J0, V ) > 0 is a constant depending only on δ and V .

We call v a thin trajectory if Image v ⊂ V and a thick trajectory oth-
erwise. We call a thin trajectory very thin if it satisfies (1.15) in addition.
This theorem basically says that all thin trajectories are indeed very thin and
all thick trajectories have area bounded below away from zero. The proof of
this theorem is an easy application of maximum principle on the J0-convex
domain V and the monotonicity formula for the J0-holomorphic curves. We
would like to emphasize that the meaning of thin trajectories here is differ-
ent from that of [Oh2] (or the ‘short’ trajectories in [Che1]) in that they
could have large areas unlike the case of latter.

This theorem enables us to define the local Floer homology in a well-
defined way by counting thin trajectories. We denote this local Floer homol-
ogy by

HF
[id]
∗ (φ1

H(L), L;U), or HF
[id]
∗ (H, (L,L);U).

By definition, HF [id](φ1
H(L), L;U) is always well-defined without any unob-

structedness assumption of L ⊂ M such as exactness or monotonicity of the
pair (L,M) or the unobstructedness in the sense of [FOOO1].
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Once the above thick-thin dichotomy results of the Floer moduli spaces
for the boundary map and for the chain map are established, essentially the
same isolatedness argument as in [Oh2] gives rise to the following computa-
tion.

Theorem 1.9. Let L ⊂ M be as above and U be a Darboux neighborhood
of L and H : s �→ H(s) a family of U -engulfed Hamiltonians with H(0) =
0. Then if maxs∈[0,1] d(φ

1
H(s), id) < δ and |Jt − J0|C1 < δ for some time

independent J0 and if J is (L, φ1
H(L))-regular, then

HF∗(H,L; J ;U) ∼= H∗(L;Z).

We would like to emphasize that the presence of the engulfed homotopy
H is crucial in the statement of this theorem, because the commonly used lin-
ear homotopy s �→ sH may not be U -engulfed and so may not induce a chain
map between the local Floer complex, even when H0, H1 are U -engulfed. In
this regard, statement and the proof of this theorem given in section 5 may
be the most novel points of the mathematics in the present article.

To perform the above computation, we need to study the behavior of
the local Floer homology under the change of Hamiltonians. In this regard,
we consider a 1-parameter family of Hamiltonians (or a 2-parameter family
of functions on M) H = {H(s)}0≤s≤1 with H(0) ≡ 0 and

(1.16) max
s∈[0,1]

d(φ1
H(s), id) < δ

for a sufficiently small δ = δ0(M,ω; J0). We fix an elongation function ρ :
R → [0, 1] satisfying

ρ(τ) =

{
0 τ ≤ 0

1 τ ≥ 1

ρ′ ≥ 0(1.17)

and define its dual ρ̃ := 1−ρ. We will consider the lemma in the Lagrangian
setting over the path s �→ H(s) for H = {H(s)}s∈[0,1] ⊂ Hengulf

δ (M) with
H(0) ≡ 0 for δ sufficiently small. Again the smallness will depend only on
(M,ω).

We consider the Cauchy-Riemann equation with moving boundary con-
dition

(1.18)

{
∂v
∂τ + J0

∂v
∂t = 0

v(τ, 0) ∈ φ1
H(ρ(τ))(L), v(τ, 1) ∈ L.
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Then we prove the following analog to Theorem 1.8 for chain maps. This is
the analogue of the handle sliding lemma from [Oh5, Oh8] which was studied
for the case with C2-smallness of Hamiltonians replaced by the smallness in
hamiltonian topology (and also in the Lagrangian context).

Theorem 1.10 (Handle sliding lemma). Consider the path H : s �→ H(s) of
engulfed Hamiltonians H(s) satisfying (1.16) and fix an elongation function
ρ : R → [0, 1]. Then whenever d(φ1

H(s), id) ≤ δ < d(V,Θ), any finite energy

solution v of (1.18) satisfies one of the following alternatives:

(1) Either

(1.19) Image v ⊂ Dδ(L) ⊂ V,

(2) or Image v �⊂ V . In this case, we also have
∫
v∗ω ≥ C(J0, V ) where

C(J0, V ) > 0 is a constant depending only on δ and V .

Similarly as before done for the boundary map, we can transform a
solution v of (1.14) to that of the perturbed Cauchy-Riemann equation with
fixed boundary condition

(1.20)

{
∂u
∂τ −XK(ρ(τ))(u) + J

(
∂u
∂t −XH(ρ(τ))(u)

)
= 0

limτ→−∞ u(τ) = z−, limτ→∞ u(τ) = z+.

The Floer chain map hHρ : CF∗(H0) → CF∗(H1) can be defined by consid-
ering either the suitable moduli space of solutions (1.20) or that of (1.18).

Using the above constructed local Floer homology, we can assign the
local spectral invariants which we denote by ρlagU (H; a) for a ∈ H∗(L;Z). We
will restrict to the case a = PD[M ] = 1. To highlight the localness of the

invariant we denote by ρlagU (H; 10) the corresponding invariant. We denote
the global spectral invariant associated to 1 by ρlag(H; 1) as in [Oh14].

By specializing to the case of zero section oN of T ∗N , we can define the
local Floer complex

(CF∗(F ;U, T ∗N), ∂U )

for any F ∈ Hengulf
δ (T ∗N) provided δ > 0 is sufficiently small.

When Theorem 1.8 and Theorem 1.10 are applied to the cotangent bun-
dle T ∗L, we obtain the following

Corollary 1.11. Consider a pair of open neighborhoods V ⊂ V ⊂ U of oL
in T ∗L be given where V is J0-convex. Assume H = {H(s)} is an engulfed
isotopy with F = H(1) satisfying (1.16). Fix an elongation function ρ :
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R → [0, 1] and consider the equation (1.18). Then there exists δ > 0 with
δ < d(V, θ) such that whenever

max
s∈[0,1]

d(φ1
H(s), id) < d(V,Θ),

the followings hold:

(1) For F = H(1), any solution of v of (1.14) with Im v ⊂ U is very thin.
(2) Fix an elongation function ρ : R → [0, 1] and consider the equation

(1.18). Then any finite energy solution v with Im v ⊂ U is thin (and
so very thin).

When we specialize our construction, using Corollary 1.11, to a J0-
convex neighborhood of the zero section in the cotangent bundle, we can
define the local version ρlagV (F ; 10) of the Lagrangian spectral invariants. We
refer to section 6 for the detailed construction of this local invariant.

Once we have achieved localizations of various entities arising in Floer
complex in the previous subsection, the following equality can be proven
by the same argument used in the proof of Theorem 6.2 using the localized
version of Lagrangian spectral invariants and basic phase function.

Theorem 1.12. Fix an open neighborhood V ⊂ T ∗L of oL ⊂ T ∗L that
is J0-convex. Let H = {H(s)} be an engulfed isotopy with H(0) = 0 and

H(1) = F . Then for any F ∈ Hengulf
δ (M ;V ),

ρlagV (F ; 10) = ρlag(F ; 1).

Denote by fV
F the basic phase function defined by

fV
F (q) = ρlagV (F ; {q})

where ρlagV (F ; {q}) is the spectral invariant defined by considering the local
Floer complex CF (L, T ∗

q N ;V ) instead of the global complex CF (L, T ∗
q N)

on T ∗N .

Theorem 1.13. Let V ⊂ T ∗N be as before. Then

fV
F = fF

for any V -engulfed F .

One important consequence of the above theorems is the inequalities

(1.21) ρlagV (F ; 10), max fV
H ≤ E−(F ).
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Remark 1.14. We recall from [Oh3, Oh6] that the proof of the inequal-
ity ρlag(F ; a) ≤ E−(F ) therein is based on the computation of the action
changes under the linear homotopy s �→ s F . This cannot be directly ap-
plied to the study of the local version of spectral invariants because the
linear homotopy may not be V -engulfed as mentioned before.

In Appendix, we also localize the Hamiltonian Floer complex for a future
purpose. We apply the above constructions to the graph

Graphφ1
F = {(φ1

H(x), x) | x ∈ M} ⊂ M ×M

of engulfed Hamiltonian F on M satisfying

(1.22) d(φ1
F , id) < δ

for a sufficiently small δ > 0. We define

Hengulf
δ (M) ⊂ C∞([0, 1]×M,R)

to be the set of such Hamiltonian F ’s, and call the associated Hamiltonian
path an engulfed Hamiltonian C0-approximate loop.

Consider U ⊂ L0(M) defined by

U = U(UΔ) = {γ ∈ L0(M) | (γ(t), γ(0)) ∈ UΔ}.

We define the local Floer homology

HF
[id]
∗ (F, J ;U), U ⊂ L0(M)

by counting the ‘thin’ trajectories such that their images are contained in a
neighborhood U of the set of constant paths in M . Again we would like to
emphasize that we have not control of the area or filtration.

We denote by ρhamU (φF ; 1) = ρhamU (F ; 1) the (local) spectral invariant
associated to 1 ∈ H∗(L).

From now on, we will always assume that all the Hamiltonians in the
rest of the paper are engulfed one way or the other, unless otherwise said
explicitly.

We would like to thank D. McDuff and H. Hofer for pointing out a crucial
gap in our W 1,p-precompactness proof in the previous version of the present
paper. This forces us to abandon the area argument to obtain the thick-thin
dichotomy of Floer moduli spaces but exploit the maximum principle instead
to obtain a dichotomy result that will do our purpose of extracting the local
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Floer complex out of the global Floer complex. We also thank anonymous
referees for many suggestions to improve presentation of the paper, and the
suggestion of terminology ‘engulfed’ instead of ‘engulfable’, which suits much
better for the current circumstance considered in the present paper.

2. Local Floer chain module of engulfed Hamiltonian
path φH

From now on, we will fix a pair of Darboux neighborhood V ⊂ V ⊂ U of L
in M and assume H is V -engulfed, i.e., satisfies

(2.1) φHt(L) ⊂ V ⊂ V ⊂ U

for all t ∈ [0, 1].

Next we recall the Lagrangian analogue of the Novikov ring Γω = Γ(M,ω)
from [FOOO1]. Denote by Iω : π2(M,L) → R the evaluations of symplectic
area. We also define another integer-valued homomorphism Iμ : π2(M,L) →
Z by

Iμ(β) = μ (w∗TM, (∂w)∗TL)

which is the Maslov index of the bundle pair (w∗TM, (∂w)∗TL) for a (and
so any) representative w : (D2, ∂D2) → (M,L) of β.

Definition 2.1. We define

Γ(ω,L) =
π2(M,L)

ker Iω ∩ ker Iμ

and Λ(ω,L) to be the associated Novikov ring.

We briefly recall the basic properties on the Novikov ring Λ(ω,L)(R)
where R is a commutative ring where R could be Z2, Z or Q for example.
We will just use the letter R for the coefficient ring which we do not specify.
Basically R will be Q when the associated moduli space is orientable as in
the case of Graphφ1

H for a Hamiltonian diffeomorphism φ1
H which is of our

main interest.

We put

qβ = Tω(β)eμL(β),

and

deg(qβ) = μL(β), E(qβ) = ω(β)
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which makes Λ(ω,L) and Λ0,(ω,L) become a graded ring in general. We have
the canonical valuation ν : Λ(ω,L) → R defined by

ν

⎛⎝∑
β

aβT
ω(β)eμL(β)

⎞⎠ = min{ω(β) | aβ �= 0}.

It induces a valuation on Λ(ω,L) which induces a natural filtration on it. This
makes Λ(ω,L) a filtered graded ring. For a general Lagrangian submanifold,
this ring may not even be Noetherian but it is so if L is rational, i.e., Γ(L;ω)
is discrete.

Now consider a nondegenerate V -engulfed Hamiltonian H where V is a
given Darboux neighborhood of L. We denote by Ω(L,L) the set of paths
γ : [0, 1] with γ(0), γ(1) ∈ L. In general Ω(L,L) is not connected but it has
the distinguished component of constant paths, which we denote by

Ω0(L,L).

When H is V -engulfed, the path space Ω(φ1
H(L), L) also carries the distin-

guished component of the path t �→ φt
H(p) for p ∈ L. We denote by

Ω0(φ
1
H(L), L)

the corresponding component. Then we denote by Ω̃0(L,L) the Novikov
covering space and π : Ω̃0(L,L) → Ω0(L,L) the projection. We denote by
[z, w] an element of Ω̃0(L,L).

Following [Che2] we say that two elements of CritAH are equivalent if
they belong to the same connected component of the set

π−1 ({γ ∈ Ω0(L,L) | γ([0, 1]) ⊂ U}) ⊂ Ω̃0(L,L).

Then the projection π : Ω̃0(L,L) → Ω0(L,L) bijectively maps each equiva-
lence class of CritAH to Chord(H;L,L). In the current case of V -engulfed
Hamiltonian, there is a ‘canonical equivalence class’ represented by the pairs
[z, wz] for each given chord z ∈ Chord(H;L,L), where wz is the (homotopi-
cally) unique cone-contraction of z to a point in L. We denote this equiv-
alence class by Crit[id]AH ⊂ CritAH . This provides a canonical section of
π : Ω̃0(L,L) → Ω0(L,L) when restricted to Chord(H;L,L) ⊂ Ω0(L,L).
This in turn induces a natural Γ(ω,L)-action on CritAH which gives rise to
the bijection

Crit[id]AH × Γ(ω,L) → CritAH .
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Remark 2.2. Note that for any [z, w] ∈ Crit[id]AH , (2.1) implies z(t) ∈ V
since z(0) ∈ φ1

H(L). Therefore the action value AH([z, w]) will not change
even if we cut-off H outside V .

We denote

Crit[g]AH = g · Crit[id]AH , g ∈ Γ(ω,L).

Then we denote their associated R-module by

CF
[g]
∗ ((L,L), H;U), CF

[id]
∗ ((L,L), H;U) = CF

[id]
∗ ((L,L), H;U).

We want to remark that CF
[id]
∗ ((L,L), H;U) coincides with the local Floer

complex that was used by the author in [Oh2] for the C2-small cases.
The above discussion in turn gives rise to the isomorphism

CF [g]((L,L), H;U)⊗R Λ(ω,L)
∼= CF∗((L,L);H)

as a Λ(ω,L)-module for each g ∈ Λ(ω,L). Following [Che1, Che2], we denote

(2.2) leng(u) := EJ(u) = EJ0
(v) = area(v).

Now we note that the Floer (pre)-boundary map

∂ : CF∗((L,L);H) → CF∗((L,L);H)

is Λ(ω,L)-equivariant and has the decomposition

(2.3) ∂ =
∑

λ∈R≥0

∂λ

where ∂λ is the contribution arising from u ∈ M(L,L;H) with

leng(u) = λ > 0.

3. Thick-thin dichotomy of Floer trajectories

This section is a modification of section 3 of [Oh2] which treats the case of
C2-small perturbation of Hamiltonians H. In this section, we will replace
the condition of φH being C1-small by that of φH being C0-small.

Consider a sequence v : R× [0, 1] → M of solutions of (1.14) associated
to H and J0. We re-state Theorem 1.8 here.
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Theorem 3.1. Let L ⊂ (M,ω) be a compact Lagrangian submanifold and

let V ⊂ V ⊂ U be a pair of Darboux neighborhoods of L. Consider a V -

engulfed Hamiltonian path φH . Then there exists δ > 0 depending only on ε

(and (M,ω)) such that whenever d(φ1
H , id) ≤ δ, any solution of v of (1.14)

satisfies one of the following alternatives:

(1) Image v ⊂ V and max d(v(z), oL) ≤ dH(φ
1
H(L), L),

(2) Image v �⊂ V and
∫
v∗ω ≥ C(J0, V ) where C(J0, V ) > 0 is a constant

depending only on V .

Proof. Suppose that Image v �⊂ V . Then there exists a point v(z) �∈ V and so

d(v(z), v(∂(R× [0, 1])) ≥ min{dH(∂V, φ1(L)), dH(∂V, oL)}.

Then the monotonicity formula implies∫
v∗ω ≥ C ′ ·

(
min{dH(∂V, φ1(L)), dH(∂V, oL)}

)2
where C ′ is the monotonicity constant of (M,ω, J0) in the monotonicity

formula. Considering δ < 1
4 · dH(∂V, oL) and setting

C(J0, V ) :=
1

2
C ′ · (dH(∂V, oL)− δ)2 ≥ 1

4
C ′dH(∂V, oL)

2

(2) follows.

For the curve v of the type (1), the maximum principle applied to J0-

holomorphic curves contained in the Darboux neighborhood, we obtain the

maximum distance of v(z) from L is achieved on the boundary R × {0, 1}.
But by the boundary condition, we have

max
z∈R×{0,1}

d(v(z), oL) ≤ dH(φ
1
H(L), L)).

This finishes the proof.

Remark 3.2. We would like to note that the area property for the trajec-

tories v of the type (2) spelled out as∫
v∗ω ≥ C(J0, V )

with constant C(J0, V ) > 0 independent of H will not be used in this paper.
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We now decompose ∂ into

(3.1) ∂ = ∂(0) + ∂′

where ∂(0) is the sum of contribution of thin trajectories and ∂′ that of thick
trajectories.

Remark 3.3. We would like to emphasize that even when H is C1-small
this decomposition does not respect the one given in (2.3). This is a contrast
from the case of C2-small H: in that case it was proven in [Oh2] that there
is a constant δ0(H) satisfying δ(H) → 0 as ‖H‖C2 → 0 such that all thin
trajectories have area less than δ0(H) and that all thick trajectories have
area greater than 1

2A(M,L, J0) and hence

∂(0) =
∑

|λ|<δ0(H)

∂λ, ∂′ =
∑

λ> 1

2
A(M,L,J0)

∂λ.

We denote u ∈ supp ∂, supp ∂(0), and supp ∂′ respectively, if the map u
nontrivially contributes to the corresponding operators.

Definition 3.4. We call (CF
[id]
∗ ((L,L), H;U), ∂U ) the local Floer complex

of H in U which is defined to be

CF
[id]
∗ ((L,L), H;U) = R · {Crit[id]AH},

∂U = ∂(0)

∣∣∣
CF [id]

∗ ((L,L),H;U)
.

The Λ(ω,L)-equivariance of ∂ gives rise to

ĝ ◦ ∂(0)|CF [id]
∗ ((L,L),H;U) = ∂(0)|CF [g]

∗ ((L,L),H;U) ◦ ĝ

and ĝ carries a natural weight given by

AF (g · [z, w])−AF ([z, w]), [z, w] ∈ CritAF

which does not depend on the choice of [z, w] ∈ CritAF . In fact this real
weight is nothing but the value ω([g]).

Proposition 3.5. Let δ > 0 where δ is the constant given in Theorem 3.1.
Then ∂2

U = 0 and so the local Floer homology

HF
[id]
∗ ((L,L), H;U) = ker ∂U/ im ∂U

is well-defined.
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Proof. Since all the thin trajectories have their image contained in the Dar-

boux neighborhood U , concatenations of thin trajectories are also thin and

the thin part of Floer moduli spaces for the pair (φ1
H(L), L) does not bubble-

off. Then the standard compactness and gluing argument immediately fin-

ishes the proof.

In the next section we will compute the groupHF
[id]
∗ ((L,L), F ;U), when

F = H(1) for a 2-parameter family H = {H(s)}s∈[0,1] with H(0) = 0 and

H(s) ∈ Hengulf
δ (M). We denote by

d(φ1
H, id) := max

s∈[0,1]
d(φ1

H(s), id)

the C0-distance of H to the constant family id.

4. Handle sliding lemma for engulfed isotopy of
C0-approximate loops

In this section, we examine another important element in the chain level

theory, the handle sliding lemma introduced in [Oh5] for the Hamiltonian H

that is sufficiently C2-small. We will consider the lemma in the Lagrangian

setting over the path s �→ H(s) for H = {H(s)}s∈[0,1] ⊂ Hengulf
δ (M) with

H(0) ≡ 0 for δ sufficiently small. Again the smallness will depend only on

(M,ω).

For a family H = {H(s)}s∈[0,1], we also study the comparison of this

equation with the moving boundary condition. For such a family, we consider

the geometric version first

(4.1)

{
∂v
∂τ + J0

∂v
∂t = 0

v(τ, 0) ∈ φ1
H(ρ(τ))(L), v(τ, 1) ∈ L

for the path v : R× [0, 1] → M . If we define a map u : R× [0, 1] → M

u(τ, t) = φt
H(ρ(τ))(φ

1
H(ρ(τ)))

−1(v(τ, t)),

A simple calculation proves that u satisfies u(τ, 0), u(τ, 1) ∈ L and

(4.2)

{
∂u
∂τ −XK(ρ(τ))(u) + J

(
∂u
∂t −XH(ρ(τ))(u)

)
= 0

u(τ, 0), u(τ, 1) ∈ L
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where K is the s-Hamiltonian generating the Hamiltonian vector field

XK(s, t, x) :=
∂φ

∂s
(φ−1(s, t, x))

of the 2-parameter family (s, t) �→ φ(s, t) = φt
H(s)φ

−1
H(s) and J = J(s, t) =

(φ(s, t))∗J0. We would like to highlight the presence of the terms XK(ρ(τ))(u)
in the above equation for u and the definition of energy of u. The associated
off-shell energy of (4.2) is given by
(4.3)

E(H,K),J ;ρ(u) =
1

2

∫ ∞

−∞

∫ 1

0

∣∣∣∣∂u∂τ −XK(ρ(τ))(u)

∣∣∣∣
J

+

∣∣∣∣∂u∂t −XH(ρ(τ))(u)

∣∣∣∣2
J

dt dτ.

which coincides with∫ ∞

−∞

∫ 1

0

∣∣∣∣∂u∂t −XH(ρ(τ))(u)

∣∣∣∣2
J

dt dτ

on shell. The proof of the on-shell identities∫
v∗ω = EJ0

(v) = E(H,K),J ;ρ(u)

is straightforward and so omitted. With these correspondences, we have the
obvious analog to Lemma 1.7 for the moving boundary condition, whose
precise statement we omit.

Here we re-state Theorem 1.10 and give its proof here.

Theorem 4.1 (Handle sliding lemma). Consider the path H : s �→ H(s) of
engulfed Hamiltonians H(s) satisfying (1.16) and fix an elongation function
ρ : R → [0, 1]. Then there exists δ > 0 such that if d(φ1

H(s), id) < δ <

d(V,Θ), any finite energy solution v of (1.18) satisfies one of the following
alternatives:

(1) if Image v ⊂ V , maxz d(v(z), oL) ≤ d(φ1
H(s), id),

(2) if Image v �⊂ V ,
∫
v∗ω ≥ C(J0, V ) where C(J0, V ) > 0 is a constant

depending only on J0 and V .

Proof. The proof is the same as that of Theorem 3.1 and so omitted.

Now Theorem 4.1 together with this dichotomy of thick-thin trajectories
enable us to decompose the Floer-Piunikhin (pre)-chain map

ΨH : C∗(L) → CF∗((L,L), H(1);U)
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into the thick-thin decomposition

(4.4) ΨH = ΨH,(0) +Ψ′
H

similar to (3.1). Again it follows from Theorem 1.10 that those v’s contribut-
ing non-trivially to ΨH,(0) are very thin (and those contributing to Ψ′

H has
area bigger than C(J0, V ).)

We refer to section 5.3 [FOOO1] or section 5 [FOOO3] for the details of
the construction of the Floer-Piunikhin (pre)-chain map ΨH.

Remark 4.2. The above Handle sliding lemma can be also proved by the
same argument for the Floer chain map between f and H(1)#f when |f |C2

is sufficiently small relative to C(V, J0). This way one can avoid using the
Bott-Morse version of Floer chain map, the Floer-Piunikhin (pre)-chain map
ΨH.

5. Computation of local Floer homology HF [id]
∗ ((L,L),H;U)

The role of the C2-smallness in the construction of local Floer complex

HF
[id]
∗ ((L,L), H;U)

in [Oh2] was two-fold. One is to make its flow φH C1-small which gives rise
to a thick-thin operators of Floer operators. The other is for the construc-
tion of (local) chain isomorphism between the singular complex of L and the

Floer complex CF
[id]
∗ ((L,L), H;U) for which one needs to avoid bubbling

(especially disc-bubbling) to ensure the chain isomorphism property of the
Floer-Piunikhin’s continuation map. For the latter purpose, we need to ob-
tain some estimates of the filtration change for the Floer chain map between
the identity path and φH over the family

H : s �→ H(s), s ∈ [0, 1].

In the present context, we do not have such control over the filtration
change under the chain map we construct, even if one uses the adiabatic
chain map mentioned before: Since we do not have any restriction on the
C2-norm of H, we will not have much control on the mesh of the partitions
we make for the given approximating sequence Hi. To overcome this lack
of control of the filtration, we use Conley and Floer’s idea of continuation
of maximal invariant sets [Co, Fl2, Oh2], which we now briefly summarize
leaving more details thereto.
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We denote by M1(J, (L
′, L);U) the set of pairs (u, z) of J-holomorphic

strips u attached to the pair (L′, L) whose image is contained in U and a
marked point z ∈ R× [0, 1]. We then denote

S(J, (L′, L);U) := ev(M1(J, (L′, L);U))

and call it the maximal invariant set of the Cauchy-Riemann flow. For a
given one parametric family

(Jpara, Hpara) ∈ Map([0, 1]2,Jω)× C∞([0, 1]2 ×M,R)

with Hpara = H with H(0) = 0, we define a continuation Upara between
the maximal invariant sets S0 ⊂ U0 and S1 ⊂ U1 to be an open subset of
[0, 1]×M that satisfies

(1) For each s ∈ [0, 1] and all t ∈ [0, 1],

Ls ⊂ U s := {x ∈ M | (x, s) ∈ Upara}.

(2)

Ss := S(Js, (Ls, L);U s)

is isolated in U s for all s ∈ [0, 1].

The following isolatedness is a crucial ingredient in the construction of
the isomorphism

H∗(L) ∼= HF [id](φ1
H(L), L), J ;U).

Proposition 5.1. S(J0, (φ1
H(s)(L), L);V ) is isolated in V .

Proof. Consider the family Ss := S(J0, (φ1
H(s)(L), L);V ) for 0 ≤ s ≤ 1.

Clearly X0 = S(J0, (L,L);V ) is isolated in V . Furthermore the isolatedness
is an open property. Let 0 < s0 ≤ 1 be the smallest s at which Ss0 fails to
be isolated in V . Then there exists some z0 = (τ0, t0) ∈ R× [0, 1] such that
v(τ0, t0) ∈ ∂V . Since v(τ, 0) ∈ φ1

H(s)(L) and v(τ, 1) ∈ L and φ1
H(s)(L), L ⊂

V , this violates the maximum principle applied to the J0-convex boundary
of V . This finishes the proof.

Once we have set up these definitions and isolatedness, it immediately
gives rise to the following theorem

Theorem 5.2. Suppose (L′, L; J ;U) is as above. Suppose H ∈ Hengulf
δ (L;U)

for a sufficiently small δ = δ(ε) > 0. Then for any small perturbation J ′ of
J for which M(L′, L; J ′;U) is Fredholm regular,
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(1) the homomorphism

∂U : CF (L′, L; J ′;U) → CF (L′, L; J ′;U), ∂Ux =
∑

y∈L∩φ1
H(L)

〈∂Ux, y〉y

satisfies ∂U ◦ ∂U = 0.
(2) And the corresponding quotients

HF (L,L; (H, J ′);U) ∼= HF ∗(L′, L; J ′;U) = ker ∂U/ im ∂U

are isomorphic under the continuation (Spara, Jpara, Hpara, Upara) as
long as the continuation is Floer-regular at the ends s = 0, 1.

After we establish this continuation invariance, we can apply it to the
family H with H(0) = 0 and prove the following theorem. The proof of this
theorem together with that of Corollary 6.3 may be the most novel part of
the mathematics of the present paper beyond those already established in
[Oh2], [Oh3].

Theorem 5.3. Consider H = {H(s)} ⊂ Hengulf
δ (M) with H(0) = 0. Then

whenever 0 < δ < d(V,Θ),

HF [id](φ1
H(L), L; J ′;U) ∼= H∗(L;Z)

for any J ′ sufficiently close to J0 in C∞-topology.

Proof. We consider the homotopy

H : s �→ H(s)

and its reversal. Using the isolatedness of thin trajectories in Theorem 3.1
and Theorem 4.1, we define the local Floer-Piunikhin (pre)-chain maps

ΨHρ,(0) : CF
[id]
∗ ((L,L), 0;U) → CF

[id]
∗ ((L,L), H;U),

ΦHρ̃,(0) : CF
[id]
∗ ((L,L), H;U) → CF

[id]
∗ ((L,L), 0;U)

and their compositions

ΨHρ,(0) ◦ ΦHρ̃,(0) : CF∗((L,L), 0;U) → CF∗((L,L), H;U),

ΦHρ̃,(0) ◦ΨHρ,(0) : CF∗((L,L), H;U) → CF∗((L,L), 0;U).

Theorem 3.1 and Theorem 4.1 imply that all the above maps properly re-

strict to the maps between CF
[id]
∗ (0;U) ∼= (C∗(L), ∂(0)), the singular chain
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complex, and CF
[id]
∗ (H;U) by isolating the thin trajectories. Since the thin

trajectories cannot bubble-off, all these maps become chain maps between
them. Therefore ΨHρ,(0) and ΦHρ̃,(0) induce the isomorphisms between

HF
[id]
∗ ((L,L), 0;U) ∼= H∗(L) and HF

[id]
∗ ((L,L), H;U) which are inverses

to each other. More precisely, there exist a chain homotopy maps between
ΨHρ,(0) ◦ΦHρ̃,(0) and idC∗(L), and ΦHρ̃,(0) ◦ΨHρ,(0) and idCF∗(H) respectively.
(See [Oh1, FOOO3] for the proof of existence of such a chain homotopy.)

Once this is established, we can compute HF
[id]
∗ ((L,L), 0;U) inside the

cotangent bundle T ∗L. Then the arguments used in [Fl3] and [Oh2] prove
the theorem.

This finishes the proof.

Remark 5.4. In the above proof, we would like to emphasize that no
bubbling-off for the thin trajectories holds not because the area of a bubble
will be big but because a bubble must go out of the given Darboux neigh-
borhood of L and hence cannot be thin. As we mentioned before we recall
that thin trajectories could have large area.

6. Localization on the cotangent bundle

The main purpose of this section is to use the local Floer complex con-
structed on the cotangent bundle and localize the construction of Lagrangian
spectral invariants introduced in [Oh3] which has been further studied in
[Oh14].

We will also localize the triangle product similarly and the basic phase
function in the current context of approximations of engulfed topological
Hamiltonian loops in Appendix, for a future purpose.

6.1. Localization of Lagrangian spectral invariants ρlag(H; 1)

We first specialize the general definition of spectral invariants ρlag(F ; 1)

and ρlagV (F ; 10) to the cotangent bundle. In this case of the Hamiltonian
deformations of the zero section in the cotangent bundle, we do not need to
use the Novikov ring but only use the coefficient ring R and have only to
use the single valued classical action functional

Acl
F (γ) =

∫
γ∗θ −

∫ 1

0
F (t, γ(t)) dt

in the evaluation of the level of the chains.
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We now assume that L is connected. Using the isomorphism

(ΨH)∗ : H∗(L,Λ(ω,L)) → HF∗(F )

where ΨH is the chain map defined in section 4, we define

ρlag(F ; 1) = inf
α∈(ΨH)∗([L])

λF (α)

which is also the same as

inf
λ

{
HF

[id],λ
∗ (F ) �= 0

}
.

This is because HFn(F ;V ) or HFn(F ) has rank one and so all isomorphisms

H∗(L) → HF∗(F ) maps the fundamental cycle [L] of L to the same image

modulo a non-zero scalar multiple and so the associated spectral invariants

coincide (Confomality Axiom [Oh6]). Similarly we define

ρlagV (F ; 1) = inf
α∈(ΨH,(0))∗([L])

λF (α)

which is also the same as

inf
λ

{
HF

[id],λ
∗ (F ;V ) �= 0

}
.

Remark 6.1. We would like to mention that the homomorphism (ΨH)∗
and (ΨH,(0))∗ do not depend on the choice of homotopy H. But for the case

(ΨH,(0))∗ the whole family of Hamiltonians H(s) for s ∈ [0, 1] should be

assumed to be V -engulfed. For example, the commonly used the linear ho-

motopy s �→ sF may not be V -engulfed even when F is V -engulfed. Because

of this, the linear homotopy cannot be used to construct the local chain map

in general. Here is one place where the presence of the engulfed family H of

Hamiltonians is used in the definition of local Lagrangian spectral invariants.

Now we prove the following coincidence theorem of global and local

spectral invariants.

Theorem 6.2. Let H = {H(s)} be a V -engulfed isotopy with H(0) = 0 and

F = H(1). Then we have

ρlagV (F ; 10) = ρlag(F ; 1)
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Proof. For the given family

H : s �→ H(s), s ∈ [0, 1],

we consider the continuation of maximal invariant sets defined in section 6.
For given one parametric family

(Jpara, Hpara) ∈ Map([0, 1]2,Jω)× C∞([0, 1]2 ×M,R)

with Hpara = H with H(0) = 0 and Jpara = J0, all the Floer trajectories
contributing to these maximal invariant sets are thin and so become very
thin. In particular, the maximal invariant sets Ss are all contained in the
given neighborhood [0, 1]×Dδ(T ∗L) for all of [0, 1]×M and S0 = L.

This implies that the local Floer complex (CF
[id]
∗ (F ), ∂(0)) and the global

one (CF∗(F ), ∂) define the same complex and also satisfies

(ΨH)∗([L]) = (ΨH,(0))∗([L])

under the identification, provided F is connected to 0 via an engulfed Hamil-
tonian homotopy H = {H(s)} is given. This finishes the proof.

The proof of the following corollary requires some care unlike the case of
global Floer homology because the standard linear homotopy s �→ sF may
not be V -engulfed.

Corollary 6.3. For any F ∈ Hengulf
δ (T ∗L;V ), ρlagV (F ; 10) ≤ E−(F ).

Proof. Knowing that Theorem 6.2 holds, we can consider the linear homo-
topy s �→ sF and denote by Ψlin

F the associated Floer-Piunikhin chain map
C∗(L) → CF∗(F ) for the global Floer complex instead. Then it is standard
that Ψlin

F also induces an isomorphism H∗(L) → HF∗(F ) in global Floer
homology. More specifically we have

(Ψlin
F )∗([L]) = (ΨH)∗([L]).

(We emphasize that the corresponding cycles (Ψlin
F )#([L]), (ΨH)#([L]) are

different in general. For example, the general estimate of the level of the

cycle (ΨH)#([L]) involve the derivative ∂H(s)
∂s which is uncontrolled in the

topological Hamiltonian homotopy.) Using the cycle (Ψlin
F )#([L]), it is easy

to obtain the upper bound ρ(F ; 1) ≤ E−(F ) by the standard calculations.
(See [Oh3, Oh5, Oh6] for example). This together with Theorem 6.2 gives
rise to the proof.
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Remark 6.4. We would like to emphasize that unlike the isotopy H =
{H(s)} with H(s) ∈ Hengulf

δ (L;V ), the isotopy of the time-one maps φ1
sF

for the linear isotopy Hlin : s �→ sF with F = H(1) may not be uniformly
C0-small and hence the associated Floer trajectories of the chain map moduli
space could go out of the neighborhood V . Because of this, the linear isotopy
cannot be used to define a chain map from C∗(L) to the local Floer complex

CF
[id]
∗ (F ;V ) and so the inequality stated in this corollary does not follow

from by now the standard computation used in [Oh6] to prove ρlag(F ; 10) ≤
E−(F ) for the global invariant.

6.2. Localization of the basic phase function

We consider the Lagrangian pair

(oN , T ∗
q N), q ∈ N

and its associated Floer complex CF (H; oN , T ∗
q N) generated by the Hamil-

tonian trajectory z : [0, 1] → T ∗N satisfying

(6.1) ż = XH(t, z(t)), z(0) ∈ oN , z(1) ∈ T ∗
q N.

Denote by Chord(H; oN , T ∗
q N) the set of solutions. The differential ∂(H,J)

on CF (H; oN , T ∗
q N) is provided by the moduli space of solutions of the

perturbed Cauchy-Riemann equation

(6.2)

{
∂u
∂τ + J

(
∂u
∂t −XH(u)

)
= 0

u(τ, 0) ∈ oN , u(τ, 1) ∈ T ∗
q N.

An element α ∈ CF (H; oN , T ∗
q N) is expressed as a finite sum

α =
∑

z∈Chord(H;oN ,T ∗
q N)

az[z], az ∈ Z.

We denote the level of the chain α by

(6.3) λH(α) := max
z∈suppα

{Acl
H(z)}.

The resulting invariant ρ(H; {q}) is to be defined by the mini-max value

fH(q) := inf
α∈[q]

λH(α)
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where [q] ∈ H0({q};Z) is a generator of the homology group H0({q};Z).
Equivalently, we can consider the pair (LH , T ∗

q N) for the action func-

tional

A(0)(γ) :=

∫
γ∗θ + hH(γ(0))

defined on Ω(LH , T ∗
q N) which defines the geometric version of the Floer

complex CF (LH , T ∗
q N) via the equation

(6.4)

{
∂v
∂τ + J0

∂v
∂t = 0

v(τ, 0) ∈ LH , v(τ, 1) ∈ T ∗
q N.

Now by the same argument performed in sections 3 and 4, we can localize

the Floer complex to CF (LH , T ∗
q N ;V ) and define the local version of the

spectral invariant ρlagV (H; {q}) by

fV
H (q) = inf

α∈[q]
λH(α)

where [q] ∈ H0({q};Z) is a generator of the homology group H0({q};Z). By
varying q ∈ N , this defines a function fV

H : N → R which is precisely the

local version of the basic phase function defined in [Oh3]. We denote the

associated graph part of the front WRH
of the LH by GfV

H
.

We summarize the main properties of fV
H whose proofs are verbatim

the same as those established for the (global) basic function fH in [Oh3],

[Oh14] by replacing the global Floer complex CF∗(H) by the local complex

CF
[id]
∗ (H;V ). First we have

Theorem 6.5. Let H = H(t, x) ∈ Hengulf
δ (T ∗N) and the Lagrangian sub-

manifold LH = φ1
H(oN ). Consider the function fV

H defined above. Then for

any x ∈ LH

(6.5) fV
H (π(x)) = hH(x) = Acl

H(zHx )

for some Hamiltonian chord zHx ending at LH ∩ T ∗
π(x)N .

Once we have achieved localizations of various entities arising in Floer

complex in the previous subsection, the following equality can be proven

by the same argument used in the proof of Theorem 6.2 using the localized

version of Lagrangian spectral invariants and basic phase function. We omit

the details of its proof.
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Theorem 6.6. Let V ⊂ T ∗N be as before. Then

fV
H = fH

for any V -engulfed H.

An immediate corollary of this theorem is the following inequality.

Corollary 6.7. For any Hamiltonian H ∈ Hengulf
δ (T ∗N),

(6.6) max fV
H ≤ E−(H).

Furthermore if H, H ′ ∈ Hengulf
δ (T ∗N)

(6.7) ‖fV
H − fV

H′‖∞ ≤ ‖H −H ′‖.

6.3. Localization of triangle product

A version of localization of triangle product was previously exploited in
[Se, Sp, Oh10] for smooth Hamiltonians.

Instead of delving into the localization of triangle product in full gen-
erality, we will restrict ourselves to the case of the zero section oL in the
cotangent bundle. Once we isolate the invariant set into a Darboux neigh-
borhood U ⊂ M , we may identify U with a neighborhood V of the zero
section oL ⊂ T ∗L and consider a Hamiltonian F with suppF ⊂ V . It then
follows that due to the non-presence of bubbling effect for the pair (T ∗L, oL),
by an easier argument, we obtain the decomposition ∂ = ∂(0)+∂′ of the Floer
differential ∂ on CF∗(F ;T ∗L), and obtain the local Floer complex(

CF
[id]
∗ (oL, F ;V ), ∂(0)

)
.

We first recall the definition of the triangle product described in [Oh4], [FO]
and the discussion carried out in section 8 [Oh14]. Similar idea of localizing
the triangle product was used in [Se], [Oh10] and [Sp]. Instead of delving into
the localization in full generality, we restrict ourselves to the case relevant
to our main interest arising from the study in [Oh14].

Let q ∈ N be given. Consider the Hamiltonians H : [0, 1] × T ∗N → R

such that LH intersects transversely both oN and T ∗
q N . We consider the

Floer complexes

CF (LH , oN ), CF (oN , T ∗
q N), CF (LH , T ∗

q N)
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each of which carries filtration induced from the effective action function
given below. We denote by v(α) the level of the chain α in any of these
complexes.

More precisely, CF (LH , oN ) is filtered by the effective functional

A(1)(γ) :=

∫
γ∗θ + hH(γ(0)),

CFμ(oN , T ∗
q N) by

A(2)(γ) :=

∫
γ∗θ,

and CF (LH , T ∗
q N) by

A(0)(γ) :=

∫
γ∗θ + hH(γ(0))

respectively. We recall the readers that hH is the potential of LH and the
zero function the potentials of oN , T ∗

q N .
We now consider the triangle product in the chain level, which we denote

by

(6.8) m2 : CF (LH , oN )⊗ CF (oN , T ∗
q N) → CF (LH , T ∗

q N)

following the general notation from [FOOO1]. This product is defined by
considering all triples

x1 ∈ LH ∩ oN , x2 ∈ oN ∩ T ∗
q N, x0 ∈ LH ∩ T ∗

q N

with the polygonal Maslov index μ(x1, x2;x0) whose associated analytical
index, or the virtual dimension of the moduli space

M3(D
2;x1, x2;x0) := M̃3(D

2;x1, x2;x0)/PSL(2,R)

of J-holomorphic triangles, becomes zero and counting the number of ele-
ments thereof.

Definition 6.8. Let J = J(z) be a domain-dependent family of
compatible almost complex structures with z ∈ D2. We define the space
M̃3(D

2;x1, x2;x0) by the pairs (w, (z0, z1, z2)) that satisfy the following:

(1) w : D2 → T ∗N is a continuous map satisfying ∂Jw = 0 on D2 \
{z0, z1, z2},
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(2) the marked points {z0, z1, z2} ⊂ ∂D2 with counter-clockwise cyclic
order,

(3) w(z1) = x1, w(z2) = x2 and w(z0) = x0,
(4) the map w satisfies the Lagrangian boundary condition

w(∂1D
2) ⊂ LH , w(∂2D

2) ⊂ oN , w(∂3D
2) ⊂ T ∗

q N

where ∂iD
2 ⊂ ∂D2 is the are segment in between xi and xi+1 (i

mod 3).

We have the following energy estimate

Proposition 6.9 (Proposition 8.2 [Oh14]). Suppose w : D2 → T ∗N be
any smooth map with finite energy that satisfy all the conditions given in
Definition 6.8, but not necessarily J-holomorphic. We denote by cx : [0, 1] →
T ∗N the constant path with its value x ∈ T ∗N . Then we have

(6.9)

∫
w∗ω0 = A(1)(cx1

) +A(2)(cx2
)−A(0)(cx0

)

An immediate corollary of this proposition from the definition of m2 is
that the map (6.8) restricts to

m2 : CF λ(LH , oN )⊗ CFμ(oN , T ∗
q N) → CF λ+μ(LH , T ∗

q N)

and in turn induces the product map

(6.10) ∗F : HF λ(LH , oN )⊗HFμ(oN , T ∗
q N) → HF λ+μ(LH , T ∗

q N)

in homology. This is because if w is J-holomorphic
∫
w∗ω ≥ 0. This ends

the summary of triangle product on the global Floer complex explained in
[Oh14].

To localize the above construction to obtain the local analogs

m2,(0) : CF λ(LH , oN ;V )⊗ CFμ(oN , T ∗
q N ;V ) → CF λ+μ(LH , T ∗

q N ;V )

and the induced product
(6.11)

∗F,(0) : HF λ(LH , oN ;V )⊗HFμ(oN , T ∗
q N ;V ) → HF λ+μ(LH , T ∗

q N ;V )

in homology, we have only to prove the analog to Theorem 3.1 and Theo-
rem 4.1 for the moduli space

M̃3(D
2;x1, x2;x0).
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Theorem 6.10. Let V be an open neighborhood of the zero section oL and

let H ∈ Hengulf
δ (T ∗L). Then for any given open neighborhood V of oL,

there exists some δ0 > 0 such that for any 0 < δ ≤ δ0, for any element

w ∈ M̃3(LH , oN , T ∗
q N) the following alternative holds:

(1) Imagew ⊂ V and maxz∈R×{0,1} d(v(z), oL) ≤ δ,

(2) Imagew �⊂ V and
∫
w∗ω ≥ C(J0, V ).

Proof. The only difference in the proof of this theorem from Theorem 3.1 and

4.1 is that we also need to use the strong maximum principle along the fiber

Lagrangian T ∗
q N in addition. We would like to note that the intersection

T ∗
q N ∩ Sδ(T ∗N)

is Legendrian and so a Jg-holomorphic curve satisfies strong maximum prin-

ciple along T ∗
q N . We refer to [EHS], [Oh3] for such an application of strong

maximum principle to obtain C0-estimate.

The proof is exactly the same as that of Theorem 3.1 and Theorem 4.1

and so omitted.

We define the ‘thin’ part of m2 by counting those elements w from

M̃3(LH , oN , T ∗
q N) of the type (1) above and decompose

m2 = m2,(0) +m′
2.

It also follows that m2,(0) induces a product map

m2,(0) : CF λ(LH , oN ;V )⊗ CFμ(oN , T ∗
q N ;V ) → CF λ+μ(LH , T ∗

q N ;V ).

It is straightforward to check that this map satisfies

∂(0)(m2,(0)(x, y)) = m2,(0)(∂(0)(x), y)±m2,(0)(x, ∂(0)(y))

and so induces a product

(6.12)

∗F,(0) : HF λ
∗ (LH , oN ;V )⊗HFμ

∗ (oN , T ∗
q N ;V ) → HF λ+μ

∗ (LH , T ∗
q N ;V ))

as in [Oh14].
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Appendix A. Local Floer complex of engulfed Hamiltonian
C0-approximate loop

In this appendix, we give the construction of local Hamiltonian Floer com-
plex in the context of C0-small topological Hamiltonian loops for a future
purpose. Exposition of this appendix closely follows that of section 4 [Oh5]
except that we need to explain the points, if necessary, about why C0-
smallness of φF is enough to localize the Floer complex of the fixed point
set of φ1

F .

A.1. Hamiltonian Floer complex

This section reviews the standard construction in Hamiltonian Floer theory.
We closely follow exposition of chapter 2 [FOOO2] for some enhancement
added which is useful for our purpose later.

Let L̃0(M) be the set of all the pairs [γ, w] where γ is a loop γ : S1 → M
and w : D2 → M a disc with w|∂D2 = γ. We identify [γ, w] and [γ′, w′]
if γ = γ′ and w is homotopic to w′ relative to the boundary γ. When a
one-periodic Hamiltonian H : (R/Z) × M → R is given, we consider the
perturbed functional AH : L̃0(M) → R defined by

(A.1) AH([γ, w]) = −
∫

w∗ω −
∫

H(t, γ(t))dt.

For a Hamiltonian H : [0, 1]×M → R, we denote its flow, a Hamiltonian
isotopy, by φH : t �→ φt

H ∈ Ham(M,ω). We denote the time-one map by φ1
H .

We put

Fixφ1
H = {p ∈ M | φ1

H(p) = p}.

Each element p ∈ Per(H), the set of 1-periodic orbits, induces a map
zx = zHx : S1 → M , by the correspondence

(A.2) zHx (t) = φt
H((φ1

H)−1(x)),

where t ∈ R/Z ∼= S1.

We denote by Per(H) the set of one-periodic solutions of ẋ = XH(t, x).
Then (A.2) provides a one-one correspondence between Fixφ1

H and Per(H).
The set of critical points of AH is given by

Crit(AH) = {[z, w] | γ ∈ Per(H), w|∂D2 = γ}.
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We consider the universal (downward) Novikov field

Λ =

{ ∞∑
i=1

aiT
λi

∣∣∣ ai ∈ R, λi → −∞
}

and define a valuation vT on Λ by

(A.3) vT

( ∞∑
i=1

aiT
λi

)
= sup{λi | ai �= 0}.

It satisfies the following properties:

(1) vT (xy) = vT (x) + vT (y),
(2) vT (x+ y) ≤ max{vT (x), vT (y)},
(3) vT (x) = −∞ if and only if x = 0,
(4) vT (q) = 1,
(5) vT (ax) = vT (x) if a ∈ R \ {0}.

We consider the Λ vector space ĈF (H; Λ) with basis given by the critical
point set Crit(AH) of AH .

Definition A.1. We define an equivalence relation ∼ on ĈF (H; Λ) so that
[z, w] ∼ T c[z′, w′] if and only if

(A.4) z = z′,

∫
D2

w′∗ω =

∫
D2

w∗ω − c.

The quotient of ĈF (H; Λ) modded out by this equivalence relation ∼
is called the Floer complex of the periodic Hamiltonian H and denoted by
CF (H; Λ).

Here we do not assume the condition on the Conley-Zehnder indices
and work with Z2-grading. In the standard literature on Hamiltonian Floer
homology, an additional requirement

c1(w#w′) = 0

is commonly imposed in the definition Floer complex, denoted by CF (H).
For the purpose of the current paper similarly as in [FOOO2], the equivalence
relation (A.4) is enough and more favorable in that it makes the associated
Novikov ring becomes a field. To differentiate the current definition from
CF∗(H), we denote the complex used in the present paper by CF ∗(H; Λ).
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Lemma A.2. As a Λ vector space, CF ∗(H; Λ) is isomorphic to the direct

sum Λ#Per(H).
Moreover the following holds: We fix a lifting [z, wz] ∈ Crit(AH) for each

z ∈ Per(H). Then any element x of CF (M,H; Λ) is uniquely written as a
sum

(A.5) x =
∑

z∈Per(H)

xz[z, wz], with xz ∈ Λ.

Definition A.3. (1) Let x be as in (A.5). We define

vT (x) = max{vT (xz) +AH([z, wz]) | γ ∈ Per(H)}.

(2) We define a filtration F λCF (M,H; Λ) on CF (M,H; Λ) by

F λCF (H; Λ) = {x ∈ CF (H; Λ) | vT (x) ≤ λ} .

We have

F λ1CF (H; Λ) ⊂ F λ2CF (H; Λ)

if λ1 < λ2. We also have⋂
λ

F λCF (H; Λ) = {0},
⋃
λ

F λCF (H; Λ) = CF (M ;H).

(3) We define a metric dT on CF (H; Λ) by

(A.6) dT (x, x
′) = evT (x−x′).

Then (A.3), (A.4) and Definition A.3 imply that

vT (ax) = vT (a) + vT (x)

for a ∈ Λ↓, x ∈ CF (H; Λ). We also have

T λ1 · F λ2CF (H; Λ) ⊆ F λ1+λ2CF (H; Λ).

Lemma A.4. (1) vT is independent of the choice of the lifting z �→ [z, wz].
(2) CF (H; Λ↓) is complete with respect to the metric dT .
(3) The infinite sum ∑

[z,w]∈CritAH

x[z,w][z, w]
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converges in CF (H; Λ↓) with respect to the metric dT if{
[z, w] ∈ CritAH | vT (x[z,w]) +AH([z, w]) > −C, x[z,w] �= 0

}
.

is finite for any C ∈ R.

A.2. Isolating local Hamiltonian Floer complex

This section is a modification of section 4.1 [Oh5] which treats the case of
C2-small perturbation of Hamiltonians H following section 3 [Oh2].

As in section 2, we will replace the condition of φF being C1-small by φF

being C0-small with the same kind of bound on the Hofer norm ‖F‖. Once
we have established the thick-thin dichotomy given in Theorem 3.1, we can
safely repeat the arguments laid out in section 4.1 [Oh5], whose summary is
now in order.

For given such F , we consider the subset U = U(UΔ) ⊂ L0(M) of loops
given by

U = {γ ∈ L0(M) | (γ(t), γ(0)) ∈ UΔ}.
for a fixed Darboux neighborhood UΔ of the diagonal Δ ⊂ M ×M for all
t ∈ [0, 1]. In particular, any periodic orbit z of the flow φH is contained in
U ⊂ L(M) has a canonical isotopy class of contraction wz. We will always
use this convention wz whenever there is a canonical contraction of z like in
this case of small loops. This provides a canonical embedding of U ⊂ L̃0(M)
defined by

z → [z, wz].

We denote this canonical embedding by U [id]. This selects a distinguished
component of

π−1(U) ⊂ L̃0(M)

and other components can be given by

U [g] = g · U [id], g ∈ Γω

similarly as before.
Combining the constructions from [Oh5] and section 2, we give

Definition A.5. Let J = {Jt} with |Jt − J0|C1 < ε3 with ε3 sufficiently

small. For any F ∈ Hengulf
δ (M) and for the given Darboux neighborhood

UΔ of the diagonal Δ ⊂ M ×M such that

φt
F (Δ) ⊂ Int UΔ,
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we define

M[g](F, J ;U) = {u ∈ M(F, J) | (u(τ)(t), u(τ)(0)) ∈ Int U
[g]
Δ for all τ}

for each g ∈ Γω. Consider the evaluation map

ev : M
(
F, J : U [g]

)
→ U ⊂ L0(M); ev(u) = u(0).

For each open neighborhood UΔ ⊂ M ×M of Δ ⊂ UΔ, we define the local
Floer complex in U [g] by

S
(
F, J ;U [g]

)
:= ev

(
M(F, J ;U [g]

)
⊂ L0(M).

We say S(F, J ;U [g]) is isolated in U [g] if its closure is contained in U [g].

Using Theorem 5.2, we define the local Floer homology, denoted by
HF [g](F, J ;U). Furthermore, the pull-back of the action functional AF to
U [g] via the above mentioned embedding into L̃0(M) provides a filtration on
the local Floer complex CF [g](F ;U).

Therefore by considering the parameterized family

S(Gs, J ;U [id]),

the proof of Theorem 5.2 implies that if G ∈ Hengulf
δ (M) and δ sufficiently

small, S(J,Gs : U [id]) are isolated in U [id] for all s and its homology is
isomorphic to H∗(M ;R). For readers’ convenience, we provide the detailed
comparison argument between the Hamiltonian Floer complex of Fixφ1

G

and the Lagrangian Floer complex of the pair (Δ,Graphφ1
G) in Appendix

borrowing from that of section 4.2 [Oh5].

A.3. Fix φ1
G versus Δ ∩ graph φ1

G

The main goal of this sub-section is to compare the Hamiltonian Floer ho-
mology of G with the Lagrangian Floer complex between Δ and graph φ1

G

in the product (M,ω) × (M,−ω) when G ∈ Hengulf
δ (M) with δ sufficiently

small.
We now compare the local Floer homology HF [id](J,G : U) of G ∈

Hengulf
δ (M) and two versions of its intersection counterparts, one

HF
[id]
J0⊕−J0,0

(Graphφ1
G,Δ : UΔ) and the other HF

[id]
(φG)∗J0⊕−J0,0⊕G(Δ,Δ :

UΔ).
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First we note that the two Floer complexes MJ0⊕−J0,0(Graphφ1
G,Δ :

U [id]) and M(φG)∗J0⊕−J0,0⊕G(Δ,Δ : U [id]) are canonically isomorphic by the
assignment

(γ(t), γ(t)) �→
(
(φt

G)
−1(γ)(t), γ(t)

)
.

and so the two Lagrangian intersection Floer homology are canonically iso-
morphic: Here the above two moduli spaces are the solutions sets of the
following Cauchy-Riemann equations{

∂U
∂τ + (J0 ⊕−J0)

∂U
∂t = 0

U(τ, 0) ∈ graph φ1
G, U(τ, 1) ∈ Δ

and {
∂U
∂τ + ((φ1

G)
∗J0)⊕ (−J0)

(
∂U
∂t −X0⊕G(U)

)
= 0

U(τ, 0) ∈ Δ, U(τ, 1) ∈ Δ

respectively, where U = (u1, u2) : R× [0, 1] → M ×M . The relevant action
functionals for these cases are given by

(A.7) A0([Γ,W ]) = −
∫

W ∗(ω ⊕−ω)

on Ω̃(Graphφ1
G,Δ : M ×M) and

(A.8) A0⊕G([Γ,W ]) = A0(Γ,W )−
∫ 1

0
(0⊕G)(Γ(t), t) dt

on Ω̃(Δ,Δ : M ×M) where we denote

Ω(Graphφ1
G,Δ :M×M)= {Γ : [0, 1] → M×M | Γ(0)∈ graph φ1

G, Γ(1)∈Δ, }

and similarly for Ω(Graphφ1
G,Δ : M × M). Again the ‘tilde’ means the

covering space which can be represented by the set of pairs [Γ,W ] in a
similar way. The relations between the action functionals (A.7), (A.8) and
AG are evident and respect the filtration under the natural correspondences.

Next we will attempt to compare

HF [id](G, J ;U), HF
[id]
J0⊕−J0,G⊕0(Δ,Δ : UΔ).

Without loss of any generality, we will concern Hamiltonians G such that
G ≡ 0 near t = 0, 1, which one can always achieve by perturbing G without
changing its time-one map.



Localization of Floer homology 439

There is no direct way of identifying the corresponding Floer complexes

between the two.

As an intermediate case, we consider the Hamiltonian G′ : M × [0, 1]

defined by

G′(x, t) =

{
2G(x, 2t) for 0 ≤ t ≤ 1

2

0 for 1
2 ≤ t ≤ 1

,

and the assignment

(A.9) (u0, u1) ∈ M[id]
J0⊕−J0,G⊕0(Δ,Δ : UΔ) �→ v ∈ M(J,G′ : U [id])

with v(τ, t) := u0#u1(τ, t). Here the map u0#u1 : [0, 1] → M is the map

defined by

u0#u1(τ, t) =

{
u0(2τ, 2t) for 0 ≤ t ≤ 1

2

u1(2τ, 1− 2t) for 1
2 ≤ t ≤ 1

is well-defined and continuous because

u0(τ, 1) = u0(τ, 0) = u1(τ, 0)

u1(τ, 1) = u0(τ, 1) = u0(τ, 0).

Furthermore near t = 0, 1, this is smooth (and so holomorphic) by the

elliptic regularity since G′ is smooth (Recall that we assume that G ≡ 0

near t = 0, 1. Conversely, any element v ∈ M(J,G′ : U [id]) can be written as

the form of u0#u1 which is uniquely determined by v. This proves that (A.9)

is a diffeomorphism from M[id]
J0⊕−J0,G⊕0(Δ,Δ : UΔ) to M(J,G′ : U [id]) which

induces a filtration-preserving isomorphism between HF
[id]
J0⊕−J0,G⊕0(Δ,Δ :

UΔ) and HF (J,G′ : U [id]).

Finally, we need to relate HF (J,G : U [id]) and HF (J,G′ : U [id]). For

this we note that G and G′ can be connected by a one-parameter family

Gpara = {Gs}0≤s≤1 with

Gs(x, t) :=

{
2

1+sG(x, 2
1+s t) for 0 ≤ t ≤ s

2

0 for s
2 ≤ t ≤ 1.

And we have

φ1
Gs = φ1

G for all s ∈ [0, 1].
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Therefore their spectra coincide, i.e., Spec(G) = Spec(G′s) = Spec(G′).
Then there exists an isomorphism

hadbGpara,J : CF (G′ : U [id]) → CF (G : U [id])

respects the filtration and so the induced homomorphism in its homology

hadbGpara,J : HF (J,G′ : U [id]) → HF (J,G : U [id])

becomes a filtration-preserving isomorphism. See [K], [U], [Oh11] for such a

construction.
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