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Liquid/vapor phase changes for a fluid flow through a porous me-
dium or a pipeline are considered. In particular, the model covers
both laminar and turbulent flows. The presence of both laminar
and turbulent flows causes jump discontinuities in the friction co-
efficient. Classical trajectories of traveling waves terminate when
they intersect the discontinuity. We construct traveling wave solu-
tions by monotonically smoothing the discontinuity and then tak-
ing a limiting process. The limit is independent of the monotone-
preserving smoothing. This uniqueness justifies the construction of
the traveling wave via this smoothing and limiting approach. Exis-
tence of traveling waves is established in a wide range of situations;
in particular, the end states may be formed either by pure phases
or mixtures.

1. Introduction

In this paper we consider the isothermal inviscid fluid flow through a porous
medium or a pipeline, in presence of liquid-vapor phase changes. A system
of evolution equations governing such flows in Lagrangian coordinates is

(1.1)

⎧⎨
⎩

vt − ux = 0 ,
ut + p(v, λ)x = −α(u)u ,
λt =

1
τ (p(v, λ)− pe)λ(λ− 1) ,

for t > 0 and x ∈ R. Here, v > 0 denotes the specific volume, u the velocity,
p the pressure, λ ∈ [0, 1] the mass-density fraction of the vapor in the fluid.
The constants τ > 0 and pe > 0 are the characteristic reaction time and the
equilibrium pressure, respectively.

The pressure function p(v, λ) > 0 is assumed to be of class C2 and
satisfies

(1.2) pv < 0, pλ > 0, pvv > 0, pvλ < 0.
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Physical pressure functions satisfy, in addition to (1.2), also the conditions

(1.3) lim
v→0+

p(v, λ) = +∞, lim
v→+∞

p(v, λ) = 0,

for every λ ∈ [0, 1]. A simple example of a pressure law satisfying both (1.2)
and (1.3) is, for γ ≥ 1,

p =
1 + λ

vγ
.

The function α(u) > 0 is the friction coefficient exerted onto the fluid by
the porous media or the pipe; to discuss this coefficient let us focus on the
case of a flow through a pipeline [44, 45], the case of a flow in porous media
being analogous. We completely disregard any discussion on the diameter,
length and roughness of the pipeline, which are important parameters but
are here considered to be fixed. When the flow speed is slow, then the flow is
laminar; however, the flow becomes turbulent for higher speeds. The friction
coefficient for a turbulent flow, which is usually computed by using the
Colebrook interpolation formula [45, (6.64)], is larger than that of a laminar
flow; both are represented in what is called a Moody chart [45, Fig. 6.13].
The main point is that the friction coefficient suffers a discontinuity when
passing from a laminar regime to a turbulent regime. Indeed, there is a
narrow zone between the two regimes where there is no reliable value for
the friction factor [45, page 348]; in our model we simply admit that this
transition zone is reduced to a single point. Therefore, we can model the
“Moody” friction coefficient α(u) as follows:

(1.4) α(u) =

{
a if |u| < u∗,
b|u| if |u| ≥ u∗,

for some a > 0, b > 0, u∗ > 0 and a < bu∗ [32, 33, 44, 45]. One result of
this paper is that the details of α(u) in the narrow transition zone do not
matter much.

We now briefly discuss the papers related to system (1.1). When there
are no phase transitions in the flow, then the third equation is missing and
p only depends on v. The corresponding 2 × 2 system has been studied by
many authors: see [36, 13, 28, 29, 37, 14, 30], for the homogeneous case
or with continuous source terms and [32, 33] for the case of discontinuous
source terms.

Here, we consider phase change flows in a pipe or porous media in both
laminar and turbulent regions. One approach is to study the hyperbolic-
elliptic mixed type p-system with the damping term −αu. The study of
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hyperbolic-elliptic mixed type p-system was pioneered by Slemrod [41, 42,
43], Shearer [39, 40] and followed later by many authors. For more references,
please see [20]. We are not aware of any attempt done in this approach. This
is an interesting direction for future study.

Another approach to consider phase changes is to study the full 3 × 3
system (1.1). We refer to [1, 5] for the homogeneous case; see also [3] for a
large data analysis. About the special case α ≡ 0, the Riemann problem was
solved in [8] if τ = 0 while the relaxation limit τ → 0 was investigated in
[2]; moreover, all possible traveling waves were characterized in [16]. When
a diffusion term λxx is added to the right side of the third equation in (1.1),
traveling waves were obtained in [15, 18, 19]. Using these traveling waves,
the system was found to have solutions exhibiting phenomena observed in
actual experiments [17].

The case when α is a positive constant was considered in [11], where
traveling waves of system (1.1) were obtained for a large range of end
states. Entirely analogous results are valid if α depends on λ but is bounded
away from zero [9]. Moreover, in [9] we proved that, under such an as-
sumption, system (1.1) satisfies the Shizuta-Kawashima condition and is
strictly entropy-dissipative; as a consequence [24], the initial-value problem
has smooth global solutions if the initial data are close either to the stable-
liquid phase (λ = 0 and p > pe) or to the stable-vapor phase (λ = 1 and
p < pe). In [10], we continued the study of system (1.1) in the case α depends
on λ in the degenerate situation

α(λ) > 0, for λ ∈ [0, 1), α(1) = 0.

The condition α(1) = 0 assumes that the porous medium exerts no friction
on vapor flows. We obtained various traveling waves for (1.1), many of them
were not present when α is bounded away from 0.

The friction coefficient α can also depend on u. For example, when the
flow speed is slow, the flow is laminar and the friction coefficient is small and
almost constant. In the model proposed above, as the speed of the fluid flow
crosses a threshold, the flow becomes turbulent and the friction coefficient
increases sharply across the threshold. For system (1.1) with discontinuous
friction coefficient but without phase changes, Luskin [32] proved the global
existence of smooth solutions with initial data in an invariant region and
whose first derivative is small enough. Subsequently, Luskin and Temple
[33] studied the existence of global weak solutions.

In this paper, we investigate traveling waves of (1.1) with a discontin-
uous friction coefficient α(u) as in (1.4). Then, we are led to consider a
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dynamical system with a discontinuous right-hand side; we refer to [21] for

a thorough account on this subject. Now, we briefly account about traveling

waves that solve dynamical systems with discontinuous right-hand side. A

famous example occurs in combustion models, see [7] and references quoted

there. In particular, in that paper the existence of solutions is proved either

by a shooting argument (in the scalar case) or by energy estimates (in the

case of a 2 × 2 system). That paper gave rise to a wide area of research

that cannot be accounted here. However, we quote [22] for recent mathe-

matical results on combustion phenomena in porous media. For system of

balance laws, sources that are discontinuous in the state variables have been

considered, to the best of our knowledge, only in the resonant case, see

[31, 25, 26, 4, 23].

With respect to our earlier papers [11, 10], the difficulty is that the

trajectories of the traveling waves of (1.1) terminate when they meet the

discontinuity of α(u). So, we have to define traveling waves of (1.1) in a

new, reasonable way to extend them and complete the connections between

equilibrium points. This is done as follows.

In our model, the discontinuity of α(u) is a simplification that models the

sharp increase of α when the flow speed increases from the laminar region to

the turbulent region. Indeed, as we mentioned above, in real phenomena the

sharp increase occurs for speeds in a narrow interval. A physically meaningful

way to resolve the terminations of the traveling wave trajectories consists in

smoothly connecting the discontinuity of α(u) over a narrow interval of width

ε > 0 and then let ε → 0+. This can be understood as the first step of the

approach. The second step is to establish the existence of traveling waves, de-

noted as (vε, λε)(ξ), to (1.1) with the above smoothed α. At last, in the third

step one must show the existence of the limit limε→0+(vε, λε)(ξ) =: (v, λ)(ξ)

and prove that it is independent of the monotone smoothing of α(u). Here,

a smoothing of α(u) is called monotone if it is increasing (or decreasing)

in the smoothing region where α(u∗−) < α(u∗+) (or α(u∗−) > α(u∗+),

respectively). This includes a wide range of smoothings for α(u). This inde-

pendence essentially overcomes the problem that, as we wrote above, there

is no reliable model for α in the transition zone. Our estimate shows that

solutions corresponding to two different smoothings of width ε > 0 differ by

at most O(1)ε. Moreover, one must prove that the limit (v, λ)(ξ) satisfies the

dynamical system corresponding to the traveling wave profiles of (1.1) in the

sense of the differential inclusions discussed, for instance, in [21]. We call

solutions in the sense of vanishing smoothing the traveling wave solutions

of (1.1) constructed in this way. The aim of this paper is to carry out the
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vanishing smoothing approach to establish the existence of traveling waves

to (1.1), for a wide range of end states.

In Section 2 we formulate the problem and state the main results. A

short Section 3 follows, where we collect some preliminary results. The core

of the paper is Section 4, where we provide fully detailed proofs for one of

the possible five cases that can occur; in this section we also discuss the

overall structure of the vanishing smoothing solutions. The final Section 5

contains sketches of the proofs for the remaining cases.

2. Main results

A traveling wave to (1.1) with constant speed c is a solution to (1.1) of the

form

U(ξ) = U

(
x− ct

τ

)
,

whose end-states at ±∞ are imposed together with the vanishing of the first

derivatives. As a consequence U must solve

(2.1)

⎧⎨
⎩

−cv′ − u′ = 0 ,
−cu′ + p′ = −A(u)u ,
−cλ′ = (p− pe)λ(λ− 1) ,

together with

(2.2)

{
(v, u, λ)(±∞) = (v±, u±, λ±) ,
(v′, u′, λ′)(±∞) = 0 ,

for (v±, u±, λ±) ∈ (0,∞)× (−∞,∞)× [0, 1]. Here above, “ ′ ” denotes differ-

entiation with respect to ξ, p′ = pvv
′ + pλλ

′ and

A(u) = α(u)τ .

In the case A = 0, the study of the traveling wave system (2.1) was done in

[15]. Here, we investigate the case A = A(u) > 0.

If a solution to (2.1)–(2.2) exists, we say that U− = (v−, u−, λ−) →
(v+, u+, λ+) = U+ is a connection with speed c. We focus our analysis

on the case c ≥ 0; indeed, if U is a connection U− → U+ with speed c,

then Ũ(ξ)
.
= (v(−ξ),−u(−ξ), λ(−ξ)) is a connection Ũ− = (v+,−u+, λ+) →

Ũ+ = (v−,−u−, λ−) with speed −c.
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Figure 2.1: Graph of the function B.

The end states (v±, u±, λ±) in (2.2), being equilibrium points of (2.1),

must satisfy

(2.3) u± = 0 and (p± − pe)λ±(λ± − 1) = 0 .

The jump condition

(2.4) c(v+ − v−) = 0 ,

which follows from (2.1)1 and (2.3), is also necessary for the existence of

traveling waves. This leads either to c = 0 or v− = v+. When c = 0, system

(2.1) has only trivial solutions, see Lemmas 2.1 and 5.3 of [11]. Therefore,

in the rest of this paper, we consider the case

(2.5) c > 0

and hence, by (2.4),

(2.6) v− = v+ =: v̄.

By (2.1)1 it follows that u = −c(v− v̄) so that A(u) = A
(
−c(v− v̄)

)
=: B(v).

If we denote

v∗± := v̄ ± u∗

c
,

then

B(v) =

{
τa if v ∈ (v∗−, v

∗
+),

τbc |v − v̄| if v ∈ (0, v∗−] ∪ [v∗+,∞).
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Notice that the interval (0, v∗−] may be empty (if v∗− ≤ 0). As a conse-
quence, we can rewrite the traveling wave system (2.1)–(2.2) as

(2.7)

⎧⎪⎪⎨
⎪⎪⎩

(c2 + pv)v
′ = Bc(v − v̄) + 1

cpλ(p− pe)λ(λ− 1),

λ′ = −1
c (p− pe)λ(λ− 1),

(v, λ)(±∞) = (v̄, λ±),

for (λ, v) ∈ Ω := [0, 1]× (0,∞). We also denote, see Figure 2.3,

Ωlam = {(λ, v) ∈ Ω : v ∈ (v∗−, v
∗
+)},

Ωturb = {(λ, v) ∈ Ω : v ∈ (0, v∗−] ∪ [v∗+,∞)}.

We define

s(λ, v) := c2 + pv,

g(λ, v) := Bc2(v − v̄) + pλ(p− pe)λ(λ− 1),

so that system (2.7) can be written in Ω as

(2.8)

⎧⎪⎪⎨
⎪⎪⎩

csv′ = g,

λ′ = −1
c (p− pe)λ(λ− 1),

(v, λ)(±∞) = (v̄, λ±).

Lemma 2.1. Assume A > 0 and c > 0. For a traveling wave of (2.8)
to exist, the end states (v̄, λ±) must satisfy one of the following necessary
conditions:

(i) p± ≥ pe and λ− = 0, λ+ = 1;
(ii) p± ≤ pe and λ− = 1, λ+ = 0;
(iii) p+ > pe = p− and λ− < 1, λ+ = 1;
(iv) p+ < pe = p− and λ− > 0, λ+ = 0;
(v) p− = p+ = pe and λ− = λ+.

The proof is analogous to that given in [11] for an analogous result
and then omitted. The end states (v̄, λ±) corresponding to cases (i)–(iv)
in the above theorem are depicted in Figure 2.2 together with a schematic
representations of the connections.

In [11], for constant A, traveling waves with end states described in (i)–
(v) of the above lemma are proved to exist under some conditions involving
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Figure 2.2: Possible end states of traveling wave with c > 0. Vectors point
from (v̄, λ−) to (v̄, λ+). After the wave passes the fluid, the fluid state
changes from (v̄, λ+) to (v̄, λ−).

the curves

S = {(λ, v) ∈ Ω : s(λ, v) = 0} and P = {(λ, v) ∈ Ω : p(v, λ) = pe}.

In this paper the friction parameter A = A(u) is discontinuous at u = ±u∗

and of course is not a constant. Then, the function

(2.9) g(λ, v) = Bc2(v − v̄) + pλ(p− pe)λ(λ− 1)

is discontinuous, in the plane (λ, v), along the lines v = v∗± with v∗± > 0.
Consider the region

G := {(λ, v) ∈ Ω : g(λ, v) > 0}.

The boundary G of G consists of the null set G0 = {(λ, v) ∈ Ω : g(λ, v) = 0}
of g and of the set

Gdisc = {(λ, v) ∈ Ω : v = v∗±, g(λ, v+) · g(λ, v−) ≤ 0},

which corresponds to the jump discontinuities of g across which g changes
sign. Therefore

G = ∂G = G0 ∪ Gdisc.

Classical trajectories of (2.8) terminate when they intersect the lines
v = v∗± at points where s 	= 0: differentiability is lost. To overcome this
difficulty we extend the definition of traveling wave beyond the classical
sense by the following vanishing smoothing approach.

The first step of this approach is smoothing the discontinuities of A(u)
around the points of discontinuity u = ±u∗, by convolution for example, or
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Figure 2.3: Possible discontinuity lines of the function g and the smoothing
region Rε. Notice that v∗− is missing if it is negative.

equivalently those of g(λ, v). Recall that B is discontinuous at v∗±; then, we
define the smoothing region as

Rε = {(λ, v) ∈ Ω : |v − v∗±| < ε},

for a small number ε > 0, see Figure 2.3. We denote the smoothed functions
of B(v) and g(λ, v) by Bε(v) and

(2.10) gε(λ, v) = Bεc
2(v − v̄) + pλ(p− pe)λ(λ− 1),

respectively. In other words, we have gε(λ, v) = g(λ, v) outsideRε. We always
require that the smoothing is monotone preserving in the sense that

Bε(v) is increasing (decreasing) where B(v) is increasing(2.11)

(resp., decreasing).

The second step is establishing the existence of solutions (vε, λε)(ξ) to
the problem

(2.8)ε

⎧⎪⎪⎨
⎪⎪⎩

csv′ = gε,

λ′ = −1
c (p− pe)λ(λ− 1),

(v, λ)(±∞) = (v̄, λ±),

which is deduced by (2.8) by replacing g with gε.

In the third step we shall prove that (vε, λε)(ξ) → (v, λ)(ξ) a.e. uniformly
in ε. The limit satisfies (2.8) away from v = v∗±. At v = v∗±, the limit satisfies
(2.8) in the sense of differential inclusions, see Theorem 2.2 below for the
precise statement. The limit is unique in the sense that the limit (v, λ)(ξ) is
independent of the monotone smoothing.
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The main result of this paper is stated below and roughly runs as follows:

In correspondence of each necessary condition in Lemma 2.1 we assume

some further sufficient conditions which allow us to prove the existence and

uniqueness of traveling waves to (2.8). All the cases in Lemma 2.1 are taken

into consideration.

Theorem 2.2. Assume (1.2), (1.4), (2.5), (2.11) and consider end states

as in (2.2) with u± = 0. If one of the following conditions is satisfied, then

there is a unique, up to a shift in ξ, traveling-wave solution of (1.1) in the

sense of the vanishing smoothing. Furthermore, it satisfies (1.1) in the sense

of differential inclusion.

(i) p± ≥ pe, λ− = 0, λ+ = 1; moreover G and S intersect at most once

with a transverse intersection.

(ii) p± ≤ pe, λ− = 1, λ+ = 0; moreover, G∩S = ∅ and Bc2+(pλ(p− pe))v×
λ(λ− 1) > 0 for v near v∗−.

(iii) p+ > pe = p−, λ− < 1, λ+ = 1; moreover G and S intersect at most

once in the region (λ−, 1]× R with a transverse intersection.

(iv) p+ < pe = p−, λ− > 0, λ+ = 0 and G ∩ S = ∅.
(v) p− = p+ = pe and λ− = λ+. In this case the solution is the trivial

constant solution (v, λ)(ξ) ≡ (v̄, λ−).

Corollary 2.3. In addition to (1.2), (1.4), (2.5) and (2.11), further assume

that the physical assumptions (1.3) hold; moreover, let the end states in (2.2)

satisfy u± = 0 and one of the necessary conditions listed in Lemma 2.1.

Then, if c > 0 is either sufficiently large or sufficiently small there is a

unique (up to a shift in ξ) traveling-wave solution to (1.1).

3. Some preliminary results

We first give a result on the eigenvalues of the equilibrium points of (2.1);

its proof is analogous to that given in [11].

Lemma 3.1. Assume (2.5)–(2.6), s 	= 0 and consider the linearized system

of (2.8) at the equilibrium points; then we have the following.

(i) At the equilibrium point (v̄, 0), the eigenvalues are μ1 = Bc
s and μ2 =

p−pe

c ; the corresponding eigenvectors in (V,Λ) coordinates are

(1, 0) and

(
pλ(p− pe)

cs
,
Bc

s
− p− pe

c

)
.
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Figure 3.1: Signs of s, p− pe, and gε in the plane (λ, v).

(ii) At the equilibrium point (v̄, 1), the eigenvalues are μ1 = Bc
s and μ2 =

−p−pe

c ; their corresponding eigenvectors are

(3.1) (1, 0) and

(
−pλ(p− pe)

cs
,
Bc

s
+

p− pe
c

)
.

(iii) Suppose that (v̄, λ̄) is an equilibrium point of (2.8) with λ̄ 	= 0, 1 and
p(v̄, λ̄) = pe; assume that s̄ := s(v̄, λ̄) 	= 0. Then, denoting again the
eigenvalues by μ1 and μ2, we have that μ1 < 0 < μ2 if s̄ < 0 and
0 < μ2 < μ1 if s̄ > 0.

A simple calculation on the equations defining S and P shows that
these sets are graphs of two smooth functions vS(λ) and vP(λ), respectively.
Indeed, we have

dvS

dλ
= −pvλ

pvv
> 0 and

dvP

dλ
= −pλ

pv
> 0.

By (2.9) and (2.10) we compute

gv = Bc2 +Bvc
2(v − v̄) + [pλv(p− pe) + pλpv]λ(λ− 1), v 	= v∗±,(3.2)

gε,v = Bεc
2 +Bε,vc

2(v − v̄) + [pλv(p− pe) + pλpv]λ(λ− 1).

We denote by Gε the null set {(λ, v) ∈ Ω : gε(λ, v) = 0} of gε. We refer to
Figure 3.1 for the signs of the functions s, p− pe and gε. We also denote by
V̄ the line v = v̄.

About the set G, we notice that g(0, v) = 0 or g(1, v) = 0 if and only if
v = v̄. Moreover, g(0, v) > 0 if v > v̄ and g(0, v) < 0 if v < v̄; the same holds
for g(1, v). Since the function λ �→ g(λ, v) is smooth for every v ∈ (0,∞), it
follows that

Gdisc ⊂ {(λ, v) ∈ Ω : δ < λ < 1− δ, v = v∗±},

for some δ > 0. We also notice that if G0 ⊂ [0, 1]× (v∗−, v
∗
+), then Gdisc = ∅.
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The relative positions of the curves S, P , Gε and V̄ are very important in
the following. As in [10], we write for short “below”(“above”) for “strictly
below”(resp., “strictly above”). Moreover, if A and B are two sets in the
(λ, v)-plane we write A ≺ B (A � B) to mean that A lies below (resp.,
above) B.

4. Existence and convergence of solutions (vε, λε)(ξ),
Case (i)

We begin by studying the shape of the boundary G in the case V̄ ≺ P .
Denote by Ω1 the region between V̄ and P .

Since B, though discontinuous, is increasing in Ω1, by (3.2) we deduce
that v �→ gv(λ, v) > 0 is increasing in Ω1 for every λ ∈ [0, 1]. Furthermore,
we have g(λ, v̄) ≤ 0 and g(λ, v) > 0 at P . Thus, at points of continuity of g
in Ω1, the set G0 is a curve of the form v = vG(λ).

If P ≺ {v = v∗+}, then also G0 ≺ {v = v∗+} and Gdisc = ∅. This case is
covered by Theorems 4.1 and 4.3 of [11]: since the direction vectors of the
dynamical system (2.8) point downwards at P , every trajectory entirely lies
in the laminar-flow regime.

If P 	≺ {v = v∗+}, then either P intersects the line {v = v∗+} or lies
above it. In this case, we claim that the results of [11] still apply if the set
G0 entirely lie in Ωlam. Indeed, from the proof below, we can conclude that
the trajectories of (2.8) must lie below max{v : (λ, v) ∈ G0} and above
min{v : (λ, v) ∈ G0}, see Figures 4.1 and 4.3. Then, the trajectories will
not enter Ωturb if G0 entirely lie in Ωlam and hence the results of [11] still
apply.

Therefore the remaining interesting situation is when both

(4.1) G0 ∩ Ωlam 	= ∅ and G0 ∩ Ωturb 	= ∅

hold. If (4.1) holds, then G0∩Ωlam and G0∩Ωturb are connected by segments
lying on the line {v = v∗+}; these segments form Gdisc. Indeed, in any case,
we observe that G and P can intersect only at v = v̄, as well as Gε and P .
See Figure 4.1 for an example of the set G.

The sets G and Gε only differ in the region

Nε := {(λ, v) ∈ Rε : {λ} × (v∗+ − ε, v∗+ + ε) ∩ G 	= ∅}.

The number of connected components of Nε is finite because the jump
B(v∗++)− B(v∗+−) is constant and hence the jumps of g(λ, v) are bounded
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Figure 4.1: The boundary G and the strips Nε,1, Nε,2, Lε when p± > pe and
S � G. The thick line is the limit trajectory of (2.8).

away from 0; as a consequence, the horizontal length of each connected com-
ponent of Nε is bounded away from 0. For simplicity, we assume in the sequel
that

(4.2) the number of connected components of Nε is two,

as depicted in Figure 4.1. We denote these components by

Nε,1 = [ν1, ν2]× (v∗+ − ε, v∗+ + ε),

Nε,2 = [ν3, ν4]× (v∗+ − ε, v∗+ + ε),

and the strip between them by

Lε = (ν2, ν3)× (v∗+ − ε, v∗+ + ε).

The results and proofs can be extended to any finite number of connected
components.

In the following, when referring to traveling waves, we write for short
unique meaning unique up to a shift in ξ.

We begin by considering Case (i) under the additional assumption that
S lies above G.
Theorem 4.1. We assume (1.2), (1.4), (2.11), (4.1) and consider end states
as in Case (i) of Lemma 2.1, that is, p± > pe, λ− = 0 and λ+ = 1; we also
assume G ≺ S.

Then, the smoothed traveling-wave problem (2.8)ε has a unique solution
(vε, λε)(ξ). Furthermore, the solutions (vε, λε)(ξ) converge uniformly to the
unique limit (v, λ)(ξ) as ε → 0+, which is independent of the smoothing.
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At last, the limit (v, λ)(ξ) satisfies the end-state conditions (v, λ)(±∞) =
(v̄, λ±) and equation (2.8)2 for every ξ; equation (2.8)1 is satisfied for every
ξ such that v(ξ) 	= v∗+ while when v(ξ) = v∗+ the differential inclusion

(4.3) v′(ξ) ∈
[
Γ
(
λ(ξ), v∗++

)
,Γ

(
λ(ξ), v∗+−

)]

holds for Γ(λ, v) = g(λ,v)
cs(λ,v) .

Proof. The relative positions of G, S and the end states (0, v̄), (1, v̄) are
shown in Figure 4.1. In particular, we have V̄ ≺ G in the strip (0, 1)×(0,∞).
We assume that ε is so small that we also have Gε ≺ S.

The proof of the existence and uniqueness of a solution to (2.8)ε runs as
follows, see Theorems 4.1 and 4.3 of [11]. Lemma 3.1 shows that there is an
unstable trajectory leaving the point (0, v̄) and entering into the region

Ω2 := {(λ, v) ∈ Ω : 0 < λ < 1, v > v̄, p > pe, s < 0}.

More precisely, according to the eigenvector of the eigenvalue μ2 = (p(v̄, λ)−
pe)/c > 0 given in Lemma 3.1, the trajectory enters into the region {(λ, v) ∈
Ω2 : g(λ, v) < 0}. Checking the directions of the vector field of (2.8)ε near
P , S and V̄, we see that they all point inside Ω2. The remaining part of the
boundary of Ω2, namely λ = 0 and λ = 1, is formed by solution curves of
(2.8)ε. Thus, this unstable trajectory cannot exit Ω2 and therefore must go
to the other equilibrium point (1, v̄). This trajectory (vε, λε)(ξ) is a solution
of (2.8)ε; moreover, since it stays inside Ω2, then λ(ξ) is increasing by the
second equation in (2.8)ε.

About the uniqueness of the solution of (2.8)ε, since λε(ξ) is monotone
we can rewrite the trajectory (vε, λε)(ξ) as vε = vε(λ). By (2.8)ε, one easily
sees that vε(λ) satisfies

(4.4)

⎧⎨
⎩

dvε
dλ

=
gε

s(p− pe)λ(1− λ)
,

vε(0) = vε(1) = v̄,

and then this is used to prove, as in [11], that vε(λ) is unique.

Now we show the convergence of (vε, λε)(ξ) as ε → 0+. To this end, we
shall show that the family {(vε, λε)(ξ)} is Cauchy for ε > 0. More precisely,
we shall prove that

(4.5) |vε1(λ)− vε2(λ)| ≤ O(1)ε for λ ∈ [0, 1],
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by showing that the inequality in (4.5) holds in each of the intervals [0, ν2],
[ν2, ν3], [ν3, ν4] and [ν4, 1]. Here, the term O(1) does not depend on ε. Con-
sider ε1, ε2 > 0 and denote

ε := max{ε1, ε2}.

We have gε1 = gε2 = g outside the smoothing region Rε; then the trajectories

Wε1(λ) := (λ, vε1(λ)) and Wε2(λ) := (λ, vε2(λ))

coincide when they lie outside Rε. Notice that both Wε1(λ) and Wε2(λ) must
enter the strip at the same λ =: λ0, since they coincide before entering the
strip. We only have to consider cases where one of the trajectories enters Nε

or Lε.
Case 1. Wε1 and Wε2 enter Nε,1.

The direction vectors of (4.4) point downward on the top edge Nε,1 ∩ {v =
v∗+ + ε} of Nε,1 while they point upward on the bottom edge Nε,1 ∩ {v =
v∗+ − ε}; as a consequence, once Wε1 and Wε2 enter Nε,1, they must exit it
through its right edge Nε,1 ∩ {λ = ν2}. Thus, we have

(4.6) |vε1(λ)− vε2(λ)| ≤ 2ε for 0 ≤ λ ≤ ν2.

As λ increases in the interval [ν2, ν3], we claim that

(4.7) |vε1(λ)− vε2(λ)| ≤ O(1)ε for ν2 ≤ λ ≤ ν3.

To prove the claim, consider, recalling (4.4),

∂

∂v

(
gε

s(p− pe)λ(1− λ)

)
(4.8)

=
1

s2(p− pe)2λ(1− λ)
[gε,vs(p− pe)− gε (s(p− pe))v] ,

where, by (2.10),

(4.9) gε,v = Bεc
2 +Bε,vc

2(v − v̄) + (pλv(p− pe) + pλpv)λ(λ− 1) > 0

is bounded away from 0. Here, we used (2.11), leading to Bε,v ≥ 0 where
v > v̄. As λ increases in [ν2, ν2 + o(1)] range, both g(λ, vεi(λ)) are small
because close to the curve g = 0. Then by (4.8) and (4.9) we see that

(4.10)
∂

∂v

(
gε

s(p− pe)λ(1− λ)

)
< 0,
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for λ ∈ [ν2, ν2+o(1)]. Hence, by (4.4), the difference |vε1(λ)−vε2(λ)| decreases
and therefore, by (4.6),

(4.11) |vε1(λ)− vε2(λ)| ≤ 2ε for ν2 ≤ λ ≤ ν2 + o(1),

as λ increases until gε1,v(λ, vε1(λ)) or gε2,v(λ, vε2(λ)) are bounded away from
0. Notice that, due to (4.11), one of g(λ, vεi(λ)) being bounded away from 0
implies both are bounded away from 0.

If at λ = ν2 + o(1) both Wεi(λ) are already above Lε, then they keep
staying above Lε until λ = ν3, because G is above Lε and vεi(λ) increase
when Wεi(λ) are below G. Therefore, over the range ν2 + o(1) ≤ λ ≤ ν3,
the functions vεi(λ) satisfy the same ODE (4.4)1, which is independent of
εi’s over that range. By (4.11), the continuous dependence on initial data of
regular ODEs implies (4.7)

If instead one of Wεi(λ = ν2 + o(1)) is inside Lε, then, because gεi,v(λ,
vεi(λ)) are bounded away from 0, it takes another increase in λ be O(1)ε
for both Wεi(λ) to exit Lε from the top. Over this range vεi(λ) change by
O(1)ε. Thus, also in this case the estimate (4.7) holds. This completes the
proof of the claim (4.7).

We now claim that

(4.12) |vε1(λ)− vε2(λ)| ≤ O(1)ε for ν3 ≤ λ ≤ ν4.

To prove this claim we notice that, over the interval ν3 ≤ λ ≤ ν4, a trajectory
Wεi(λ) either stays above Nε,2 for every λ ∈ [ν3, ν4] or enters Nε,2 at some
λεi,2 ∈ [ν3, ν4]. There are the following three possibilities:

1.1 Both Wε1(λ) and Wε2(λ) lie above Nε,2 for every λ ∈ [ν3, ν4].
Then both vεi(λ) satisfy the equation

(4.13)
dvεi
dλ

=
g

s(p− pe)λ(1− λ)

and |vε1(ν3)− vε2(ν3)| = O(1)ε by (4.7). A straightforward calculation
shows that in the region above G and below P and S, 0 ≤ λ ≤ 1,
the term g

s(p−pe)λ(1−λ) < 0 decreases as v increases. Thus, in this case

|vε1(λ)− vε2(λ)| decreases. This proves (4.12).
1.2 Wε1(λ) lies above Nε,2 for every λ ∈ [ν3, ν4] while Wε2(λ) enters Nε,2

at λε2,2 ∈ [ν3, ν4] (or conversely).
As λ increases from ν3 and before Wε2(λ) enters Nε,2, the Wεi ’s behave
as described in Subcase 1.1; then the inequality in (4.12) holds for
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λ ∈ [ν3, λε2,2]. After Wε2(λ) enters Nε,2, it keeps staying inside Nε,2

because the directions vectors on the top edge and on the bottom

edge of Nε,2 point inside Nε,2; hence, vε2(λ) > v∗+ − ε. On the other

hand, vε1(λ) decreases for all λ ∈ [ν3, ν4]. Then (4.12) holds.

1.3 Both Wε1(λ) and Wε2(λ) enter into Nε,2 (at λε1,2 and λε2,2, respec-

tively).

For ν3 ≤ λ ≤ min{λε1,2, λε2,2} we argue as in Subcase 1.1, for min{λε1,2,

λε2,2} ≤ λ ≤ max{λε1,2, λε2,2} as in Subcase 1.2. At last, for max{λε1,2,

λε2,2} ≤ λ ≤ ν4 the trajectories cannot exit Nε,2 until λ increases to

λ = ν4. In this case |vε1(λ)− vε2(λ)| ≤ 2ε because the height of Nε,2 is

just 2ε. This concludes the proof of (4.12).

At last, we claim that

(4.14) |vε1(λ)− vε2(λ)| ≤ O(1)ε for λ ∈ [ν4, 1].

To this end, we consider the following three subcases, which possibly occur in

subintervals [a, b] of [ν4, 1]. Recall that every trajectory lies above or inside

Nε,2 at λ = ν4, where (4.12) holds; there are no other possibilities. For

simplicity, we only discuss the cases where strict inequalities occur (in �, ≺
and in dvG/dλ ≶ 0, see below); the remaining possibilities easily follow from

our analysis.

1.A Both Wε1(λ) � Gε1 and Wε2(λ) � Gε2 for λ ∈ [a, b] ⊂ [ν4, 1].

At λ = ν4 we have precisely Wε1(ν4) � Gε1 and Wε2(ν4) � Gε2 , see

the warning just above. By the same reasoning in subcase 1.1, the

difference |vε1(λ) − vε2(λ)| decreases as λ increases; in this case, the

inequality in (4.14) holds in [a, b] if it holds at a.

We notice that by the assumptions of this theorem we have p > pe
and then gv > 0; thus, the set G is a curve of the form v = vG(λ).
If the curve G is decreasing in the sense that dvG/dλ < 0 in [ν4, 1],

then no trajectory may intersect G because at the intersection points

the equality dvεi/dλ = 0 must hold. If this happens, then subcase 1.A

occurs over [ν4, 1] and (4.14) holds. Therefore, in the rest of the proof

of this theorem, we assume that the curve G is not monotone over

λ ∈ [ν4, 1].

1.B Wε1(λ) � Gε1 while Wε2(λ) ≺ Gε2 (or conversely) for λ ∈ [a, b] ⊂ [ν4, 1].

ThenWε1(λ) decreases andWε2(λ) increases as λ increases. So |vε1(λ)−
vε2(λ)| also decreases as λ increases. The inequality in (4.14) holds in

[a, b] if it holds at a.
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1.C Both Wε1(λ) ≺ Gε1 and Wε2(λ) ≺ Gε2 for λ ∈ [a, b] ⊂ [ν4, 1].
In this case both functions vεi(λ) increase with λ. We further subdivide
this case into three subcases as follows.
If both Wεi(λ) are inside Rε, then the estimate in (4.14) trivially holds
in [a, b]. IfWε1(λ) is inRε whileWε2(λ) is outside ofRε (or conversely),
then vε2(λ) increases as λ increases. The inequality in (4.14) holds in
[a, b] if it holds at a.
Then, we are left to the subcase when

(4.15) both Wεi(λ) are below Rε.

We claim that this cannot happen in a left neighborhood of λ = 1.
To prove the above claim, we observe that the slope of G for v ∈
[v̄, v∗+ − ε) and λ ∈ (λ0, 1), where λ0 < 1 is close enough to 1, is

dvG

dλ
= −gλ

gv
= − [pλ(p− pe)λ(λ− 1)]λ

B′c2(v − v̄) +Bc2 + [pλ(p− pe)]vλ(λ− 1)

= − pλ(p− pe)

B′c2(v − v̄) +Bc2
+O(1)(λ− 1) < 0.(4.16)

Of course, the choice of λ0 is independent from ε. Since G is not mono-
tonically decreasing for λ ∈ [ν4, 1] but is decreasing for λ in a right
neighborhood of ν4, there is at least one local minimum point of G,
different from 1, in the interval [ν4, 1]. Let λ1 be the maximum of such
local minimum points, see Figure 4.2. Then λ1 < λ0 holds in view of
(4.16). Draw in the (λ, v)-plane a horizontal line H through the min-
imum of G over the interval ν4 ≤ λ ≤ 1. Since g < 0 when v = v̄ and
λ ∈ (0, 1), the line H is strictly contained between the lines v = v∗+
and v = v̄; hence, the line H intersects G to the right of λ1. Denote
the λ-coordinate of the rightmost of such intersection points as λ2.
Clearly, we have λ2 < 1 and λ2 is independent of ε.
As λ increases from ν4 towards 1, both Wε1(λ) and Wε2(λ) start from
above the line v = v∗+−ε. We recall that when a trajectory Wε is under
G, then its component vε(λ) increases. If a trajectory lie below G at
λ = λ2, then it must have been increasing in the interval [ν4, λ2] and
then it could not start from above the line v = v∗+−ε. As a consequence,
at λ = λ2 both Wε1(λ) and Wε2(λ) must lie above G. This means, on
the one hand, that case 1.A occurs in the region λ2 ≤ λ ≤ 1; on the
other hand, the intervals over which (4.15) possibly occurs must be on
the right side of λ2. This proves the claim above.
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Figure 4.2: The boundary G and the line H.

To conclude the proof, we remark that in this case both vεi(λ) sat-
isfy the same regular ODE (4.13). We argue as for proving (4.10), by
exploiting λ2 to deduce a strictly negative bound of (4.10), which is
moreover independent of ε: if the inequality in (4.14) is true at a then
it is still true for a ≤ λ ≤ min{λ2, b}.
This completely proves claim (4.14).

Combining (4.6), (4.7), (4.12) and (4.14) we conclude that (4.5) is sat-
isfied in Case 1.

Case 2. Wε1(λ) and Wε2(λ) do not enter Nε,1 but enter Lε.
The proof of Case 1 also covers this case.

Case 3. Wε1(λ) and Wε2(λ) enter neither Nε,1 nor Lε but enter Nε,2.
Again, the proof of Case 1 also covers this case.
Thus, estimate (4.5) holds for all cases. This proves that

lim
ε→0+

vε(λ) = v(λ) in || · ||C([0,1]).

Furthermore, in the above argument the smoothing of B is arbitrary as long
as the width of region of smoothing is ε and the smoothing is monotone
preserving. Hence, estimate (4.5) is independent of the smoothing of B and
therefore the limit v(λ) is unique in the sense that it is independent of the
smoothing.

It remains to prove that the limit (v, λ)(ξ) is a solution as stated in the
theorem. When v(ξ) 	= v∗±, being the strong limit of solutions (vε, λε)(ξ) of
(2.8)ε, (v, λ)(ξ) is a strong solution of (2.8). When ξ is in the interior of the
set {ξ : v(ξ) = v∗±}, then v′(ξ) = 0. Notice that Γ

(
λ(ξ), v∗+−

)
> 0 and

Γ
(
λ(ξ), v∗++

)
< 0, we conclude that (4.3) is true. This concludes the proof

of the theorem.

Corollary 4.2. We assume (1.2), (1.3), (1.4), (2.11), (4.1) and consider
end states as in Case (i) of Lemma 2.1, that is, p± > pe, λ− = 0 and
λ+ = 1.
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Then, for small enough c > 0, problem (2.8)ε has a unique solution in
the sense of the vanishing smoothing.

Proof. When p± > pe the curve P is above G. By the physical assumptions
(1.3) on the pressure we have

lim
c→0+

vS(λ) = ∞.

Therefore S lies above P and hence G for small enough c > 0. Then, Theo-
rem 4.1 applies.

We pursue the analysis of Case (i) by considering the case when S lies
below G. The following statements parallel that of Theorem 4.1; for brevity,
from here on we stress any more neither that our solutions to (2.8) in the
sense of the vanishing smoothing are independent of the smoothing, as long
as (2.11) holds, nor we state the properties of the solutions as in the last
part of the statement of Theorem 4.1.

Theorem 4.3. We assume (1.2), (1.4), (2.11), (4.1) and consider end states
as in Case (i) of Lemma 2.1, that is, p± > pe, λ− = 0 and λ+ = 1; we also
assume G � S.

Then, the traveling-wave problem (2.8) has a unique solution (v, λ)(ξ)
in the sense of the vanishing smoothing.

Proof. The proof for this theorem is almost the same as that of Theorem 4.1,
except that instead of tracing the trajectories in the λ increasing direction,
we trace the trajectories in the λ decreasing direction in this proof. See
Figure 4.3.

Corollary 4.4. We assume (1.2), (1.3), (1.4), (2.11), (4.1) and consider
end states as in Case (i) of Lemma 2.1, that is, p± > pe, λ− = 0 and
λ+ = 1.

Then, for large enough c > 0, problem (2.8)ε has a unique solution in
the sense of the vanishing smoothing.

Proof. When c > 0 is large enough the curve S lies below V̄, and hence
Theorem 4.3 applies.

We conclude the analysis of Case (i) by considering the case when S
intersects G.
Theorem 4.5. We assume (1.2), (1.4), (2.11), (4.1) and consider end states
as in Case (i) of Lemma 2.1, that is, p± > pe, λ− = 0 and λ+ = 1; moreover,
we assume that S and G intersect transversely only once.
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Figure 4.3: The boundary G and the strips Nε,1, Nε,2, Lε when p± > pe and
S ≺ G.

Then, the traveling-wave problem (2.8) has a unique solution (v, λ)(ξ)

in the sense of the vanishing smoothing.

Proof. Consider the smoothed system (2.8)ε. We denote by (λ0, v0) the inter-

section point of S and G. Since S and G intersect transversely, also the sets

S and Gε still intersect once. Denote their point of intersection as (λε
0, v

ε
0).

If (λ0, v0) (or (λ
ε
0, v

ε
0)) is outside of the strip Rε, then (λε

0, v
ε
0) = (λ0, v0).

If (λ0, v0) lies inside the strip Rε, then (λε
0, v

ε
0) is also inside of Rε.

Note that the set S ∩Rε has a radius O(1)ε: the curve S intersects the line

v = v∗+ transversely because the function vS is strictly increasing. Then the

intersection point (λε
0, v

ε
0) ∈ S ∩Rε, must satisfy

(4.17) |λε
0 − λ0|+ |vε0 − v0| = O(1)ε.

Then, as ε → 0+, (λε
0, v

ε
0) goes to the point of intersection (λ0, v0) of S and

G.
According to Theorems 4.1 and 4.3 of [11], there is a unique solution

(vε, λε)(ξ) for the problem (2.8)ε; moreover, this solution passes through the

point (λε
0, v

ε
0).

The solution is constructed this way: Through the point (λε
0, v

ε
0), there

are two trajectories of (2.8)ε, see the proof of Theorem 4.1 of [11]. One of

them goes through (λε
0, v

ε
0) from the region

Ω4 := {(λ, v) ∈ Ω : 0 ≤ λ < λ0, gε > 0, p > pe, s > 0}
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Figure 4.4: The boundary G and the strips Nε,1, Nε,2, Lε when p± > pe and
S intersects G.

to the region

Ω5 := {(λ, v) ∈ Ω : λ0 < λ ≤ 1, ge < 0, p > pe, s < 0},

see Figure 4.4.

To show that {(vε, λε)}ε>0 is Cauchy we consider solutions (vεi , λεi)(ξ)

of (2.8)εi for i = 1, 2. When we trace the trajectory from (λε
0, v

ε
0) back

towards (0, v̄), the situation is the same as that in Theorem 4.3. On the other

hand, when we follow the trajectory forwards from (λε
0, v

ε
0) towards (1, v̄), we

encounter the same situation described in proof of Theorem 4.1. Combining

with (4.17), we see that {(vε, λε)} is Cauchy and hence the desired conclusion

holds.

The degeneracy encountered in Theorem 4.5 occurs also in other papers.

A suggestive terminology is introduced in [38], where they call the curve S
the wall of singularities or singular barrier, while the intersection point S∩G
is called the hole in the wall: it is through the hole that the trajectory can

pass beyond the wall. Related papers are [38, 34]; an extension to a 3 × 3

model is done in [35] and a rigorous proof is given in [27]. Another example

occurs in modeling the spreading of pollution [6, 12].

Remark 4.1. A discussion about the structure the vanishing smoothing so-

lution is now in order. From the proofs of Theorems 4.1 and 4.3, we can see

that the vanishing smoothing solution of (2.8) can be constructed as follows;

we use the end states in Theorem 4.1 as an example, see Figure 4.1.
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Consider the unique unstable trajectory of (2.8), without smoothing,

issued from (0, v̄) into the {λ > 0} region. As ξ increases from −∞, λ(ξ)

increases from λ = 0. If this trajectory meets

N := G ∩ {v = v∗±},

say at λ = λ1, then the classical trajectory ends there. On the contrary,

the vanishing smoothing trajectory continues by following N horizontally in

(λ, v)-plane as (λ, v)(ξ) = (λ(ξ), v∗+), where λ(ξ) is determined by (2.8)2 with

v = v∗+. This is because the flow direction of (2.8)ε, as we are tracing forward,

points towards Nε. This nonclassical branch terminates when G deviates

from v = v∗+, say at λ2 = λ(ξ2). As ξ increases from ξ2, the trajectory follows

the solution of (2.8) with initial value at ξ = ξ2 given by (λ, v)(ξ2) = (λ2, v
∗
+).

Then, the overall structure of the vanishing smoothing trajectory consists

of pieces of constant v = v∗+ or v = v∗− segments, connected by regular

trajectories of (2.8).

More precisely, assume that the proof of existence of solutions to (2.8)ε
is made by following forwards an unstable trajectory to the other equilib-

rium point and, moreover, that the trajectory of (2.8)ε can exit a connected

component of Nε only at its λ = constant ends; then, the constant pieces of

the limit solution to (2.8) terminate at the right end of the connected com-

ponents of N , as ξ increases. On the other hand, assume that the existence

proof is made by tracing backwards a stable trajectory to the other equilib-

rium point, and that the flow direction of (2.8), as we are tracing backwards,

points towards Nε. Then the trajectory can exit a connected component of

Nε only at its λ = constant boundary; then the constant pieces of the limit

solution to (2.8) start at a left end of a connected component of N , as ξ

increases.

In the sequel, we also call vanishing smoothing solutions the solutions of

(2.8) with discontinuous B(v) constructed in this way, bypassing the limit

procedure.

Remark 4.2. We can extend Theorems 4.1, 4.3 and 4.5 to include the case

where p− = pe and λ− = 0. The method consists in selecting a sequence {v̄n}
so that v̄n → v̄+. Then p(λ− = 0, v̄n) > pe and hence the theorems quoted

above apply and provide traveling waves (vn, λn)(ξ). By the same argument

exploited in the proof of Corollary 4.2 in [10], we can show that (vn, λn)(ξ)

converges, by extracting a subsequence if necessary, to a nonconstant limit

(v, λ)(ξ). This limit satisfies the ODEs in (2.8) weakly, and hence strongly

when v(ξ) 	= v∗±.
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By Remark 4.1 the structure of each trajectory (vn, λn)(ξ) consists of
finitely many line segments lying on v = v∗± that are joined by trajectories
of the dynamical system in (2.8). The number of pieces is bounded inde-
pendently from n. Then the limit (v, λ)(ξ) will have the same structure and
hence is a solution of (2.8) in the sense of the vanishing smoothing. Further-
more, the uniqueness of the solution can be proved almost as in Corollary
4.2 of [10].

5. Existence and convergence of solutions (vε, λε)(ξ),
Cases (ii)–(v)

In this section we conclude the proof of Theorem 4.1 by considering Cases
(ii)–(v). We begin with Case (ii).

Theorem 5.1. We assume (1.2), (1.4), (2.11), (4.1) and consider end states
as in Case (ii), that is, p± < pe, λ− = 1 and λ+ = 0. Moreover, we assume
that S and G do not intersect.

Then, the traveling-wave problem (2.8) has a unique solution (v, λ)(ξ)
in the sense of the vanishing smoothing if

(5.1) Bc2 + (pλv(p− pe) + pλpv)λ(λ− 1) > 0,

for v near v∗−.

Proof. We notice that the assumption S ∩ G = ∅ implies that either s± > 0
or s± < 0 holds. We only provide a sketch of the existence proof, which is
similar to that of Theorem 4.4 in [11] with the modifications introduced for
the vanishing smoothing in the proofs of the previous section.

Case 1: s± < 0.

In this case we have P ≺ G ≺ V̄ ≺ S, see Figure 5.1(1), where we
omitted to draw G for simplicity. The flow directions of (2.8)ε point inside
the set

Ω6 := {(λ, v) ∈ Ω : v < v̄, p < pe}

at points inside and near the boundaries S and P ; the remaining parts of
the boundary of Ω6, namely λ = 0 and λ = 1, are solution curves of (2.8)ε.
Therefore, the trajectories of (2.8)ε cannot leave Ω6 once they entered it.
By Lemma 3.1 there is an unstable manifold of (λ− = 1, v̄) entering Ω6.
Following this unstable trajectory forwards, we see that it must connect to
the equilibrium point (λ+ = 0, v̄). Thus, a solution of (2.8)ε exists in this
case. Moreover, according to Theorem 4.5 of [11], this solution is unique.
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Figure 5.1: The cases s± < 0, left, and s± > 0, right.

We claim that the trajectories of (4.4)ε can exit Nε at a λ = constant

end as ξ increases. This is because, below the line v = v∗−, the larger B for

turbulent flow is in effect, while B is smaller above v = v∗−, see Figure 2.1;

in other words, B(v∗−−) > B(v∗−+). Since v∗− < v̄, we have

g(λ, v∗−+) = B(v∗−+)c2(v∗− − v̄) + pλ(p− pe)∣∣
v=v∗

−+

λ(λ− 1) > g(λ, v∗−−).

Because g changes sign across N , then the inequality

g(λ, v∗−+) > 0 > g(λ, v∗−−)

holds across the line segments of N . Then, below Nε the directions of (2.8)ε
are upwards while above N the directions of (2.8)ε are downwards. This

shows that the claim holds.

By the technical assumption (5.1) we deduce

Bεc
2 + (pλv(p− pe) + pλpv)λ(λ− 1) > 0

over (v∗− − δ, v∗− + δ) for some small δ > 0. Then, we have

gε,v = Bεc
2 + (pλv(p− pe) + pλpv)λ(λ− 1) +Bε,v(v)c

2(v − v̄) > 0

for v ∈ (v∗− − δ, v∗− + δ). As in the calculation of (4.8), we have

∂

∂v

(
gε

s(p− pe)λ(1− λ)

)
> 0

for λ near the left ends of the connected components of Nε.
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Figure 5.2: The case p− = pe. (a): subcase s± < 0, (b): subcase s± > 0. The
rightward trajectories refer to Case (iii), the leftward ones to Case (iv).

Thus, arguing as in the proofs of Theorems 4.1, except that we trace the
trajectory in the λ decreasing direction, we conclude that there is a unique
solution of (2.8) in the sense of vanishing smoothing.

Case 2: s± > 0.
The proof of this case is analogous to that of Case 1, with the difference that
now we trace the stable trajectory of the equilibrium point (0, v̄) backwards;
see Figure 5.1(2). The details are left to the reader.

Corollary 5.2. We assume (1.2), (1.3), (1.4), (2.11), (4.1) and consider
end states as in Case (ii), i.e., p± < pe, λ− = 1 and λ+ = 0.

Then, both for large enough c > 0, problem (2.8) has a unique solution
in the sense of the vanishing smoothing.

Now we investigate Cases (iii) and (iv): the pressure at an end state
equals pe.

Theorem 5.3. We assume (1.2), (1.4), (2.11), (4.1) and consider end states
either as in Case (iii), i.e., p+ > pe = p− and λ− < 1 = λ+, or as in
Case (iv), i.e., p+ < pe = p− and λ− > 0 = λ+. Moreover, in Case (iii)
we assume that S and G intersect transversally at most once in the region
(λ−, 1] × (0,∞) while in Case (iv) we assume that they do not intersect at
all.

Then, the traveling-wave problem (2.8) has a unique solution (v, λ)(ξ)
in the sense of the vanishing smoothing.

Proof. We consider both Case (iii) and Case (iv) at the same time; the
analysis is divided into three subcases according to the position of the curve
S. The relative positions of the sets S,G and P are shown in Figure 5.2.
Case 1. s± < 0.
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By Lemma 3.1, there is an unstable trajectory of the equilibrium (λ−, v̄)
entering the λ > λ− side (Case (iii)) and the λ < λ− side (Case (iv)),

respectively. On the λ > λ− side, the trajectory is necessarily below P at

the beginning: otherwise, we should have λ′ < 0, a contradiction. Then, the

situation on the λ > λ− side is analogous to that of the proof of Theorem 4.1.

On the other hand, the situation in the other side λ < λ− is similar to that of

Case 1 in the proof of Theorem 5.1. This shows the existence and uniqueness

of the vanishing smoothing solution to (2.8) in the case s± < 0.

Case 2. s± > 0.

Under the assumptions we made on the sets S and G, the situation in

the side λ > λ− is analogous to that in the proof of Theorem 4.3, while in

the side λ < λ− it is similar to that of Case 2 in the proof of Theorem 5.1.

The arguments used there can be used here as well.

Case 3. s+ < 0 < s− and p+ > pe = p−, λ− < 1 = λ+.

The proof is similar to that of Theorem 4.5.

Remark 5.1. Theorem 5.1 can be extended to include the case where λ− = 1,

p− = pe. The proof is analogous to that outlined in Remark 4.2.

Now, combining Theorems 4.1, 4.3, 4.5 and Remark 4.2, we get state-

ment (i) of Theorem 2.2. Similarly, statement (ii) of Theorem 2.2 is the

combination of Theorem 5.1 and Remark 4.2. Statements (iii) and (iv) of

Theorem 2.2 is deduced by Theorem 5.3 and Remark 5.1. At last, statement

(v) in Theorem 2.2 is easily discussed as in Lemma 5.3 of [11].
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