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Two-species flocking particles immersed in a fluid

Young-Pil Choi and Bongsuk Kwon

We present a new particle-fluid model describing the motion of
two-species flocking particles immersed in an incompressible vis-
cous fluid. The flocking particles are directly affected by the in-
compressible fluid through a drag force, and they are also coupled
with each other via the fluid. On the other hand, the two-species
particles are coupled with each other via the viscous fluid. For this
proposed model, we show the global existence of a unique strong
solution when the initial data is sufficiently small, and we also in-
vestigate the large-time behavior of the solutions under suitable
conditions.

1. Introduction

In this paper, we present a new model for the two-species flocking particles
interacting with an incompressible fluid. The model consists of the Vlasov-
type equations with flocking force terms for the particles and the incompress-
ible Navier-Stokes equations for the fluid. The flocking particles are directly
affected by the Navier-Stokes equations through a drag force, and they are
also coupled with each other via the fluid. For the proposed model, we first
show the existence, uniqueness and regularity of the strong solutions when
the initial data is sufficiently small, and investigate the large-time behavior
of the solutions using a priori estimates.

More specifically, let fi = fi(x, ξ, t), i = 1, 2 be the one-particle distri-
bution function of the flocking particles at the phase-space position (x, ξ) ∈
Ω×R

3 at time t, and u = u(x, t) be the bulk velocity of the incompressible
fluid. Here Ω is either a periodic space T

3 := R
3/Z3 or a whole space R

3.
Then the particles and fluid are governed by the following equations:

∂tf1 + ξ · ∇xf1 +∇ξ ·
((
F 1
a [f1] + Fd[u]

)
f1
)
= 0, (x, ξ) ∈ Ω× R

3, t > 0,

∂tf2 + ξ · ∇xf2 +∇ξ ·
((
F 2
a [f2] + Fd[u]

)
f2
)
= 0, (x, ξ) ∈ Ω× R

3, t > 0,

∂tu+ u · ∇xu+∇xp− μΔxu

= −
∫
R3

Fd[u](f1 + f2)dξ, ∇x · u = 0, x ∈ Ω, t > 0,

(1.1)
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subject to initial data:

(1.2) (f1, f2, u)|t=0 = (f10, f20, u0), ∇x · u0 = 0 in Ω× R
3,

and, in the case of Ω = R
3, the end state condition for u is imposed:

(1.3) u(x) → u∞ as |x| → ∞.

Here F i
a, i = 1, 2, and Fd are the flocking alignment forces and the drag force

per unit mass, respectively:

F i
a[fi](x, ξ, t) :=

∫
Ω×R3

ψi(x, y)(ξ∗ − ξ)fi(y, ξ∗, t)dξ∗dy, i = 1, 2,

Fd[u](x, ξ, t) := u(x, t)− ξ,

where the communication weight function ψi : Ω×Ω → R+ is a C1-function
satisfying the symmetric and nonnegative conditions:

(1.4) ψi(x, y) = ψi(y, x), ψi ≥ 0, i = 1, 2.

For the communication weight functions, there are various possibilities to
adopt. For example, in the case of Ω = R

3, a regular kernel as in the Cucker-
Smale models can be chosen:

ψi(x, y) =
αi

(1 + |x− y|2)βi/2
, αi > 0, βi ≥ 0, i = 1, 2.

Throughout the paper, we assume μ = 1 and u∞ = 0. In fact, a more general
condition on the viscosity coefficient μ > 0 does not yield any difficulties for
our analysis, and the assumption on the far-field u∞ is reasonable due to
the Galilean invariance for the fluid equations.

The collective behavior of the interaction particle systems such as flock-
ing, aggregation, and synchronization has received a bulk of attention from
various research fields arising in physics, biology, robotics, control theory
and other disciplines [1, 5, 10, 14, 15, 16, 24, 27, 28, 30]. The interaction
between the flocking particles and fluids is first studied in [2]. They con-
sidered the kinetic equation for the Cucker-Smale flocking particles coupled
with the incompressible Navier-Stokes equations, and showed the global ex-
istence of weak solutions. We refer readers to [2] and references therein for
a detailed description of the modeling and the related literature. Later in
[3] they showed the global strong solutions for sufficiently small and reg-
ular initial data, and the large-time behavior of the classical solutions in
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three space dimensions was obtained under suitable assumptions. Concern-
ing two dimensions case, Choi and Lee [11] established the global existence
of weak and strong solutions. Unlike the three dimensions case, the small-
ness assumption on the initial data has been removed to show the global
existence of strong solutions. More recently, the interaction between the
Cucker-Smale type flocking particle and the compressible viscous fluid is
studied in [4]. For the other related particle interacting with fluid, we refer
to [6, 7, 8, 9, 13, 17, 22, 26].

We now extend the previous result for the one-species problems to the
case for two particle species. We would like to describe the situation in which
more than one type of flocking particle interacting with each other in the
fluid. Two-species models have many applications such as pedestrian flows
[29], opinion formation between two groups with different leanings [18, 19],
and so on. A mathematical study of existence, stability, finite-time blow up,
and the large-time behavior for two competitive populations of biological
species which are attracted by random diffusion and chemotaxis is another
recent active research area [12, 20, 23, 31]. We also refer to [21, 25] for
nonlocal interaction PDEs with two-species.

Our first result is concerned with the global existence of a unique strong
solution to the system (1.1)-(1.4) when the initial data is sufficiently small
and regular. For this purpose, we do not restrict the communication weight
function to the specific ones. Rather various alignment forces can be adopted
for various physical situations. In particular, as we mentioned before, the
regular alignment force as in the Cucker-Smale model can be considered.

Theorem 1.1. Suppose that the initial data f10 and f20 have a compact
support in position and velocity. For T ∈ (0,∞), there exists a positive
constant ε0 such that if ‖f10‖W 1,∞(Ω×R3)+‖f20‖W 1,∞(Ω×R3)+‖u0‖H2(Ω) < ε0,
the system (1.1)-(1.4) has a unique strong solution (f1, f2, u) satisfying

(i) f1, f2 ∈ W 1,∞(Ω× R
3 × (0, T )),

(ii) u ∈ C([0, T ];H2(Ω)) ∩ L2(0, T ;H3(Ω)) and

ut ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

(iii) p ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Our second result concerns the large-time behavior of the strong solu-
tions to the system (1.1)-(1.4) for the periodic spatial domain, i.e., Ω = T

3.
To this end, we first introduce a total energy-variance function E(t):

E(t) := 1

2

(∫
T3×R3

|ξ − ξ1c |2f1 + |ξ − ξ2c |2f2dxdξ
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+

∫
T3

|u− uc|2dx+
1

2
|uc − (ξ1c + ξ2c )|2

)
,

where

ξic(t) :=

∫
T3×R3 ξfidxdξ∫
T3×R3 fidxdξ

and uc(t) :=

∫
T3

udx.

Note that ξic(t) and uc(t) are the mean velocities for the i-th particles and

the fluid, respectively. For later use, let ρfi denote a local particle density:

ρfi(x, t) :=

∫
R3

fi(x, ξ, t)dξ, i = 1, 2.

In the following theorem, we find out that the system exhibits the ex-

ponential alignment between the flocking particles and the fluid.

Theorem 1.2. Let (f1, f2, u) be classical solutions to the system (1.1)-(1.4)

satisfying

(i) ‖f10‖L1(Ω×R3) = ‖f20‖L1(Ω×R3) = 1,

(ii) lim
|ξ|→∞

|ξ|2
(
f1(x, ξ, t) + f2(x, ξ, t)

)
= 0, (x, t) ∈ T

3 × [0, T ).

Suppose that E(0) < ∞, and ‖ρfi‖L 3
2
, i = 1, 2 are sufficiently small. Then

E(t) verifies the decay estimate:

E(t) ≤ E(0)e−ct, t ∈ [0, T ] for some c > 0.

Remark 1.1. Theorem 1.2 shows that the system exhibits the exponential

alignment between the particles and fluid. More precisely, since the total

momentum of the system is conserved:

d

dt

(∫
T3×R3

ξ(f1 + f2)dxdξ +

∫
T3

udx

)
= 0,

we obtain

∣∣uc(t)− (ξ1c (t) + ξ2c (t))
∣∣ = 2

∣∣∣∣uc(t)− 1

2
(ξ1c (0) + ξ2c (0) + uc(0))

∣∣∣∣
= 2

∣∣∣∣ξ1c (t) + ξ2c (t)−
1

2
(ξ1c (0) + ξ2c (0) + uc(0))

∣∣∣∣ .



Two-species flocking particles immersed in a fluid 127

This implies that if all conditions in Theorem 1.2 hold for T = ∞, then the

sum of particle-velocity and the fluid-velocity both converge to the half of the

initial total momentum of the particles and fluid as time tends to infinity.

The paper is organized as follows. In Section 2, we prove the global

existence of the unique strong solution to the nonlinear Cauchy problem

of the quasi-linearized problem (1.1)-(1.4). In Section 3, we construct the

approximation solutions to the original system and provide the existence of

invariant sets for the approximations by employing the results in Section

2. We then derive the convergence of the approximation solutions, and this

yields global existence of the unique strong solution. In Section 4, we provide

the large-time behavior of classical solutions to the system (1.1)-(1.4). This

result implies the system exhibits the exponential alignment between the

flocking particles and fluid. Finally, Section 5 is devoted to summarize the

main results and give our future work in this direction.

Notations. For a function f(x, ξ), we denote by ‖f‖Lp the usual Lp(Ω×R
3)-

norm, and if g is a function of x only, ‖g‖Lp is the usual Lp(Ω)-norm, other-

wise specified. For simplicity, we drop x-dependence of differential operators

∂xi
(i = 1, 2, 3), ∇x, and Δx, i.e.,

∂if := ∂xi
f, ∇f := ∇xf, and Δf := Δxf.

2. Global existence for the linearized system

In this section, we first linearize the system (1.1) with respect to the fluid

velocity u in the drag forces, and show the existence for the linearized system.

We also provide uniform boundness of the unique solution.

Consider the linearized system:

∂tf1 + ξ · ∇f1 +∇ξ ·
((
F 1
a [f1] + Fd[v]

)
f1
)
= 0, (x, ξ) ∈ Ω× R

3, t > 0,

∂tf2 + ξ · ∇f2 +∇ξ ·
((
F 2
a [f2] + Fd[v]

)
f2
)
= 0, (x, ξ) ∈ Ω× R

3, t > 0,

∂tu+ v · ∇u+∇p−Δu

= −
∫
R3

Fd[v](f1 + f2)dξ, ∇ · u = 0, x ∈ Ω, t > 0,

(2.1)

where v is a known vector field. For this system, we present the existence,

smallness, and regularity results as follows.
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Theorem 2.1. Let T ∈ (0,∞). Suppose that the initial data (f10, f20, u)

satisfy the smallness, regularity and compactly supported conditions:

(i) ‖f10‖W 1,∞ + ‖f20‖W 1,∞ + ‖u0‖H2 < ε,

(ii) f10 and f20 have a compact support in position and velocity.
(2.2)

Furthermore, v satisfies the smallness and regularity conditions:

(2.3)

‖v‖C([0,T ];H2)+‖v‖L2(0,T ;H3) ≤ εα and ‖vt‖C([0,T ];L2)+‖vt‖L2(0,T ;H1) ≤ εα
−
,

where α− := α− ε1 for sufficiently small ε1 > 0. Then there exists a unique

strong solution (f1, f2, u) to the Cauchy problem (2.1), (1.2)-(1.4) such that

(i) ‖f1‖L∞(0,T ;W 1,∞), ‖f2‖L∞(0,T ;W 1,∞) ≤ εβ,

(ii) ‖u‖C([0,T ];H2) + ‖u‖L2(0,T ;H3) ≤ εα and

‖ut‖C([0,T ];L2) + ‖ut‖L2(0,T ;H1) ≤ εα
−
.

(2.4)

Here α and β are positive numbers with 1 > β > α > 0, and ε > 0 is a

sufficiently small constant such that ε ≈ e−O(1)T .

We first solve the Vlasov-type equations in (2.1). We notice that the

theory of local existence and regularity of a unique strong solution to the

system (2.1)1 and (2.1)2 have been well-known when v ∈ C([0, T ];H2). For

the estimate of uniform bound of fi in (2.4), we need to control the propaga-

tion of support of fi in velocity. For this, we introduce new notations here.

Let Σi
x(t) and Σi

ξ(t) be the x, ξ-projections of suppfi(·, ·, t), respectively,

i = 1, 2:

Σi
x(t) :=

{
x ∈ Ω : ∃ (x, ξ) ∈ Ω× R

3 such that fi(x, ξ, t) �= 0
}
,

Σi
ξ(t) :=

{
ξ ∈ R

3 : ∃ (x, ξ) ∈ Ω× R
3 such that fi(x, ξ, t) �= 0

}
.

Then we define Ri
x(t) and Ri

ξ(t) by

Ri
x(t) := max

x∈Σi
x(t)

|x|, Ri
ξ(t) := max

ξ∈Σi
ξ(t)

|ξ|.

We now present the estimates for the support of fi in position and velocity.

Lemma 2.1. For i = 1, 2, let (Xi(s), Vi(s)) := (Xi(s; 0, x, ξ), Vi(s; 0, x, ξ))
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be the forward particle trajectories solving the following ODEs:

dXi(s)

ds
= Vi(s),

dVi(s)

ds
=

∫
Ω×R3

ψi (Xi(s), y) (ξ∗ − Vi(s))fi(y, ξ∗, s)dydξ∗

+ v(Xi(s), s)− Vi(s)

with initial data (Xi(0), Vi(0)) = (x, ξ). Then we have

|Xi(t)| ≤ |Ri
x(0)|+

(
|Ri

ξ(0)|+ ‖v‖L1(0,T ;L∞)

)
T,

|Vi(t)| ≤ |Ri
ξ(0)|+ ‖v‖L1(0,T ;L∞), i = 1, 2.

Proof. From the regularity results for fi and v, we find that Ri
ξ(t) is a Lip-

schitz function and differentiable with respect to time t almost everywhere.
This enable us to choose Vi(t) so that d

dtR
i
ξ(t) exists and Ri

ξ(t) = |Vi(t)|.
Then we obtain

1

2

d

dt

(
Ri

ξ(t)
)2

=
1

2

d

dt
|Vi(t)|2 = Vi(t) ·

dVi(t)

dt

=

∫
Ω×R3

ψi (Xi(t), y) (ξ∗ − Vi(t)) · Vi(t)fi(y, ξ∗, t)dydξ∗

+ v (Xi(t), t) · Vi(t)− |Vi(t)|2

≤ |v(t)|L∞ |Vi(t)| − |Vi(t)|2,

where we used

(ξ∗ − Vi(t)) · Vi(t) ≤ 0 for ξ∗ ∈ Σi
ξ(t).

This implies

|Ri
ξ(t)| ≤ |Ri

ξ(0)|+ ‖v‖L1(0,T ;L∞),

and

|Ri
x(t)| ≤ |Ri

x(0)|+ |Ri
ξ(0)|T + ‖v‖L1(0,T ;L∞)T.

For notational simplicity, we set

Ri,∞
x := sup

0≤t≤T
Ri

x(t), Ri,∞
ξ := sup

0≤t≤T
Ri

ξ(t), π(Ri,∞
x ) := vol(BRi,∞

x
),

and

π(Ri,∞
ξ ) := vol(BRi,∞

ξ
), for i = 1, 2.
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We now establish the estimate of uniform bound of fi in W 1,∞-norm. For

this, we first present the following simple calculations without proof.

Lemma 2.2. For i = 1, 2, let fi be classical solutions to the system (2.1),

(1.4) with compactly supported initial data fi0 in velocity. Suppose that v

satisfies (2.3). Then the following estimates hold.

(i) −∇ξ ·
(
F i
a[fi] + Fd[v]

)
= 3

∫
Ω×R3

ψi(x, y)fi(y, ξ∗)dydξ∗ − 3

≤ 3‖ψi‖L∞Mi0,

(ii) − ∂j
(
F i
a[fi] + Fd[v]

)
= −

∫
Ω×R3

∂jψi(x, y)(ξ∗ − ξ)fi(y, ξ∗)dydξ∗ − ∂jv

≤ 2Ri,∞
ξ ‖∂jψi‖L∞Mi0 + ‖∂jv‖L∞ ,

(iii) −∇ξ · ∂j
(
F i
a[fi] + Fd[v]

)
= 3

∫
Ω×R3

∂jψi(x, y)fi(y, ξ∗)dydξ∗

≤ 3‖∂jψi‖L∞Mi0,

where Mi0 :=
∫
Ω×R3 fi0(x, ξ)dxdξ < ∞.

Lemma 2.3. For i = 1, 2, let fi be classical solutions to the system (2.1),

(1.4) with the initial data fi0 satisfying (2.2). If v satisfies the smallness

conditions (2.3), then we have

‖fi‖L∞(0,T ;W 1,∞) < εβ, i = 1, 2.

Proof. Similarly as the arguments in [2], we introduce a nonlinear operator

Ni := ∂t + ξ · ∇+ (F i
a[fi] + Fd[v]) · ∇ξ which is associated with fi. Then we

employ the estimates in Lemma 2.2 to obtain

Ni(fi) = −∇ξ ·
(
F i
a[fi] + Fd[v]

)
fi ≤ 3‖ψi‖L∞Mi0,

Ni(∂jfi) = −∂j
(
F i
a[fi] + Fd[v]

)
· ∇ξfi −

(
∇ξ · ∂j

(
F i
a[fi] + Fd[v]

))
fi

−
(
∇ ·

(
F i
a[fi] + Fd[v]

))
∂jfi

≤
(
2Ri

ξ(t)‖ψi‖L∞Mi0 + ‖∂jv‖L∞
)
|∇ξfi|+ 3‖∂jψi‖L∞Mi0|fi|

+ 3 (‖ψi‖L∞Mi0 + 1) |∂jfi|,
Ni(∂ξj (fi)) = −∂jfi − ∂ξj

(
F i
a[fi] + Fd[v]

)
· ∇ξfi

−
(
∇ξ ·

(
F i
a[fi] + Fd[v]

))
∂ξjfi

≤ |∂jfi|+ (‖ψi‖L∞Mi0+1) |∇ξfi|+3 (‖ψi‖L∞Mi0+1) |∇ξjfi|,
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for i = 1, 2. We set Fi(t) measuring f in W 1,∞-norm:

Fi(t) :=
∑

0≤|α|+|β|≤1

∥∥∥∇α∇β
ξ fi(t)

∥∥∥
L∞

.

Then using the previous estimates, we obtain

dFi(t)

dt
≤ C (1 + ‖∇v‖L∞)Fi(t), t ∈ (0, T ).

This yields

Fi(t) ≤ Fi(0) exp
(
C
(
T +

√
T‖v‖L2(0,T ;H3)

))
, t ∈ (0, T ).

Since 1 > β > α, for the sufficiently small ε � 1, we obtain

‖fi‖W 1,∞ ≤ ε exp
(
C
(
T +

√
Tεα

))
< εβ.

This yields that for i = 1, 2,

sup
0≤t≤T

‖fi‖W 1,∞ ≤ εβ.

Remark 2.1. From the structure of Vlasov-type equations, one can easily
check that

fi ∈ W 1,∞(Ω× R
3 × (0, T )), i = 1, 2.

Proof of Theorem 2.1. We first notice that f1, f2 ∈ W 1,∞(Ω× R
3 × (0, T )),

v ∈ C([0, T ];H2) ∩ L2(0, T ;H3), and vt ∈ C([0, T ];L2) ∩ L2(0, T ;H1). Thus
the existence and regularity of the unique solution u can be proved by a
standard method. Then we obtain the estimates of uniform bounds in (2.4).
This proof is a rather lengthy, so we divide it into five steps.

• Step A.- Estimate of ‖u‖L∞(0,T ;L2) + ‖∇u‖L2(0,T ;L2): It follows from
(2.1)3 that

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 = −

∫
Ω
(v · ∇u) · udx

−
∫
Ω×R3

(v · u− u · ξ) (f1 + f2)dxdξ

=: I1 + I2,

(2.5)
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where Ij , j = 1, 2 are estimated as follows.

I1 =
1

2

∫
Ω
(∇ · v) |u|2dx ≤ 1

2
‖∇v‖L3‖u‖L6‖u‖L2 ≤ 1

2
‖∇v‖H1‖∇u‖L2‖u‖L2

≤ εα‖∇u‖L2‖u‖L2

and

I2 ≤ ‖v‖L2‖u‖L2

∥∥∥∥
∫
R3

f1 + f2 dξ

∥∥∥∥
L∞

+ ‖u‖L2

∥∥∥∥
∫
R3

ξ(f1 + f2)dξ

∥∥∥∥
L2

(2.6)

≤

⎛
⎝ 2∑

j=1

‖fi‖L∞π(Ri,∞
ξ )

⎞
⎠ ‖v‖L2‖u‖L2

+

⎛
⎝ 2∑

j=1

‖fi‖L∞Ri,∞
ξ π(Ri,∞

ξ )π(Ri,∞
x )

⎞
⎠ ‖u‖L2 .

Here we used

∥∥∥∥
∫
R3

fi dξ

∥∥∥∥
L∞

≤ ‖fi‖L∞π(Ri,∞
ξ ) and∥∥∥∥

∫
R3

ξfi dξ

∥∥∥∥
L2

≤ ‖fi‖L∞Ri,∞
ξ π(Ri,∞

ξ )π(Ri,∞
x ),

for i = 1, 2. Combining (2.5) and (2.6), we get

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C‖u‖L2

(
εα‖∇u‖L2 + εα+β + εβ

)
≤ 1

2
‖u‖2L2 +

1

2
‖∇u‖2L2 + Cε2β.

Applying the Gronwall’s inequality for ‖u‖2L2 and integrating over [0, T ], we

obtain

(2.7)

sup
0≤t≤T

‖u‖2L2+

∫ T

0
‖∇u‖2L2dt ≤ C

(
‖u0‖2L2 + ε2β

)
eT ≤ C

(
ε2 + ε2β

)
eT ≤ ε2α.

• Step B.- Estimate of ‖∇u‖L∞(0,T ;L2)+‖∇2u‖L2(0,T ;L2): We differentiate



Two-species flocking particles immersed in a fluid 133

(2.1)3 with respect to x and integrate over Ω to find

1

2

d

dt
‖∇u‖2L2 + ‖∇2u‖2L2

= −
∫
Ω
∇(v · ∇u) · ∇udx−

∫
Ω×R3

∇ (Fd[v](f1 + f2)) · ∇udxdξ

=: J1 + J2.

We estimate Jj , j = 1, 2, as follows:

J1 ≤
∫
Ω
|∇v‖∇u|2dx+

∫
Ω
|v‖∇2u||∇u|dx

≤ ‖∇v‖L3‖∇u‖L6‖∇u‖L2 + ‖v‖L∞‖∇2u‖L2‖∇u‖L2

≤ Cεα‖∇2u‖L2‖∇u‖L2 ,

and

J2 ≤
∫
Ω×R3

|∇v‖∇u‖f1 + f2|dxdξ +
∫
Ω×R3

|v − ξ‖∇u‖∇f1 +∇f2|dxdξ

≤ C

(
2∑

i=1

‖fi‖L∞π(Ri,∞
ξ )

)
‖∇v‖L2‖∇u‖L2

+ C

(
2∑

i=1

‖∇fi‖L∞π(Ri,∞
ξ )

)
‖v‖L2‖∇u‖L2

+ C

(
2∑

i=1

‖∇fi‖L∞Ri,∞
ξ π(Ri,∞

ξ )π(Ri,∞
x )

1

2

)
‖∇u‖L2

≤ Cεβ‖∇u‖L2 .

Then we obtain

1

2

d

dt
‖∇u‖2L2 + ‖∇2u‖2L2 ≤ Cεα‖∇2u‖L2‖∇u‖L2 + Cεβ‖∇u‖L2

≤ 1

2
‖∇u‖2L2 +

1

2
‖∇2u‖2L2 + Cε2β ,

and this implies that

sup
0≤t≤T

‖∇u‖2L2 +

∫ T

0
‖∇2u‖2L2dt ≤ C

(
‖∇u0‖2L2 + ε2β

)
eT(2.8)

≤ C
(
ε2 + ε2β

)
eT ≤ ε2α.
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• Step C.- Estimate of ‖∇2u‖L∞(0,T ;L2) + ‖∇3u‖L2(0,T ;L2): We take the
spatial differential operator ∇2 to the system (2.1)3 and integrate over Ω to
the following equality.

1

2

d

dt
‖∇2u‖2L2 + ‖∇3u‖2L2

= −
∫
Ω
∇2(v · ∇u) : ∇2u dx−

∫
Ω×R3

∇2 (Fd[v](f1 + f2)) : ∇2u dxdξ

=: K1 +K2,

where Kj , j = 1, 2 are estimated as

K1 ≤ C

∫
Ω
|∇2v‖∇u‖∇2u|dx+ C

∫
Ω
|∇v‖∇2u‖∇2u|dx

+ C

∫
Ω
|v‖∇3u‖∇2u|dx

≤ C‖∇2v‖L2‖∇u‖L3‖∇2u‖L6 + C‖∇v‖L3‖∇2u‖L6‖∇2u‖L2

+ C‖v‖L∞‖∇3u‖L2‖∇2u‖L2

≤ Cεα
(
‖∇u‖

1

2

L2 + ‖∇2u‖
1

2

L2

)
‖∇2u‖

1

2

L2‖∇3u‖L2

≤ 1

4
‖∇2u‖2L2 +

1

4
‖∇3u‖2L2 + Cε6α,

and

K2 ≤ C

∫
Ω×R3

|∇2v‖f1 + f2‖∇2u|dxdξ +
∫
Ω×R3

|∇v‖∇f1 +∇f2‖∇2u|dxdξ

+

∫
Ω×R3

|v − ξ‖∇f1 +∇f2‖∇3u|dxdξ

≤ C

(
2∑

i=1

‖fi‖L∞π(Ri,∞
ξ )

)
‖∇2v‖L2‖∇2u‖L2

+ C

(
2∑

i=1

‖∇fi‖L∞π(Ri,∞
ξ )

)
‖∇v‖L2‖∇2u‖L2

+ C

(
2∑

i=1

‖∇fi‖L∞π(Ri,∞
ξ )

(
‖v‖L2 +Ri,∞

ξ

(
π(Ri,∞

x )
) 1

2

))
‖∇3u‖L2

≤ Cεα+β‖∇2u‖L2 + Cεβ(1 + εα)‖∇3u‖L2

≤ 1

4
‖∇2u‖2L2 +

1

4
‖∇3u‖2L2 + Cε2β .
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This yields

1

2

d

dt
‖∇2u‖2L2 + ‖∇3u‖2L2 ≤ 1

2
‖∇2u‖2L2 + ‖∇3u‖2L2 + Cε6α + Cε2β,

and

sup
0≤t≤T

‖∇2u‖2L2 +

∫ T

0
‖∇3u‖2L2dt ≤ C

(
‖∇2u0‖2L2 + ε2β + ε4α

)
eT

≤ C
(
ε2 + ε2β + ε4α

)
eT

≤ ε2α.

(2.9)

Combining the estimates (2.7), (2.8), and (2.9), we arrive at

(2.10) ‖u‖L∞(0,T ;H2) + ‖∇u‖L2(0,T ;H2) ≤ εα.

• Step D.- Estimate of ‖ut‖L∞(0,T ;L2) + ‖ut‖L2(0,T ;H1): We first multiply

(2.1)3 by ∂tu and integrate over Ω to find

1

2

∫
Ω
|ut|2dx+

d

dt

∫
Ω
|∇u|2dx ≤

∫
Ω
|v|2|∇u|2dx

+

∫
Ω

(∫
R3

|v − ξ|(f1 + f2)dξ

)2

dx

≤ C
(
ε4α + ε2β(1 + ε2α)

)
.

(2.11)

Then we get

∫ T

0

∫
Ω
|ut|2dxdt ≤

∫
Ω
|∇u0|2dx+ C

(
ε4α + ε2β

)
T ≤ ε2α.

In order to derive the higher regularity estimates, we next differentiate (2.1)3
with respect to t to obtain

(2.12)

utt+v ·∇ut+∇pt−Δut = −vt ·∇u−
∫
R3

vt(f1+f2) dξ−
∫
R3

(v−ξ)(f1+f2)t dξ.
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Multiplying (2.12) by ut and integrating over Ω, one can obtain

1

2

d

dt

∫
Ω
|ut|2dx+

∫
Ω
|∇ut|2dx

≤ ‖ut‖L2‖vt‖L2‖∇u‖L∞ + ‖ut‖L2‖v‖L∞‖∇ut‖L2

+ ‖ut‖L2‖vt‖L2 (‖f1‖L∞ + ‖f2‖L∞)

+ C‖∇ut‖L2 (‖f1‖L∞ + ‖f2‖L∞) (‖v‖L2 + 1)

+ C‖ut‖L2‖∇v‖L2 (‖f1‖L∞ + ‖f2‖L∞)

+ C‖ut‖L2 (‖f1‖L∞ + ‖f2‖L∞)

+ C‖ut‖L2 (‖f1‖L∞ + ‖f2‖L∞) (‖v‖L2 + 1)

≤ C‖ut‖2L2 +
1

2

∫
Ω
|∇ut|2dx+ Cε2α‖∇u‖2L∞ + Cε2β.

This implies
(2.13)∫

Ω
|ut|2(t)dx+

∫ t

s

∫
Ω
|∇ut|2dxdτ ≤

∫
Ω
|ut|2(s)dxeCT + C

(
ε4α + ε2β

)
eCT .

On the other hand, similarly as in (2.11), one can have that∫
Ω
|ut|2dx =

∫
Ω

(∫
R3

(ξ − v)(f1 + f2)dξ − v · ∇u+Δu

)
· utdx

≤ C

∫
Ω

(∫
R3

(ξ − v)(f1 + f2)

)2

dx+ C

∫
Ω
|v|2|∇u|2dx

+ C

∫
Ω
|∇2u|2dx

≤ C
(
ε2α + ε2β

)
≤ Cε2α.

(2.14)

Hence we combine (2.13) and (2.14) to have

sup
0≤t≤T

∫
Ω
|ut|2dx+

∫ T

0

∫
Ω
|∇ut|2dxdt ≤ lim sup

s→0

∫
Ω
|ut|2(s)dxeCT

+ C
(
ε4α + ε2β

)
≤ Cε2α ≤ ε2α

−
,

and this concludes

‖ut‖L∞(0,T ;L2) + ‖ut‖L2(0,T ;H1) ≤ ε2α
−
.
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• Step E.- (u, ut) ∈ C([0, T ];H2(Ω))×C([0, T ];L2(Ω)): From Step C and

D, we find that

u ∈ L2(0, T ;H3(Ω)) and ut ∈ L2(0, T ;H1(Ω)).

Thus, by using a standard Sobolev embedding, we obtain

u ∈ C([0, T ];H2(Ω)). Then by this continuity of u in H2(Ω), we deduce

from the momentum equations that ut ∈ C([0, T ];L2(Ω)). This completes

the proof.

3. Proof of Theorem 1.1

In this section, we give the proof of our first main result. For this, we consider

the following approximated sequences:

∂tf
n+1
1 + ξ · ∇fn+1

1 +∇ξ ·
((
F 1
a [f

n+1
1 ] + Fd[u

n]
)
fn+1
1

)
= 0,

(x, ξ) ∈ Ω× R
3, t > 0,

∂tf
n+1
2 + ξ · ∇fn+1

2 +∇ξ ·
((
F 2
a [f

n+1
2 ] + Fd[u

n]
)
fn+1
2

)
= 0,

(x, ξ) ∈ Ω× R
3, t > 0,

∂tu
n+1 + un · ∇un+1 +∇pn+1 −Δun+1 = −

∫
R3

Fd[u
n](fn+1

1 + fn+1
2 ) dξ,

x ∈ Ω, t > 0, ∇ · un+1 = 0, x ∈ Ω, t > 0,

(3.1)

with initial data and first iterate:

(fn
10(x, ξ), f

n
20(x, ξ), u

n
0 (x)) = (f10(x, ξ), f20(x, ξ), u0(x)),(3.2)

(x, ξ) ∈ Ω× R
3, n ≥ 1,

and

(f0
1 (x, ξ, t), f

0
2 (x, ξ, t), u

0(x, t)) = (f10(x, ξ), f20(x, ξ), u0(x)),(3.3)

(x, ξ, t) ∈ Ω× R
3 × [0, T ).

Then the following proposition is an immediate consequence of Theorem 2.1.

Proposition 3.1. Suppose that the initial data (f10, f20, u) satisfies (2.2).

Then there exists a unique solution (fn
1 , f

n
2 , u

n) to the system (3.1)-(3.3)
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such that

(i) ‖fn
1 ‖L∞(0,T ;W 1,∞), ‖fn

2 ‖L∞(0,T ;W 1,∞) ≤ εβ,

(ii) ‖un‖C([0,T ];H2) + ‖un‖L2(0,T ;H3) ≤ εα and

‖unt ‖C([0,T ];L2) + ‖unt ‖L2(0,T ;H1) ≤ εα
−
,

for all n ≥ 1.

Proof. Since the smallness and regularity condition on the initial data (f10,
f20, u0) are assumed, our iteration scheme is well-defined by Theorem 2.1.

We now provide the strong convergence of the approximated solutions
(fn

1 , f
n
2 , u

n)n≥1.

Lemma 3.1. Let (fn
1 , f

n
2 , u

n) be the solution to the system (3.1)-(3.3) ob-
tained from Proposition (3.1). Then the approximate solutions (fn

1 , f
n
2 , u

n)
is Cauchy in L∞(Ω×R

3× (0, T ))×L∞(Ω×R
3× (0, T ))×L∞(0, T ;H1(Ω)).

Proof. These estimates are quite similar to the ones in the proof of Theorem
2.1. We postpone its proof to Appendix A.

Proof of Theorem 1.1. � Existence.- From Lemma 3.1, we obtain that (fn
1 ,

fn
2 )n≥1 and (un)n≥1 are Cauchy sequences in L∞(Ω × R

3 × (0, T )) and
L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), respectively. Then there exist the limit
functions (f1, f2, u) such that

fn
1 → f1, fn

2 → f2 in L∞(Ω× R
3 × (0, T )),

and

un → u in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

Clearly, (f1, f2, u) is a weak solution to the system (1.1)-(1.4). Thus in order
to complete the proof of existence, it remains to show the limit functions
(f1, f2, u) are actually in L∞(0, T ;W 1,∞(Ω × R

3)) × L∞(0, T ;W 1,∞(Ω ×
R
3))× C([0, T ];H2(Ω)). We briefly give our strategy for this proof.

• (f1, f2, u) ∈ L∞(0, T ;W 1,∞(Ω × R
3)) × L∞(0, T ;W 1,∞(Ω × R

3)) ×
L∞(0, T ;H2(Ω)): We first notice from the estimates of uniform bounds
in Proposition 3.1 that for each t ∈ [0, T ] there exists a convergent
subsequence (fnk

1 , fnk

2 , unk) such that

(fnk

1 (t), fnk

2 (t), unk(t)) ⇀ (f̄1(t), f̄2(t), ū(t)) as k → ∞,
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for some (f̄1(t), f̄2(t), ū(t)) ∈ W 1,∞(Ω×R
3)×W 1,∞(Ω×R

3)×H2(Ω).

On the other hand, the convergence-estimates in Lemma 3.1 yield that

(fnk

1 (t), fnk

2 (t), unk(t)) → (f1(t), f2(t), u(t))

in L∞(Ω× R
3)× L∞(Ω× R

3)×H1(Ω),

as k → ∞. Hence we have

(f̄1(t), f̄2(t), ū(t)) ≡ (f1(t), f2(t), u(t))

in W 1,∞(Ω× R
3)×W 1,∞(Ω× R

3)×H2(Ω),

for each t ∈ [0, T ].

• (u, ut) ∈ C([0, T ];H2(Ω))×C([0, T ];L2(Ω)): From the previous step, we

have the existence of u ∈ L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

Then it follows from the momentum equations (1.1)3 that ut ∈
L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)). We now apply the same arguments

in Step E in the proof of Theorem 2.1 to have the desired regularity.

� Uniqueness.- Let (f1, f2, u) and (f̄1, f̄2, ū) be the two strong solutions ob-

tained in the part of existence proof with the same initial data. We set the

differences between two solutions:

Δ(t) := ‖f1 − f̄1‖2L∞ + ‖f2 − f̄2‖2L∞ + ‖u− ū‖2H1 .

Then it follows from the estimate in Appendix A that

Δ(t) ≤ C

∫ t

0
Δ(s)ds, Δ(0) = 0.

This yields Δ(t) = 0 for all time t ∈ [0, T ], i.e.,

fi ≡ f̄i in L∞(Ω× R
3 × (0, T )) and u ≡ ū in C([0, T ];H1(Ω)).

Hence we easily conclude

fi ≡ f̄i in W 1,∞(Ω× R
3 × (0, T )) and u ≡ ū in C([0, T ];H2(Ω)).

This completes the proof.
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4. Large-time behavior of solutions

In this section, we explore the large-time behavior of solutions. In particular,
we consider the periodic spatial domain T

3.

Lemma 4.1. Let (f1, f2, u) be the classical solutions to the system (1.1)
satisfying

(i) ‖f10‖L1 , ‖f20‖L1 < ∞.

(ii) lim
|ξ|→∞

|ξ|2
(
f1(x, ξ, t) + f2(x, ξ, t)

)
= 0, (x, t) ∈ T

3 × [0, T ).

Then we have

(i)

∫
T3×R3

fi(x, ξ, t)dxdξ =

∫
T3×R3

fi0(x, ξ)dxdξ, i = 1, 2.

(ii)
d

dt

(∫
T3×R3

ξ(f1 + f2)dxdξ +

∫
T3

udx

)
= 0.

Lemma 4.2. Let (f1, f2, u) be the classical solutions to the system (1.1)
satisfying

(i) ‖f10‖L1 = ‖f20‖L1 = 1.

(ii) lim
|ξ|→∞

|ξ|2
(
f1(x, ξ, t) + f2(x, ξ, t)

)
= 0, (x, t) ∈ T

3 × [0, T ).

Then we have

(i)
1

2

d

dt

∫
T3×R3

|ξ − ξic|fidxdξ

≤ −ψm
i

∫
T3×R3

|ξ − ξic|fidxdξ +
∫
T3×R3

(ξ − ξic) · (u− ξ)fidxdξ,

(ii)
1

2

d

dt

∫
T 3

|u− uc|2dx

= −
∫
T3

|∇u|2dx+

∫
T3×R3

(uc − u) · (u− ξ)(f1 + f2)dxdξ,

(iii)
1

4

d

dt
|uc − ξ1c − ξ2c |2 = −

∫
T3×R3

(uc − ξ1c − ξ2c ) · (u− ξ)(f1 + f2)dxdξ,

where ψm
i is a nonnegative constant defined by

ψm
i := inf

(x,y)∈T3×T3
ψi(x, y).
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Proof. Straightforward computations yield the results, so we omit here.

Proof of Theorem 1.2. Summing up all of the terms in Lemma 4.2, we obtain

1

2

d

dt

(∫
T3×R3

|ξ − ξ1c |2f1 + |ξ − ξ2c |2f2dxdξ

+

∫
T3

|u− uc|2dx+
1

2
|uc − ξ1c − ξ2c |2

)

≤ −ψm
1

∫
T3×R3

|ξ − ξ1c |f1dxdξ − ψm
2

∫
T3×R3

|ξ − ξ2c |fidxdξ

−
∫
T3

|∇u|2dx−
∫
T3×R3

|u− ξ|2(f1 + f2)dxdξ.

On the other hand, we find

−
∫
T3×R3

|u− ξ|2(f1 + f2)dxdξ

≤
∫
T3

(ρf1 + ρf2)|u− uc|2dx

− 1

2
|uc − ξ1c − ξ2c |2 −

1

2

∫
T3×R3

|ξ − ξ1c |f1 + |ξ − ξ2c |f2dxdξ

≤ C‖ρf1 + ρf2‖L 3
2

∫
T3

|∇u|2dx

− 1

2
|uc − ξ1c − ξ2c |2 −

1

2

∫
T3×R3

|ξ − ξ1c |f1 + |ξ − ξ2c |f2dxdξ,

where we used∥∥√ρf1 + ρf2(u− uc)
∥∥
L2 ≤

∥∥√ρf1 + ρf2
∥∥
L3 ‖u− uc‖L6

≤ C‖ρf1 + ρf2‖
1

2

L
3
2
‖u‖H1

≤ C‖ρf1 + ρf2‖
1

2

L
3
2
‖∇u‖L2 .

This yields

1

2

d

dt

(∫
T3×R3

|ξ − ξ1c |2f1 + |ξ − ξ2c |2f2dxdξ

+

∫
T3

|u− uc|2dx+
1

2
|uc − ξ1c − ξ2c |2

)
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≤ −
(
ψm
1 +

1

2

)∫
T3×R3

|ξ − ξ1c |f1dxdξ −
(
ψm
2 +

1

2

)∫
T3×R3

|ξ − ξ2c |fidxdξ

− C
(
1− C‖ρf1 + ρf2‖L 3

2

)∫
T3

|u− uc|2dx− 1

2
|uc − ξ1c − ξ2c |2.

Hence if ‖ρf1 + ρf2‖L 3
2
is small enough, then we conclude the desired result.

Remark 4.1. Even if ψm
i = 0, we still have the exponential alignment

between the particles and fluid. The reason is that the drag forces in particle
and fluid equations play a role as the alignment force between particles and
fluid. On the other hand, we notice that if ψm

i > 0, then we can expect that
the decay exponent for the alignment becomes large, and it makes them to
align faster.

5. Conclusion

In this paper, we presented a new particle-fluid equations which describes
the interactions between the two-species flocking particles and incompress-
ible viscous fluid. For this model, we proved the global existence of the
unique strong solution for sufficiently small and regular initial data. We also
established the large-time behavior of the classical solutions under suitable
assumptions. It would be an interesting problem if we consider other in-
teraction forces between two-species particle, such as repulsive, attractive,
self-propulsion and friction forces. We will leave these interesting issues to
our future work.
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Appendix A. Proof of Lemma 3.1

In this part, we provide the detailed proof of Lemma 3.1.
• Step A.- Estimate of the bound of ‖fn+1

i (t) − fn
i (t)‖L∞ : Using the

similar notations in the proof of Lemma 2.3, we find
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Ni

(
fn+1
i − fn

i

)
= −∇ξ ·

(
F i
a[f

n+1
i ] + Fd[u

n]
) (

fn+1
i − fn

i

)
+∇ξ ·

(
F i
a[f

n
i ]− F i

a[f
n+1
i ]

)
fn
i

+
(
F i
a[f

n
i ]− F i

a[f
n+1
i ]

)
· ∇ξf

n
i − (un − un−1) · ∇ξf

n
i

=:

4∑
j=1

Iij .

Here Iij , j = 1, · · · , 4 are estimated as follows.

Ii1 = 3

(∫
Ω×R3

ψi(x, y)f
n+1
i dydξ∗

)(
fn+1
i − fn

i

)
≤ 3 (‖ψi‖L∞Mi0 + 1) ‖fn+1

i − fn
i ‖L∞ ,

I i2 = 3

(∫
Ω×R3

ψi(x, y)
(
fn+1
i − fn

i

)
dydξ∗

)
fn
i

≤ 3π(Ri,∞
ξ )π(Ri,∞

x )‖fn+1
i − fn

i ‖L∞‖ψi‖L∞‖fn
i ‖L∞ ≤ C‖fn+1

i − fn
i ‖L∞ ,

I i3 =

(∫
Ω×R3

ψi(x, y)(ξ − ξ∗)
(
fn+1
i − fn

i

)
dydξ∗

)
· ∇ξf

n
i

≤ 2‖ψi‖L∞Ri,∞
ξ π(Ri,∞

ξ )π(Ri,∞
x )‖fn+1

i − fn
i ‖L∞ |∇ξf

n
i |

≤ C‖fn+1
i − fn

i ‖L∞ ,

Ii4 ≤ ‖un − un−1‖L∞ |∇ξf
n
i | ≤ C‖un − un−1‖L∞ .

This yields

‖fn+1
i (t)−fn

i (t)‖L∞ ≤ C‖un(t)−un−1(t)‖L∞+C

∫ t

0
‖fn+1

i (s)−fn
i (s)‖L∞ds,

in turn, we have
(A.1)

‖fn+1
i (t)− fn

i (t)‖L∞ ≤ C

∫ t

0
‖un(s)− un−1(s)‖H2ds for all t ∈ [0, T ].

• Step B.- Estimate of the bound of ‖un+1−un‖2H1 : It follows from (3.1)3
that

∂t(u
n+1 − un)−Δ(un+1 − un) +∇(pn+1 − pn)

= −un · ∇(un+1 − un)− (un − un−1) · ∇un

−
∫
R3

(un − un−1)
(
fn+1
1 + fn+1

2

)
dξ
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−
∫
R3

un−1
(
fn+1
1 − fn

1 + fn+1
2 − fn

2

)
dξ

+

∫
R3

ξ
(
fn+1
1 − fn

1 + fn+1
2 − fn

2

)
dξ,

∇ · (un+1 − un) = 0, t > 0, x ∈ Ω.

� Substep B1.- Zeroth-order estimate: Similarly as in Step A for the
proof of Theorem 2.1, we find

1

2

d

dt
‖un+1 − un‖2L2 + ‖∇(un+1 − un)‖2L2

≤ C‖∇un‖L2‖un − un−1‖L3‖un+1 − un‖L6

+ C
(
‖fn+1

1 ‖L∞ + ‖fn+1
2 ‖L∞

)
‖un − un−1‖L2‖un+1 − un‖L2

+ C
(
‖fn+1

1 − fn
1 ‖L∞ + ‖fn+1

2 − fn
2 ‖L∞

)(
‖un−1‖L2 + 1

)
‖un+1 − un‖L2

≤ Cεα‖un − un−1‖H1‖∇(un+1 − un)‖L2

+ Cεβ‖un − un−1‖L2‖un+1 − un‖L2

+ C (1 + εα)
(
‖fn+1

1 − fn
1 ‖L∞ + ‖fn+1

2 − fn
2 ‖L∞

)
‖un+1 − un‖L2

≤ 1

2
‖∇(un+1 − un)‖2L2 +

1

2
‖un+1 − un‖2L2 + C‖un − un−1‖2H1

+ C‖fn+1
1 − fn

1 ‖2L∞ + C‖fn+1
2 − fn

2 ‖2L∞ .

This yields

d

dt
‖un+1 − un‖2L2 + ‖∇(un+1 − un)‖2L2

≤ C‖un+1 − un‖2L2 + C‖un − un−1‖2H1

+ C‖fn+1
1 − fn

1 ‖2L∞ + C‖fn+1
2 − fn

2 ‖2L∞ .

(A.2)

� Substep B2.- First-order estimate: We again use a similar argument in
Step B for the proof of Theorem 2.1 to deduce

1

2

d

dt
‖∇(un+1 − un)‖2L2 + ‖∇2(un+1 − un)‖2L2

= −
∫
Ω
∇(un+1 − un) : ∇

(
un · ∇(un+1 − un)

)
dx

−
∫
Ω
∇(un+1 − un) : ∇

(
(un − un−1) · ∇un

)
dx

−
∫
Ω×R3

∇(un+1 − un) : ∇
(
(un − un−1)

(
fn+1
1 + fn+1

2

))
dξdx
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−
∫
Ω×R3

∇(un+1 − un) : ∇
(
un−1(fn+1

1 − fn
1 + fn+1

2 − fn
2 )

)
dξdx

+

∫
Ω×R3

∇(un+1 − un) : ξ ⊗∇ (fn+1
1 − fn

1 + fn+1
2 − fn

2 )dξdx

=:

5∑
j=1

Jj .

where Jj , j = 1, · · · , 5 are estimated by

J1 ≤ ‖∇(un+1 − un)‖L3‖∇un‖L2‖∇(un+1 − un)‖L6

≤ C‖un‖H1‖∇(un+1 − un)‖2H1 ≤ Cεα‖∇(un+1 − un)‖2H1 ,

J2 ≤ ‖∇(un+1 − un)‖L3

(
‖∇un‖L6‖∇(un − un−1)‖L2

+ ‖∇2un‖L2‖un − un−1‖L6

)
≤ Cεα‖un − un−1‖H1‖∇(un+1 − un)‖H1 ,

J3 ≤ C‖∇(un+1 − un)‖L2

(
‖fn+1

1 ‖L∞ + ‖fn+1
2 ‖L∞

)
‖∇(un − un−1)‖L2

+ C‖∇(un+1 − un)‖L2

(
‖∇fn+1

1 ‖L∞ + ‖∇fn+1
2 ‖L∞

)
‖un − un−1‖L2

≤ Cεβ‖un − un−1‖H1‖∇(un+1 − un)‖L2 ,

J4 ≤
∫
Ω×R3

|∇2(un+1 − un)||un−1||fn+1
1 − fn

1 + fn+1
2 − fn

2 |dxdξ

≤ C
(
‖fn+1

1 − fn
1 ‖L∞ + ‖fn+1

2 − fn
2 ‖L∞

)
‖∇2(un+1 − un)‖L2‖un−1‖L2

≤ Cεα
(
‖fn+1

1 − fn
1 ‖L∞ + ‖fn+1

2 − fn
2 ‖L∞

)
‖∇(un+1 − un)‖H1 ,

J5 ≤
∫
Ω×R3

|∇2(un+1 − un)||ξ||fn+1
1 − fn

1 + fn+1
2 − fn

2 |dξdx

≤ C
(
‖fn+1

1 − fn
1 ‖L∞ + ‖fn+1

2 − fn
2 ‖L∞

)
‖∇(un+1 − un)‖H1 .

Thus we obtain

1

2

d

dt
‖∇(un+1 − un)‖2L2 + ‖∇2(un+1 − un)‖2L2

≤ C‖∇(un+1 − un)‖2L2 +
1

2
‖∇2(un+1 − un)‖2L2

+ C
(
‖un − un−1‖2H1 + ‖fn+1

1 − fn
1 ‖2L∞ + ‖fn+1

2 − fn
2 ‖2L∞

)
,

and

d

dt
‖∇(un+1 − un)‖2L2 + ‖∇2(un+1 − un)‖2L2(A.3)
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≤ C
(
‖∇(un+1 − un)‖2L2 + ‖un − un−1‖2H1

+ ‖fn+1
1 − fn

1 ‖2L∞ + ‖fn+1
2 − fn

2 ‖2L∞

)
.

We finally combine (A.1), (A.2) and (A.3) to find

d

dt
‖un+1 − un‖2H1 + ‖∇(un+1 − un)‖2H1

≤ C
(
‖un+1 − un‖2H1 + ‖un − un−1‖2H1 + ‖fn+1

1 − fn
1 ‖2L∞

+ ‖fn+1
2 − fn

2 ‖2L∞

)
≤ C

(
‖un+1 − un‖2H1 + ‖un − un−1‖2H1 +

∫ t

0
‖un − un−1‖2H2ds

)
.

This implies

‖un+1 − un‖2H1 +

∫ t

0
‖∇(un+1 − un)‖2H1ds

≤ C

(∫ t

0
‖un+1 − un‖2H1ds+

∫ t

0
‖un − un−1‖2H1ds

+

∫ t

0

∫ s

0
‖∇(un − un−1)‖2H1dτds

)
.

Applying the Gronwall’s inequality for ‖un+1−un‖2H1 , and using the iteration
argument for the resulting inequality, we obtain
(A.4)

‖un+1−un‖L∞(0,T ;H1)+‖∇(un+1−un)‖L2(0,T ;H1) ≤
(C(T ))n+1

n!
for all n ≥ 0.

This together with (A.1) also implies that

(A.5) ‖fn+1
1 − fn

1 ‖L∞ + ‖fn+1
2 − fn

2 ‖L∞ ≤ (C(T ))n+1

n!
for all n ≥ 0.

Here C(T ) denotes the positive constant depending only on T > 0. By (A.4)
and (A.5), one can conclude that {un} and {fn

i } are Cauchy sequences in
the desired spaces. This completes the proof.
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