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In this paper, we present a brief survey of the recent develop-
ments in alternating evolution (AE) methods for numerical compu-
tation of first order partial differential equations, with hyperbolic
conservation laws and Hamilton-Jacobi equations as two canoni-
cal examples. The main difficulty of such computation arises from
the nonlinearity of the model, making it necessary to incorporate
an appropriate amount of numerical viscosity to capture the en-
tropy/viscosity solution as physically relevant solutions. The alter-
nating evolution method is based on the AE system of the original
PDEs, the discretization technique ranges from finite difference,
finite volume and the discontinuous Galerkin methods. In all these
cases, the AE solver can produce accurate solutions with equal
computational time than the traditional solvers. In particular, the
AE formulation allows the same discontinuous Galerkin discretiza-
tion for both conservative and non-conservative PDEs under con-
sideration. In order to make the presentation more concise and to
highlight the main ideas of the algorithm, we use simplified mod-
els to describe the details of the AE method. Sample simulation
results on a few models are also given.
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1. Introduction

In mathematics, a first-order partial differential equation (PDE) is an equa-
tion that involves only first order derivatives of the unknown function of
multiple variables. The equation may take the form

F (ξ, φ,∇ξφ) = 0.
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Such equations arise in the construction of characteristic surfaces for hy-
perbolic partial differential equations, in the calculus of variations, in some
geometrical problems, and in simple models for gas dynamics whose solution
involves the method of characteristics. For the resolutions of the underlying
application problems, it has been shown to be important to analyze and
solve the governing PDEs. For time dependent problems we distinguish the
temporal variable t > 0 from the spatial variable x ∈ R

d, and a first order
PDE may be symbolically written as

∂tφ+A(φ) = 0, x ∈ R
d, t > 0,

where A is a nonlinear differential operator. Two classes of PDEs are of par-
ticular interest: hyperbolic conservation laws A = ∇x · f(φ) and Hamilton-
Jacobi equations A = H(x,∇xφ), which will be used to illustrate the main
ideas of the alternation evolution (AE) methods in this article.

1.1. Hyperbolic conservation laws A = ∇x · f(φ)

A multi-dimensional hyperbolic conservation law has the form:

(1) ∂tφ+∇x · f(φ) = 0, x ∈ R
d, t > 0,

where φ ∈ R
m denotes a vector of conserved quantities, and f : R

m →
R
d is a nonlinear convection flux. The compressible Euler equation in gas

dynamics is a canonical example. These equations are of great practical
importance since they model a variety of physical phenomena that appear in
fluid mechanics, astrophysics, groundwater flow, traffic flow, semiconductor
device simulation, and magneto-hydrodynamics, among many others.

The notorious difficulty encountered for the satisfactory approximation
of the exact solutions of these systems lies in the presence of discontinuities
in the solution, leading to non-uniqueness of the weak solution. We are inter-
ested in computing the physically relevant solution – so called the entropy
solution. The entropy solution φ is defined so that φ satisfies the entropy
inequalities

(2)

∫ ∞

0

∫
Rd

(η(φ)∂tv + q(φ) · ∇xv)dxdt ≥ 0

for each v ∈ C∞
0 (Rd × (0,∞) and v ≥ 0 and each entropy/entropy flux pair

(η, q): η is convex and

Dη(z) ·Dfj(z) = Dqj(z), j = 1 · · · d.
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1.2. Hamilton-Jacobi equations A = H(x,∇xφ)

Another important class is the Hamilton-Jacobi equation:

(3) ∂tφ+H(x,∇xφ) = 0, φ(x, 0) = φ0(x), x ∈ R
d, t > 0.

Here the unknown φ is scalar, and H : Rd → R
1 is a nonlinear Hamiltonian.

The Hamilton-Jacobi equation arises in many applications ranging from ge-

ometrical optics to differential games. These nonlinear equations typically

develop discontinuous derivatives even with smooth initial conditions, such

weak solutions are not unique.

It would be natural to try to extend the entropy solution concept based

on integration by parts in (2) to Hamilton-Jacobi equations, unfortunately,

attempts as such had gone fruitless until the first breakthrough in 1983

when Crandall and Lions introduced the notion of viscosity solutions and

established their theory for Hamilton-Jacobi equations, see [9, 5, 59]. In the

concept of viscosity solutions, the derivative of the solution is compared

to a fixed test function at certain points via the comparison principle. A

bounded uniformly continuous function φ is called a viscosity subsolution

(supersolution) of (3) if, for every point (x0, t0) and a function v ∈ C∞

satisfying φ ≤ (≥)v and φ(x0, t0) = v(x0, t0), there holds

∂tv +H(x,∇xv) ≤ 0 at (x0, t0).

Moreover, φ is called a viscosity solution if φ is simultaneously a viscosity

subsolution and a viscosity supersolution.

We are interested in computation of the viscosity solution, which is the

unique physically relevant solution in some important applications. The dif-

ficulty encountered for the satisfactory approximation of the exact solutions

of these equations lies in the presence of discontinuities in the solution deriva-

tives.

1.3. Numerical methods

Numerical discretization methods for first order PDEs are diverse, the pop-

ular ones are finite difference methods, finite volume methods and the dis-

continuous Galerkin methods.

Among the considerable amount of literature available on numerical

methods for hyperbolic conservation laws and Hamilton-Jacobi equations,
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the discretization solution techniques fall under two main categories accord-
ing to their way of sampling [52]: upwind and central schemes. The forerun-
ners for these two classes of high resolution schemes for conservation laws
are the first order Godunov [17] and Lax-Friedrichs (LxF) schemes [16, 33],
respectively. The need for devising more accurate and efficient numerical
methods for conservation laws and related models has prompted and sus-
tained the abundant research in this area, see, for example, [34, 61, 60, 7].

The success of high resolution schemes has been due to two factors: the
local enforcement of the underlying PDE and the non-oscillatory piecewise
polynomial reconstruction from evolved local moments (cell averages or gird
values).

For conservation laws, various higher-order extensions of the Godunov
type finite volume scheme have been rapidly developed since 1970’s, em-
ploying higher-order reconstruction of piece-wise polynomials from the cell
averages, including MUSCL, TVD, PPM, ENO and WENO schemes [62,
63, 19, 8, 20, 57, 58, 44]. In this development, the local refinement of one
dimensional conservation laws may be expressed as

(4) ∂tφ+ ∂xf̂(φ−, φ+) = 0,

where f̂ is an entropy satisfying numerical flux.

For Hamilton-Jacobi equations, the ENO/WENO type schemes ([24,
35, 54, 55, 56, 53, 65]) are based mainly on some local refinement of H-J
equations by

(5) ∂tφ+ Ĥ(x, φ+
x , φ

−
x ) = 0,

where Ĥ is the numerical Hamiltonian which needs to be carefully chosen
to ensure that the viscosity solution is captured when φx becomes discon-
tinuous.

In contrast, central type schemes such as the LxF scheme are more diffu-
sive, yet easy to formulate and implement since no Riemann solvers are re-
quired. Examples of such schemes for conservation laws are the second-order
Nessyahu-Tadmor scheme [52] and other higher-order schemes [45, 1, 36, 25,
30, 23]. For H-J equations, the central type schemes ([2, 3, 4, 29, 32, 38, 39])
choose to evolve the constructed polynomials in smooth regions so that the
Taylor expansion may be used in the scheme derivation.

The two categories of the existing high resolution schemes are somehow
interlaced during their independent developments; the upwind scheme be-
comes Riemann solver-free when a local numerical flux can be identified to
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replace the exact Riemann solver, see Shu and Osher [57, 58], and the cen-
tral scheme becomes less diffusive when variable control volumes are used
in deriving the scheme, see Kurganov and Tadmor [31]. The upwind feature
can be further enforced [21, 29] in central-upwind schemes, see [28] for a
recent derivation of such a scheme. The relaxation scheme of Jin and Xin
[26] provides yet another approach for solving nonlinear conservation laws,
see also [27, 51].

The discontinuous Galerkin (DG) method has the advantage of flexibil-
ity for arbitrarily unstructured meshes, and with the ability to easily achieve
arbitrary order of accuracy. The DG method has been quite successful for
conservation laws [10, 11, 12, 13, 14] due to the conservative nature of the
formulation (4). However, new difficulties occur when the existing ideas with
finite difference methods are applied toward the discontinuous Galerkin dis-
cretization for the Hamilton-Jacobi equation (5). One main difficulty comes
from the non-conservative form of (5), which precludes the use of integration
by parts to establish the cell to cell communication via numerical fluxes as
usually done with the DG methods for conservation laws. In spite of this dif-
ficulty, some progress has been made in past years, see [22, 6, 37, 64]. With
the alternating evolution framework reviewed in this article, one can apply
the same DG discretization to both conservation laws and Hamilton-Jacobi
equations.

1.4. The alternating evolution (AE) system

The difference between the AE schemes discussed in this article and the
existing schemes mentioned above lies in the local enforcement of underlying
PDEs. Instead of using either (4) or (5), we refine the original PDE by an
alternating evolution (AE) system

∂tu+ Ã(u, v) =
1

ε
(v − u),

∂tv + Ã(v, u) =
1

ε
(u− v),

which involves two representatives: {u, v}. Here Ã is a refinement of A so
that terms involving spatial derivatives are replaced by v’s derivatives, the
additional relaxation term (v − u)/ε, serves to communicate the two rep-
resentatives u and v, with ε > 0 being a scale parameter of user’s choice.
This amount of leverage in the choice of ε adds another attractive feature
of the AE scheme. Indeed different choices of the scale parameter in such a
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procedure yield different AE schemes [41]. We have Ã(u, v) = ∇x · f(v) for
conservation laws, and Ã(u, v) = H(x,∇xv) for Hamilton-Jacobi equations.

The AE system for scalar hyperbolic conservation laws was originally
proposed in [40], where the system was shown to be capable of capturing
the exact solution when initially both representatives are chosen as the given
initial data. Such a feature allows for a sampling of two representatives over
alternating grids/cells. Using this alternating system as a ‘building base’,
we apply standard approximation techniques to the AE system: high order
accuracy is achieved by a combination of high-order non-oscillatory poly-
nomial approximation in space and an ODE solver in time with matching
accuracy. For conservation laws we sample using cell averages [40, 41] and
for Hamilton-Jacobi equation we sample using grid values [42], which cor-
respond to finite volume and finite difference schemes, respectively. For the
discontinuous Galerkin discretization, same sampling of local moments is
applied to both types of equations [43].

The procedure using the AE formulation opens a new way to derive
robust highly accurate schemes for nonlinear PDEs, conservative or non-
conservative. The AE schemes are very easy to implement and efficient.
Actually such simplicity in implementation is even more pronounced in the
multi-dimensional case.

More closely related to the AE scheme is the overlapping cell schemes
introduced by Liu [46], who generalizes the NT scheme [52] by evolving
two pieces of information over redundant overlapping cells, therefore allows
for easy formulation of semi-discrete schemes. The technique has been ex-
tended to the development of some central discontinuous Galerkin methods
for conservation laws and diffusion equations [47, 48, 49, 50], as well as for
Hamilton-Jacobi equations [37]. One main difference between the overlap-
ping central schemes and the AE schemes is that central overlapping schemes
use two polynomial representatives solved on two sets of overlapping meshes,
and the AE schemes only have one polynomial representative associated with
each grid point, even in multi-dimensional case. The advantage of the AE
scheme is clearer in the multi-dimensional case.

It should be noted that even though our AE schemes are derived based
on sampling the alternating evolution system, we do not solve the system
directly. The AE system simply provides a systematic way for developing
numerical schemes of both semi-discrete and fully discrete form for the un-
derlying PDEs, instead of as an approximation system at the continuous
level.

The remainder of the article is organized as follows. In section 2, we illus-
trate how to derive the alternating evolution system from the Lax-Friedrichs
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scheme for one-dimensional conservation laws. We formulate the high reso-
lution finite volume AE schemes for hyperbolic conservation laws ([41]) in
section 3, and high resolution finite difference AE schemes for Hamilton-
Jacobi equations ([42]) in section 4. In section 5, we present high order
AEDG schemes for both Hamilton-Jacobi equations ([43]) and hyperbolic
conservation laws. Sample simulation results on a few models are given in
section 6. The last section 7 ends this paper with some concluding remarks.

2. From the Lax-Friedrichs scheme to the AE system

The AE system was motivated by the Lax-Friedrichs scheme, as described
in [40]. We start with finite difference schemes for one dimensional scalar
hyperbolic conservation laws

(6) ∂tU + ∂xf(U) = 0.

Let the xt-plane be covered by a rectangular gird with mesh size Δx in
x−direction and Δt in the t−direction. It would seem natural to replace (6)
by the difference equation

un+1
j = unj − λ

2

[
f(unj+1)− f(unj−1)

]
,

where λ = Δt/Δx and unj approximates U(jΔx, nΔt). But this is known
to be inappropriate because of the high degree of instability of this scheme.
Replacing unj by the average of its two neighbors unj±1 we encounter the
celebrated Lax-Friedrichs (LxF) scheme

(7) un+1
j =

unj+1 + unj−1

2
− λ

2

[
f(unj+1)− f(unj−1)

]
.

One noticeable feature of this scheme is that information on grids j + n =
even is independent of that on grids j + n = odd. Rewriting (7) gives

(8)
un+1
j − unj

Δt
+

1

2Δx

[
f(unj+1)− f(unj−1)

]
=

un
j+1+un

j−1

2 − unj
Δt

.

If we denote the solution at even (or odd) grid points as u and those at odd
(or even) girds as v, and bring in a scale parameter ε ∼ Δt, then

(9)
un+1
j − unj

Δt
+

1

2Δx

[
f(vnj+1)− f(vnj−1)

]
=

vn
j+1+vn

j−1

2 − unj
ε

.
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Passing to the limit Δx,Δt → 0 in (9) and keeping the parameter ε un-

changed, we obtain a coupled system for both u and v, which in multi-

dimensional case can be expressed as

∂tu+∇x · f(v) =
1

ε
(v − u), x ∈ R

d, t > 0,(10)

∂tv +∇x · f(u) =
1

ε
(u− v).(11)

The main feature of this model for the system of conservation laws (6) is

its high accuracy. The convergence for scalar conservation laws with general

smooth flux function in arbitrary spatial dimension R
d is given in ([40]), and

summarized in the following.

Theorem 2.1. For any (u0, v0) ∈ L1(Rd) ∩ L∞(Rd) and each fixed ε,

let (10)–(11) admit a unique weak solution (uε, vε) on R
d × R

+ such that

(uε, vε) ∈ C([0,∞);L1(Rd)), then there exists a bounded measurable function

U(x, t) on R
d × R

+ such that as ε ↓ 0

uε → U(x, t), uε − vε → 0 (x, t) ∈ R
d × R

+.

Moreover, U is the entropy solution of (6) with initial data U0(x) =
1
2(u0(x)+

v0(x)) for x ∈ R
d.

Corollary 2.2. Let U be the entropy solution of the scalar conservation

laws (6) with initial data U0 ∈ L1(Rd) ∩ L∞(Rd), and (uε, vε) be the weak

solution to (10)–(11) subject to initial data with (u0, v0) ∈ L∞(Rd). Then it

holds

‖uε − vε‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)e
−4t/ε.

Furthermore,

(i) if u0 + v0 = 2U0, then

lim
t/ε→∞

‖uε(·, t)− U(·, t)‖L1(Rd) = lim
t/ε→∞

‖vε(·, t)− U(·, t)‖L1(Rd) = 0.

(ii) if u0 = v0 = U0, then

uε(x, t) = vε(x, t) = U(x, t)

almost everywhere in R
d × R

+.
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In an entirely similar manner, one may obtain a coupled alternating
evolution system

∂tu+H(x, u,∇xv) =
1

ε
(v − u),(12)

∂tv +H(x, v,∇xu) =
1

ε
(u− v),(13)

as a refinement of the Hamilton-Jacobi equation

∂tφ+H(x, φ,∇xφ) = 0.(14)

Based on this AE system, both high resolution finite difference method and
the discontinuous Galerkin method are designed for solving the Hamilton-
Jacobi equation.

3. Finite volume schemes – hyperbolic conservation laws

Consider the system of hyperbolic conservation laws

(15) ∂tu+∇x · f(u) = 0, (x, t) ∈ R
d × (0,∞),

where u = (u1, . . . , um)T . In multi-dimensional case, for simplicity, we take
uniform distributed grids at xα with multi-index α = (α1, . . . , αd). Let Iα
be a rectangle with vertices at {xα+β , |β| = 1}, labeled as xα±1, the number
of which amounts to 2d.

We take the average of the AE equation,

∂tu+∇x · f(v) =
1

ε
(v − u),

over Iα to obtain
d

dt
ūα +

1

ε
ūα =

1

ε
Lα[v](t),

where ūα = 1
|Iα|

∫
Iα

u(x, t)dx and

Lα[v] =
1

|Iα|

∫
Iα

v dx− ε

|Iα|

∫
∂Iα

f(v) · ναds.

Here, |Iα| denotes the volume of Iα, ∂Iα indicates the boundary of Iα, and
να is the outward pointing unit normal field of the cell boundary ∂Iα. Let
Φα ∼ ūα denote the numerical solution, and pα[Φ] a reconstructed non-
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oscillatory polynomials pα[Φ] over Iα from available averages Φα, then we
obtain a semi-discrete scheme

(16)
d

dt
Φα +

1

ε
Φα =

1

ε
Lα[Φ],

where pSNα [Φ]’s constructed over neighboring cells Iα±1 are to be used to
evaluate
(17)

Lα[Φ] =
∑ 1

|Iα|

∫
Iα∩Iα±1

pSNα [Φ](x) dx−
∑ 1

|Iα|

∫
∂Iα∩Iα±1

f(pSNα [Φ](x))·ds.

Finally, in order to obtain the same order of accuracy in time, the semi-
discrete scheme (16)–(17) is to be solved with an ODE solver with matching
accuracy in time discretization. The evolution parameter is chosen such that

(18) ε

d∑
j=1

max |f ′
j(·)|

Δxj
≤ Q, Δt < ε,

where Q ≤ 1 depends on the order of the scheme, see (23) or (31) later
in this section. For system case, f ′

js need to be replaced by the dominant
eigenvalues over a Riemann curve.

For the 2D setting, we illustrate the corresponding AE scheme for

(19) ∂tφ+ f(φ)x + g(φ)y = 0.

3.1. First order scheme

If the reconstructed polynomial is piecewise constant, then we obtain the
first order scheme as

Φn+1
k,l = (1− κ)Φn

k,l + κLk,l[Φ
n],(20)

where upon a direct calculation using pk,l[Φ
n] =

∑
Φn
k,l

χ
Ikl

(x, y), where χIkl

is the characteristic function which takes value one on the rectangle Ik,l,
Lk,l[Φ

n] can be expressed as

Lk,l[Φ
n] =AxAyΦ

n
k,l −

ε

4Δx

(
f(Φn

k+1,l−1)

(21)

− f(Φn
k−1,l−1) + f(Φn

k+1,l+1)− f(Φn
k−1,l+1)

)
− ε

4Δy

(
g(Φn

k−1,l+1)− g(Φn
k−1,l−1) + g(Φn

k+1,l+1)− g(Φn
k+1,l−1)

)
,
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with κ = Δt
ε , where Ax and Ay are the average operators in both x− and

y− direction, respectively, so that

AxAyΦ
n
k,l :=

1

4

(
Φn
k−1,l−1 +Φn

k+1,l−1 +Φn
k+1,l+1 +Φn

k−1,l+1

)
.(22)

The parameter ε is chosen so that

ε

(
max |f ′|

Δx
+

max |g′|
Δy

)
≤ 1 and Δt < ε,(23)

which ensures the scalar maximum principle

|Φn+1|∞ ≤ |Φn|∞, n ∈ N.(24)

Again, for system case, both |f ′| and |g′| in the stability requirement (23)
needs to be replaced by dominant eigenvalues of the corresponding Jacobian
matrices.

3.2. Second order scheme

The second order scheme requires a linear polynomial reconstruction, its
formulation in the rectangle Ikl = [xk −Δx, xk +Δx]× [yk −Δy, yk +Δy]
has the form

pk,l[Φ
n](x, y) =

∑
k,l

(
Φn
k,l + s′k,l(x− xk) + s�

k,l(y − yl)
)
χ
Ikl

(x, y),(25)

where s′ and s� are the numerical derivatives corresponding to Φx and Φy.
Now, using the midpoint quadrature rule in evaluation of (17), we obtain
the second order AE scheme

d

dt
Φk,l = Lk,l[Φ]

with

Lk,l[Φ] = AxAyΦk,l +
Δx

8

(
s′k−1,l−1 − s′k+1,l−1 − s′k+1,l+1 + s′k−1,l+1

)
+

Δy

8

(
s�
k−1,l−1 + s�

k+1,l−1 − s�
k+1,l+1 − s�

k−1,l+1

)
− ε

4Δx

[
f

(
Φk+1,l−1+

Δy

2
s�
k+1,l−1)

)
− f

(
Φk−1,l−1+

Δy

2
s�
k−1,l−1)

)



302 Hailiang Liu

+ f

(
Φk+1,l+1−

Δy

2
s�
k+1,l+1)

)
− f

(
Φk−1,l+1−

Δy

2
s�
k−1,l+1)

)]

− ε

4Δy

[
g

(
Φk−1,l+1+

Δx

2
s′k−1,l+1)

)
− g

(
Φk−1,l−1+

Δx

2
s′k−1,l−1)

)

+ g

(
Φk+1,l+1−

Δx

2
s′k+1,l+1)

)
− g

(
Φk+1,l−1−

Δx

2
s′k+1,l−1)

)]
.

The non-oscillatory property requires that we choose s′k,l and s�
k,l with cer-

tain limiters. In [41] the basic minmod limiter is adopted:

s′k,l = minmod

{
Φn
k+2,l − Φn

k,l

2Δx
,
Φn
k,l − Φn

k−2,l

2Δx

}
,(26)

s�
k,l = minmod

{
Φn
k,l+2 − Φn

k,l

2Δy
,
Φn
k,l − Φn

k,l−2

2Δy

}
,(27)

with

minmod {a1, a2, . . .} =

⎧⎪⎨
⎪⎩

min
i
{ai} if ai > 0 ∀i,

max
i

{ai} if ai < 0 ∀i,
0 otherwise.

(28)

When the second order Runge-Kutta time discretization is used, the scheme
becomes

Φ∗
k,l = (1− κ)Φn

k,l + κLk,l[Φ
n],(29)

Φn+1
k,l =

1

2
Φn
k,l +

1

2
(1− κ)Φ∗

k,l +
κ

2
Lk,l[Φ

∗].(30)

Indeed analysis in [41] shows that such a choice again yields the scalar
maximum principle (24), provided

ε

(
max |f ′|

Δx
+

max |g′|
Δy

)
≤ 1

4
and Δt < ε.(31)

Even higher order schemes can be constructed using the ENO selection of
more stencils, see [41] for further details.

4. Finite difference schemes – Hamilton-Jacobi equations

To approximate the multi-dimensional HJ equations:

∂tφ+H(x,∇xφ) = 0, x ∈ R
d,
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we start with the AE formulation

(32) ∂tu+
1

ε
u =

1

ε
v −H(x,∇xv).

Again we use {xα} to denote uniformly distributed grids in R
d, and Iα as a

hypercube centered at xα with vertices at xα±1 where the number of vertices
is 2d.

In [42] we present two different constructions of AE schemes for multi-
dimensions. For the first type, given grid values {Φα}, we construct a con-
tinuous, piecewise polynomial pα[Φ](x) ∈ Pr defined in Iα such that

pα[Φ](xα±1) = Φα±1.

Here Pr denotes a linear space of all polynomials of degree at most r in all
xi:

Pr := {p | p(x) =
∑

0≤βi≤r

aβ(x− xα)
β, 1 ≤ i ≤ d, aβ ∈ R}.

Sampling the AE system (32) at xα, which is the common vertex of Iα±1,
while using these polynomials on the right hand side of (32), we obtain the
semi-discrete AE scheme

d

dt
Φα +

1

ε
Φα =

1

ε
Lα[Φ],(33)

Lα[Φ] = pSNα [Φ](xα)− εH(xα,∇xp
SN
α [Φ](xα)),

where pSNα [Φ]’s are constructed using neighboring grid values. Using this
sampling approach, construction of schemes of higher than second order will
become cumbersome.

In [42] we presented a simpler approach of reconstruction, called the
dimension-by-dimension approach. Such an approach can be easily derived
for higher order schemes, and work equally well with hyperbolic conservation
laws. We illustrate the approach in the two dimensional setting.

We construct interpolated polynomials, pj,k and qj,k in the x− and y−
direction as in one-dimensional case, satisfying

pj,k[Φ](xj±1, yk) = Φj±1,k,

qj,k[Φ](xj , yk±1) = Φj,y±1,

so that for Hamiltonian H = H(∇xφ) we have
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Lj,k =
pj,k[Φ](xj , yk) + qj,k[Φ](xj , yk)

2
(34)

− εH (∂xpj,k[Φ](xj , yk), ∂yqj,k[Φ](xj , yk)) .

4.1. First order scheme

For the first order scheme, such an interpolant is given by

p1j,k[Φ](x, y) = Φj−1,k + sxj,k(x− xj−1),

q1j,k[Φ](x, y) = Φj,k−1 + syj,k(y − yk−1),

where

sxj,k =
Φj+1,k − Φj−1,k

2Δx
, syj,k =

Φj,k+1 − Φj,k−1

2Δy
.

Evaluating at the polynomials and their partial derivatives at (xj , yk) yields

p1j,k[Φ](xj , yk) =
Φj+1,k +Φj−1,k

2
, ∂xp

1
j,k[Φ](xj , yk) = sxj,k,

q1j,k[Φ](xj , yk) =
Φj,k+1 +Φj,k−1

2
, ∂yq

1
j,k[Φ](xj , yk) = syj,k.

Substituting this into (34) yields

Lj,k[Φ] = AxAyΦj,k − εH(sxj,k, s
y
j,k)(35)

so that

Φn+1
j,k = (1− κ)Φn

j,k + κLj,k[Φ
n].

4.2. Second order scheme

For the second order scheme, the continuous, piecewise interpolating poly-

nomial is given by

p2j,k[Φ](x, y) = Φj−1,k + sxj,k(x− xj−1) +
(sxj,k)

′

2
(x− xj−1)(x− xj+1),

q2j,k[Φ](x, y) = Φj,k−1 + syj,k(y − yj−1) +
(syj,k)

′

2
(y − yk−1)(y − yk+1),
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where the approximations to the send order derivative are selected using the

ENO interpolation technique,

(sxj,k)
′ = M

{
sxj+2,k − sxj,k

2Δx
,
sxj,k − sxj−2,k

2Δx

}
,

(syj,k)
′ = M

{
syj,k+2 − syj,k

2Δy
,
syj,k − syj,k−2

2Δy

}
,

where M{a, b} = a if |a| ≤ |b|, M{a, b} = b otherwise. We then obtain

p2j,k[Φ](xj , yk) =
Φj+1,k +Φj−1,k

2
−

(sxj,k)
′

2
(Δx)2, ∂xp

2
j,k[Φ](xj , yk)= sxj,k,

q2j,k[Φ](xj , yk) =
Φj,k+1 +Φj,k−1

2
−

(syj,k)
′

2
(Δy)2, ∂yq

2
j,k[Φ](xj , yk)= syj,k.

so that

Lj,k[Φ] = AxAyΦj,k −
(sxj,k)

′

2
(Δx)2 −

(syj,k)
′

2
(Δy)2 − εH(sxj,k, s

y
j,k).

Combining with a second order Runge-Kutta method gives,

Φ∗
j,k = (1− κ)Φn

j,k + κLj,k[Φ
n],

Φn+1
j,k =

1

2
Φn
j,k +

1− κ

2
Φ∗
j,k +

κ

2
Lj,k[Φ

∗].

4.3. Third order scheme

The third order scheme formulation is based on the following cubic polyno-

mials

p3j,k[Φ](x, y) = p2j,k[Φ](x, y) +
(sxj,k)

′′

6
(x− xj−1)(x− xj+1)(x− x∗),

q3j,k[Φ](x, y) = q2j,k[Φ](x, y) +
(syj,k)

′′

6
(y − yk−1)(y − yk+1)(y − y∗),

where

(sxj,k)
′′ = M

{
(sxj+2,k)

′ − (sxj,k)
′

2Δx
,
(sxj,k)

′ − (sxj−2,k)
′

2Δx

}
,
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(syj,k)
′′ = M

{
(syj,k+2)

′ − (syj,k)
′

2Δy
,
(syj,k)

′ − (syj,k−2)
′

2Δy

}
.

Here x∗ is chosen as the grid point value used in the ENO procedure for
(sxj,k)

′ so that x∗ = xj−3 or x∗ = xj+3. The value y∗ is chosen in a similar
way. This gives

p3j,k[Φ](xj , yk) =
Φj+1,k +Φj−1,k

2
−

(sxj,k)
′

2
(Δx)2 −

(sxj,k)
′′

6
(Δx)2(xj − x∗),

∂xp
3
j,k = sxj,k −

(sxj,k)
′′

6
(Δx)2,

q3j,k[Φ](xj , yk) =
Φj,k+1 +Φj,k−1

2
−

(syj,k)
′

2
(Δy)2 −

(syj,k)
′′

6
(Δy)2(yk − y∗),

∂yq
3
j,k = syj,k −

(syj,k)
′′

6
(Δy)2.

When combined with the third order Runge-Kutta method, this gives

Φ
(1)
j,k = (1− κ)Φn

j,k + κLj,k[Φ
n],

Φ
(2)
j,k =

3

4
Φn
j,k +

1

4
(1− κ)Φ

(1)
j,k +

1

4
κLj,k[Φ

(1)],

Φn+1
j,k =

1

3
Φn
j,k +

2

3
(1− κ)Φ

(2)
j,k +

2

3
κLj,k[Φ

(2)],

where

Lj,k[Φ] = AxAyΦj,k −
(sxj,k)

′

2
(Δx)2 −

(syj,k)
′

2
(Δy)2

−
(sxj,k)

′′

6
(Δx)2(x− x∗)−

(syj,k)
′′

6
(Δy)2(y − y∗)

− εH

(
sxj,k −

(sxj,k)
′′

6
(Δx)2, syj,k −

(syj,k)
′′

6
(Δy)2

)
.

We remark that this scheme can be easily derived for higher orders using an
ENO procedure for derivative approximations.

5. Discontinuous Galerkin schemes

We begin to formulate discontinuous Galerkin schemes in one dimensional
setting. Let the spatial domain be divided to form a uniform grid {xj},
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with Δx = xj+1 − xj . We denote Ij = (xj−1, xj+1) for j = 2, . . . , N − 1
with I1 = (x1, x2) and IN = (xN−1, xN ). Centered at each grid {xj}, the
numerical approximation is a polynomial Φ|Ij = Φj(x) ∈ P k, where P k

denotes a linear space of all polynomials of degree at most k:

P k := {p | p(x)|Ij =
∑

0≤i≤k

ai(x− xj)
i, ai ∈ R}.

Note dim(P k) = k+1. We denote v(x±) = limε→0± v(x+ε), and v±j = v(x±j ).

The jump at xj is [v]j = v(x+j )−v(x−j ), and the average {v}j = 1
2(v

+
j +v−j ).

5.1. The Hamilton-Jacobi equation

We start with the one-dimensional Hamilton-Jacobi equation of the form

∂tφ+H(x, φ, φx) = 0.

Again the ‘building base’ is the following AE formulation

∂tu+H(x, u, vx) =
1

ε
(v − u).(36)

Integrating (36) over Ij against the test function η ∈ P k(Ij), we obtain the
semi-discrete AEDG scheme∫

Ij

(∂tΦj +H(x,Φj , ∂xΦ
SN
j ))ηdx+ λ[ΦSN

j ]
∣∣∣
xj

η(xj)(37)

=
1

ε

(∫
Ij

ΦSN
j ηdx−

∫
Ij

Φjηdx

)
,

where λ = Hp(xj ,Φj(xj), ∂xΦj(xj)) and ΦSN
j is sampled from neighboring

polynomials Φj±1 in the following way:∫
Ij

H(x,Φj , ∂xΦ
SN
j )ηdx =

∫ xj

xj−1

H(x,Φj , ∂xΦj−1)ηdx

+

∫ xj+1

xj

H(x,Φj , ∂xΦj+1)ηdx,∫
Ij

ΦSN
j ηdx =

∫ xj

xj−1

Φj−1ηdx+

∫ xj+1

xj

Φj+1ηdx,

[ΦSN
j ]

∣∣∣
xj

= Φj+1(x
+
j )− Φj−1(x

−
j ).
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To update each grid-centered polynomial element Φ, we write the compact

form of the semi-discrete scheme

d

dt

∫
Ij

Φjηdx = L[Φj ; Φ
SN
j , η](t),(38)

where

L[Φj ; Φj±1, η](t) =
1

ε

∫
Ij

(ΦSN
j − Φj)ηdx(39)

−
∫
Ij

H
(
x,Φj , ∂xΦ

SN
j

)
ηdx− λ[ΦSN

j ]|xj
η(xj).

We use boundary cells I1 and IN to incorporate proper boundary condtions.

For a computational domain [a, b] with x1 = a, xN = b and Δx = (b −
a)/(N − 1), the equations in two end cells may be given as

∫ x2

x1

(∂tΦ1 +H(x,Φ1, ∂xΦ2))ηdx+
λ

2
[Φ]|x1

η(x1)(40)

=
1

ε

∫ x2

x1

(Φ2 − Φ1)ηdx,∫ xN

xN−1

(∂tΦN +H(x,ΦN , ∂xΦN−1))ηdx+
λ

2
[Φ]|xN

η(xN )(41)

=
1

ε

∫ xN

xN−1

(ΦN−1 − ΦN )ηdx.

If the flow is incoming at x = a, one has to impose a boundary condition

φ(a, t) = g1(t). As a result, one is required to modify (40) by changing [Φ] to

Φ2(x
+
1 )−g1(t); for the outflow case, one may take [Φ] = 0 in (40). Similarly,

at x = b, the inflow boundary condition φ(b, t) = g2(t) can be incorporated

in (41) by replacing [Φ] by g2(t) − ΦN−1(x
−
N , t); and for outgoing flow, re-

placing [Φ] by 0. The determination of the inflow or outflow of the boundary

condition may be obtained by checking the sign of the characteristic speed

∂xH(x, φ, p). In the case of periodic boundary conditions, [Φ] can be com-

puted as Φ2(x
+
1 ) − ΦN−1(x

−
N ) at x = x1, xN , and ΦN (x) is regarded to be

identical to Φ1(x).

The fully discrete scheme follows from applying an appropriate Runge-

Kutta solver to (38). We summarize the algorithm as follows.
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Algorithm:

1. Initialization: in any cell Ij , compute the initial data by the local
L2−projection

(42)

∫
Ij

(Φ0 − φ0)ηdx = 0, η ∈ P k(Ij).

2. Alternating evaluation: take polynomials Φj±1(x) = Φ|Ij±1
, and then

sample in Ij to get L[Φj ; Φj±1, η] as defined in (39).
3. Evolution: obtain Φn+1 from Φn by some Runge-Kutta type procedure

to solve the ODE system (38).

In the AEDG schemes, ε is chosen such that the stability condition,

Δt ≤ ε ≤ Q
Δx

max |Hp(x, φ, p)|
,

is satisfied. The choice of Q depends on the order of the scheme.
The semi-discrete AEDG scheme is shown to be L2-stable for linear

Hamiltonian. In particular, when H = αp, α = const., we have the following
(see [42]).

Theorem 5.1. Let Φ be computed from the AEDG scheme (38) for the
Hamilton-Jacobi equation ∂tφ+H(∂xφ) = 0 with linear Hamiltonian H(p) =
αp and periodic boundary conditions. Then

d

dt

∫ b

a
Φ2dx = −1

ε

∫ b

a
(u− v)2dx.

By similar procedures one can construct AEDG schemes for multi-di-
mensional H-J equations:

∂tφ+H(∇xφ) = 0, x := (x1, . . . , xd) ∈ R
d,

based on the AE formulation (32). Let {xα} be distributed grids in R
d, and

Iα be a hypercube centered at xα with vertices at xα±1. Centered at each
grid {xα}, the numerical approximation is a polynomial Φ|Iα = Φα(x) ∈ Pr,
where Pr denotes a linear space of all polynomials of degree at most r in all
xi:

Pr := {p | p(x)|Iα =
∑

0≤βi≤r

aβ(x− xα)
β, 1 ≤ i ≤ d, aβ ∈ R}.
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Note dim(Pr) = (r + 1)d. Integrating the AE system (32) over Iα against
the test function η ∈ Pr, we obtain the semi-discrete AEDG scheme∫

Iα

(∂tΦα +H(∇xΦ
SN
α ))ηdx+

1

ε

∫
Iα

Φαηdx =
1

ε

∫
Iα

ΦSN
α ηdx−B,(43)

B =

d∑
j=1

∫
Iα

Hj(∇ΦSN
α )[ΦSN

α ]η(x)δ(xj − xjαj
)dx,(44)

where ΦSN
α is sampled from neighboring polynomials, and Hj = ∂pj

H(p).
The choice of ΦSN

α is not unique, and we shall take

ΦSN
α ∈ span{Φα±ej}dj=1.

We next illustrate our options in the two dimensional case. For α = (i, j),
the terms involving neighboring polynomials are as follows:∫ xi+1

xi−1

∫ yj+1

yj−1

H(∂xΦ
SN , ∂yΦ

SN )ηdydx

=

∫ xi+1

xi

∫ yj+1

yj

H(∂xΦi+1,j , ∂yΦi,j+1)η(x, y)dydx

+

∫ xi+1

xi

∫ yj

yj−1

H(∂xΦi+1,j , ∂yΦi,j−1)η(x, y)dydx

+

∫ xi

xi−1

∫ yj+1

yj

H(∂xΦi−1,j , ∂yΦi,j+1)η(x, y)dydx

+

∫ xi

xi−1

∫ yj

yj−1

H(∂xΦi−1,j , ∂yΦi,j−1)η(x, y)dydx.

An average of two neighboring polynomials Φi±1,j and Φi,j±1 will be used
to evaluate

∫
Iα

ΦSNηdx, that is

∫
Iα

ΦSNηdx =
1

2

∫ xi+1

xi

∫ yj+1

yj

(Φi+1,j +Φi,j+1)η(x, y)dydx

+
1

2

∫ xi+1

xi

∫ yj

yj−1

(Φi+1,j +Φi,j−1)η(x, y)dydx

+
1

2

∫ xi

xi−1

∫ yj+1

yj

(Φi−1,j +Φi,j+1)η(x, y)dydx

+
1

2

∫ xi

xi−1

∫ yj

yj−1

(Φi−1,j +Φi,j−1)η(x, y)dydx.
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The B term in (44) can then be computed as

B =

∫ yj+1

yj−1

H1 (∂xΦi,j , ∂yΦi,j)
(
Φi+1,j(x

+
i , y)− Φi−1,j(x

−
i , y)

)
η(xi, y)dy

+

∫ xi+1

xi−1

H2 (∂xΦi,j , ∂yΦi,j)
(
Φi,j+1(x, y

+
j )− Φi,j−1(x, y

−
j )

)
η(x, yj)dx.

For the boundaries, we first consider the side boundary along x = x1. Then∫ x2

x1

∫ yj+1

yj−1

H(∂xΦ
SN , ∂yΦ

SN )ηdydx

=

∫ x2

x1

∫ yj+1

yj

H(∂xΦ2,j , ∂yΦ1,j+1)η(x, y)dydx

+

∫ x2

x1

∫ yj

yj−1

H(∂xΦ2,j , ∂yΦ1,j−1)η(x, y)dydx,

and ∫ x2

x1

∫ yj+1

yj−1

ΦSNηdydx =
1

2

∫ x2

x1

∫ yj+1

yj

(Φ2,j +Φ1,j+1)η(x, y)dydx

+
1

2

∫ x2

x1

∫ yj

yj−1

(Φ2,j +Φ1,j−1)η(x, y)dydx,

and

B =
1

2

∫ yj+1

yj−1

H1 (∂xΦ1,j , ∂yΦ1,j)
(
Φ2,j(x

+
1 , y)− Φ0,j(x

−
1 , y)

)
η(x1, y)dy

+

∫ x2

x1

H2 (∂xΦ1,j , ∂yΦ1,j)
(
Φ1,j+1(x, y

+
j )− Φ1,j−1(x, y

−
j )

)
η(x, yj)dx.

In the above, Φ0,j(x
−
1 , y) may be taken different ways: the given boundary

data at x1 for inflow boundary; Φ2,j(x1, y) for outgoing flow; and

ΦNx−1,j(x
−
Nx

, y) for periodic boundary conditions. Similar computations are

made along the other side boundaries x = xNx, y = y1, y = yNy.

For corner cells, we illustrate using the southwest corner (x1, y1):

∫ x2

x1

∫ y2

y1

H(∂xΦ
SN , ∂yΦ

SN )ηdydx =

∫ x2

x1

∫ y2

y1

H(∂xΦ2,1, ∂yΦ1,2)η(x, y)dydx,
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and ∫ x2

x1

∫ y2

y1

ΦSNηdydx =
1

2

∫ x2

x1

∫ y2

y1

(Φ2,1 +Φ1,2)η(x, y)dydx,

and

B =
1

2

∫ y2

y1

H1 (∂xΦ1,1, ∂yΦ1,1)
(
Φ2,1(x

+
1 , y)− Φ0,1(x

−
1 , y)

)
η(x1, y)dy

+
1

2

∫ x2

x1

H2 (∂xΦ1,1, ∂yΦ1,1)
(
Φ1,2(x, y

+
1 )− Φ1,0(x, y

−
1 )

)
η(x, y1)dx.

Similar computations can be made for the other corners (x1, yNy), (xNx, y1),

(xNx, yNy).

Boundary conditions are incorporated in the following ways:

Φ0,1(x
−
1 , y) =

⎧⎨
⎩

boundary data inflow,
Φ2,1(x

+
1 , y) outflow,

ΦNx−1,1(x
−
Nx

, y) periodic,

Φ1,0(x, y
−
1 ) =

⎧⎨
⎩

boundary data inflow,
Φ1,2(x, y

+
1 ) outflow,

Φ1,Ny−1(x1, y
−
Ny

) periodic.

The Runge-Kutta method is used for time discretization with matching ac-

curacy.

5.2. Hyperbolic conservation laws

The AEDG method designed in [42] for Hamilton-Jacobi equations can be

applied without any difficulty to hyperbolic conservation laws. We only out-

line the main idea and the scheme formulation. Again the AEDG for one

dimensional conservation laws of the form ∂tu+ ∂xf(u) = 0 can be derived

based on the AE formulation

∂tu+ ∂xf(v) =
1

ε
(v − u).(45)

Integrating the AE system (45) over Ij against the test function η ∈ P k(Ij),

we obtain the semi-discrete AEDG scheme
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∫
Ij

(∂tΦj + ∂xf(Φ
SN
j ))ηdx+ [f(ΦSN

j )]
∣∣∣
xj

η(xj)(46)

=
1

ε

(∫
Ij

ΦSN
j ηdx−

∫
Ij

Φjηdx

)
,

where ΦSN
j is sampled from neighboring polynomials Φj±1 in the following

way: ∫
Ij

∂xf(Φ
SN
j )ηdx =

∫ xj

xj−1

∂xf(Φj−1)ηdx+

∫ xj+1

xj

∂xf(Φj+1)ηdx,∫
Ij

ΦSN
j ηdx =

∫ xj

xj−1

Φj−1ηdx+

∫ xj+1

xj

Φj+1ηdx,

[f(ΦSN
j )]

∣∣∣
xj

= f(Φj+1(x
+
j ))− f(Φj−1(x

−
j )).

To update each grid-centered polynomial element Φj(x), we write the com-
pact form of the semi-discrete scheme

d

dt

∫
Ij

Φjηdx = L[Φj ; Φ
SN
j , η](t),(47)

where

L[Φj ; Φj±1, η](t) =
1

ε

∫
Ij

(ΦSN
j − Φj)ηdx(48)

−
∫
Ij

∂xf
(
ΦSN
j

)
ηdx− [f(ΦSN

j )]|xj
η(xj).

Boundary conditions are incorporated through equations in two end cells.
For a computational domain [a, b] with x1 = a, xN = b and Δx = (b −
a)/(N − 1), the equations in two end cells are given by∫ x2

x1

(∂tΦ1 + ∂xf(Φ2))ηdx+
1

2
[f(Φ)]|x1

η(x1)(49)

=
1

ε

∫ x2

x1

(Φ2 − Φ1)ηdx,∫ xN

xN−1

(∂tΦN + ∂xf(ΦN−1))ηdx+
1

2
[f(Φ)]|xN

η(xN )(50)

=
1

ε

∫ xN

xN−1

(ΦN−1 − ΦN )ηdx.
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If the flow is incoming at x = a, one needs to impose the given bound-
ary condition φ(a, t) = g1(t). As a consequence, one is required to modify
(49) by changing [f(Φ)] to f(Φ2(x

+
1 )) − f(g1(t)); for the outflow case, one

may take [f(Φ)] = 0 in (49). Similarly, at x = b, the inflow boundary
condition φ(b, t) = g2(t) can be incorporated in (50) by replacing [f(Φ)]
by f(g2(t)) − f(ΦN−1(x

−
N , t)); and for outgoing flow, replacing [f(Φ)] by

0. The determination of the inflow or outflow of the boundary condition
may be obtained by checking the sign of the characteristic speed f ′(u).
In the case of periodic boundary conditions, [f(Φ)] can be computed as
f(Φ2(x

+
1 )) − f(ΦN−1(x

−
N )) at x = x1, xN , and ΦN (x) is regarded to be

identical to Φ1(x).
The fully discrete scheme follows from applying an appropriate Runge-

Kutta solver to (47). We summarize the algorithm as follows.

Algorithm:

1. Initialization: in any cell Ij , compute the initial data by the local
L2−projection

(51)

∫
Ij

(Φ0 − φ0)ηdx = 0, η ∈ P k(Ij).

2. Alternating evaluation: take polynomials Φj±1(x) = Φ|Ij±1
, and then

sample in Ij to get L[Φj ; Φj±1, η] as defined in (48).
3. Evolution: obtain Φn+1 from Φn by some Runge-Kutta type procedure

to solve the ODE system (47).

In the AEDG schemes, ε is chosen such that the stability condition,

Δt ≤ ε ≤ Q
Δx

max |f ′(u)| ,

is satisfied. The choice of Q depends on the order of the scheme.
By a similar procedure one can construct AEDG schemes for multi-

dimensional hyperbolic conservation laws:

∂tφ+∇x · f(φ) = 0, x ∈ R
d.

Again, let {xα} be distributed grids in R
d, and Iα be a hypercube centered

at xα with vertices at xα±1. Centered at each grid {xα}, the numerical
approximation is a polynomial Φ|Iα = Φα(x) ∈ Pr, where Pr denotes a
linear space of all polynomials of degree at most r in all xi:
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Pr := {p | p(x)|Iα =
∑

0≤βi≤r

aβ(x− xα)
β, 1 ≤ i ≤ d, aβ ∈ R}.

Integration of the AE system (32) over Iα against the test function η ∈ Pr,
we obtain the semi-discrete AEDG scheme∫

Iα

(∂tΦα +∇x · f(ΦSN
α ))ηdx+

1

ε

∫
Iα

Φαηdx =
1

ε

∫
Iα

ΦSN
α ηdx−B,(52)

B =

d∑
j=1

∫
Iα

[f(ΦSN
α )]η(x)δ(xj − xjαj

)dx,(53)

where ΦSN
α are sampled from neighboring polynomials. The choice of ΦSN

α

is not unique, and it is convenient to take the polynomials from the closest
neighbors,

ΦSN
α ∈ span{Φα±ej}dj=1.

The way of sampling from neighboring polynomials for Hamilton-Jacobi
equations can be applied well to the system of hyperbolic conservation laws.

6. Sample numerical experiments

The implementation of the AE algorithm began in [40], and further in [41, 42,
43]. Here sample numerical results are taken from [41, 42, 43], respectively.

In [41] we use some model problems of hyperbolic conservation laws to
numerically test the first, second, and third order AE schemes as illustrated
in section 2. Accuracy tests are based on scalar conservation laws such as
the Burgers’ equation, the nonlinear Buckley-Leverett problem, and multi-
dimensional linear transport problems. For shock-capturing tests using the
Euler equations of polytropic gas we compared the results with different ini-
tial data, including the Lax initial data, the Sod initial data, the Osher-Shu
initial data, and the Woodward–Colella initial data. In all cases the resolu-
tion of the high order finite volume AE schemes is in good agreement with
the established results in literature. One example is the explosion problem
for the 2D Euler equation:

φt+ f(φ)x+ g(φ)y =0, φ=(ρ, ρu, ρv, E)T , p=(γ− 1)
[
E− ρ

2
(u2+ v2)

]
,

f(φ)= (ρu, ρu2+ p, ρuv, u(E+ p))T , g(φ)= (ρv, ρuv, ρv2+ p, v(E+ p))T ,

where γ = 1.4. This example chosen from [61] consists of a high density
and high pressure region inside a bubble of radius 0.4 centered at the origin
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Table 1: L1, L2, and L∞ comparison for the non-convex Hamiltonian at time
t = 0.5

π2 using 3rd order dimension-by-dimension AE scheme

N Scheme L1 error L1 order L2 error L2 order L∞error L∞ order
20 AE 0.2885167659 0.0822233536 0.0445854569

40 AE 0.0608972496 2.2442061801 0.0208873181 1.9769209512 0.0140420171 1.6668230099

80 AE 0.0122271144 2.3162931238 0.0044368628 2.2350153966 0.0034367453 2.0306353513

160 AE 0.0017583509 2.7977889587 0.0006572209 2.7550895638 0.0005444127 2.6582702568

320 AE 0.0002266868 2.9554505249 0.0000826895 2.9906021610 0.0000873968 2.6390477645

640 AE 0.0000273512 3.0510218754 0.0000097165 3.0891842742 0.0000111797 2.9666891406

and a low density and pressure region outside the bubble which causes the
explosion. The initial data is

(p, ρ, u, v) (0) =

{
(1, 1, 0, 0) x2 + y2 < 0.16,

(0.1, 0.125, 0, 0) x2 + y2 ≥ 0.16.

The solution is computed at time T = 0.25. In this experiment, constant
extension boundary condition on all the four walls is used. CFL number used
is 0.4 and time step is taken as Δt = 0.95ε. In this test, the solution exhibits
a circular shock and circular contact discontinuity moving away from the
center of the circle and circular rarefaction wave moving in the opposite
direction, a complex wave pattern emerging as time evolves. We compute
this 2D bubble explosion solution by a second order AE scheme.

Presented in [42] are extensive numerical tests on both accuracy and
capacity of high order finite difference AE schemes for solving Hamilton-
Jacobi equations. For accuracy test, we take the example with a non-convex
Hamiltonian:

∂tφ− cos(∂xφ+ ∂yφ+ 1) = 0,

subject to initial data

φ(x, y, 0) = − cos

(
π(x+ y)

2

)
,

on the computation domain [−2, 2]2 with periodic boundary conditions. At
time t = 0.5

π2 , the solution is still smooth and we test the order of accuracy
for third order schemes using the dimension-by-dimension approach. The
results in Table 1 show the desired order of accuracy in all norms.

For capacity of the scheme to capture the singularity, we test the Eikonal
equation

∂tφ+
√

∂xφ2 + ∂yφ2 + 1 = 0,
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Figure 1: Isolines of density and pressure to the explosion problem (left).
Comparison between the two dimensional solutions and the one dimensional
radial solutions (right). 2nd order AE scheme on [−1, 1] × [−1, 1], T =
0.25, Δt = 0.95ε, Δx = Δy = 1/400.

with smooth initial data

φ(x, y, 0) =
1

4
(cos(2πx)− 1) (cos(2πy)− 1)− 1,

and computational domain [0, 1]2 and periodic boundary conditions. The

results at time t = 0.6 are shown in Figure 2. The AE scheme provides high

resolution in the formation of the singularity.

In [43], we tested both optimal accuracy and capacity of the AEDG

algorithm for solving several time-dependent Hamilton-Jacobi equations. We

here take one example relating to controlling optimal cost determination

from [37, 22] with a nonsmooth Hamiltonian:
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Figure 2: Surface and contour plots at time t = 0.6 for the 2D Eikonal
equation.

∂tΦ+ sin(y)∂xΦ+ (sin(x) + sign(∂yΦ))∂yΦ− 1

2
sin2(y) + cos(x)− 1 = 0,

with initial data Φ(x, y, 0) = 0, on the computation domain [−π, π]2 with
periodic boundary conditions. The results for the numerical solution and
optical control sign(∂tφ) are shown in Figure 3 using P 2 polynomials and
are in agreement with those found in [37, 22].

7. Concluding remarks and future work

In this paper, we present a brief survey of the current state-of-the-art of AE
methods for first order partial differential equations. We demonstrate the
main ideas of the algorithm through two canonical model equations: hyper-
bolic conservation laws and Hamilton-Jacobi equations. We include some
discussions of the properties and extensions of the schemes. Central solvers
have recently gained growing attention in the field of conservation laws and
Hamilton-Jacobi equations because of the guaranteed accuracy and reliable
simulation results they provide. For both conservative and non-conservative
PDEs we are able to apply the same discontinuous Galerkin framework upon
the AE formulation. From the stand point of algorithm design and develop-
ment, it would be interesting to explore ways to utilize fully the freedom of
the AEDG framework such as hp-adaptivity. For practical purposes, we will
develop AE models and solvers to simulate multi-phase fluids and problems
involving multi-scales in the future. Extensions to both stationary Hamilton-
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Figure 3: Numerical solution and optimal control plots at time t = 1 with
Nx = Ny = 81 using P 2 polynomials.

Jacobi equations and the convection-diffusion equations using section 5.2 are
currently underway.

In recent years, numerical solutions of fully nonlinear second order PDEs
have attracted a great deal of attention from the numerical PDE and sci-
entific communities, we refer to [15] for a recent review on this subject and
references therein. Extension of our AE methods to second order fully non-
linear PDEs will also be an important component of our future research.
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