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Nonlinear variational surface waves

Lawrence Austria and John K. Hunter
∗

We derive nonlocal asymptotic equations for weakly nonlinear sur-
face wave solutions of variational wave equations in a half-space.
These equations are analogous to, but different from, equations
that describe weakly nonlinear Rayleigh waves in elasticity and
other hyperbolic conservation laws. We prove short time existence
of smooth solutions of a simplified, but representative, asymptotic
equation and present numerical solutions which show the formation
of cusp-singularities. This singularity formation on the boundary is
a different mechanism for the nonlinear breakdown of smooth solu-
tions of hyperbolic IBVPs from the more familiar one of singularity
formation in the interior.

1. Introduction

In this paper, we consider initial-boundary value problems (IBVPs) in a
half-space Rd

+ for systems of wave equations for u : Rd
+ ×R → Rn that arise

from variational principles of the form

(1) δ

∫
R

d
+×R

{
1

2
|ut|2 −W (u,∇u)

}
dxdt = 0,

where the potential energy density W (u,∇u) is a quadratic function of ∇u
with coefficients depending on u.

The nonlinearity in the resulting variational, but non-conservative, wave
equations differs qualitatively from the nonlinearity in conservative quasi-
linear wave equations, such as nonlinear elasticity, where W (∇u) is inde-
pendent of u but not quadratic in ∇u. We are interested in comparing and
contrasting the effects of nonlinearity on these types of waves.

We study IBVPs that are stable but not uniformly stable, which occurs
when the IBVP has surface wave solutions. We focus on problems with “gen-
uine” or “finite-energy” surface waves that propagate along the boundary
and decay exponentially into the interior, rather than “radiative” surface
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Table 1: Model asymptotic equations for weakly nonlinear bulk and finite-
energy surface waves with amplitude function u(x, t) governed by hyperbolic
conservation laws and variational principles (1). In this table, H denotes the
Hilbert transform with respect to x, and h = H[u]. The bulk-wave equations
are the inviscid Burgers equation and the HS equation; the surface-wave
equations are the HIZ equation and the equation derived in this paper

Conservation Laws Variational Equations

Bulk ut +

(
1

2
u2

)
x

= 0

[
ut +

(
1

2
u2

)
x

]
x

=
1

2
u2
x

Surface ut +H[hhx]x + huxx = 0 ut +

(
1

2
u2

)
x

= H[uhx]

waves that are coupled with bulk waves in the interior. The aim of this
paper is to derive asymptotic equations for weakly nonlinear, variational
genuine surface waves and, in particular, to show that singularities form in
these waves on the boundary.

Table 1 summarizes various model asymptotic equations for hyperbolic
bulk and surface waves in conservation laws and variational wave equations.
We discuss the origin and properties of these equations in greater detail in
the remainder of this introduction.

One example of a variational system of the form (1) arises as a descrip-
tion of orientation waves in a massive director field [2, 19]. The orientation
of the director is described by a unit vector field

n : R3
+ × R → S

2.

The director field satisfies

(2) δ

∫
R

3
+×R

{
1

2
|nt|2 −W (n,∇n)

}
dxdt = 0, n · n = 1,

where W (n,∇n) is the Oseen-Frank energy function from the continuum
theory of nematic liquid crystals [12, 29]

W (n,∇n) =
1

2
α(divn)2 +

1

2
β(n · curln)2 + 1

2
γ|n× curln|2

+
1

2
η
[
tr(∇n)2 − (divn)2

]
.

(3)
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Here, α, β, γ, η are positive constants.

The potential energy density in (3) has a natural geometric origin:
W (n,∇n) is the most general function that is quadratic in ∇n and invariant
under simultaneous orthogonal transformations x �→ Qx and n �→ Qn of the
independent and dependent variables for all Q ∈ SO(3). This symmetry is
less restrictive than the harmonic map symmetry x �→ Qx and n �→ Q′n
for all Q,Q′ ∈ SO(3), which implies that W is proportional to |∇n|2, and
it allows the coefficients of the quadratic function of ∇n to depend on n.
The term proportional to η in (3) is a null Lagrangian that corresponds to
a surface energy term; it influences only the natural boundary conditions.

There has been extensive analysis of the initial value problem for (2)–
(3) in one space dimension, including a proof of the existence of global weak
solutions under suitable assumptions (see [10, 32] and the references cited
there). In addition, an almost global existence result for smooth, planar
solutions in three space dimensions, without boundaries, is proved in [14].
A general existence theory for weak solutions of multi-dimensional varia-
tional wave equations is completely open, just as it is for multi-dimensional
hyperbolic conservation laws.

A specific motivation for the problems studied in this paper is an analogy
between the director-field system (2)–(3) and nonlinear elasticity. The direc-
tor-field system has two types of bulk waves, called splay and twist waves
[2], which are analogous to longitudinal p-waves and transverse s-waves,
respectively, in elasticity. It is interesting to compare the nonlinear behavior
of longitudinal, transverse, and surface waves in these two systems.

The deformation gradient of a weakly nonlinear elastic p-wave satisfies
a quadratically nonlinear inviscid Burgers equation,

ut +

(
1

2
u2
)

x

= 0.

Nonlinearity leads to the formation of shocks, and after that smooth solu-
tions may be continued by unique weak entropy solutions [11]. On the other
hand, the orientation angle of a weakly nonlinear splay wave in a director
field satisfies the Hunter-Saxton (HS) equation [19],

(4)

[
ut +

(
1

2
u2
)

x

]
x

=
1

2
u2x.

Nonlinearity causes the derivative of solutions to blow up, and after that the
solutions may be continued by different classes of continuous weak solutions,
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including ones that conserve energy as well as ones that dissipate energy [22].
Furthermore, the HS equation is completely integrable [21].

Nonlinear effects on small-amplitude transverse waves are weaker. The
deformation gradient of an s-waves in an isotropic elastic solid satisfies a
modified inviscid Burgers equation with a cubic flux [13], while the orienta-
tion angle of a twist wave in a director field satisfies a cubically nonlinear
equation that is related to the HS equation [2].

An elastic half-space supports Rayleigh surface waves whose energy is
localized near the boundary. The bulk p and s wave fields in a linear Rayleigh
wave are coupled together through natural, stress-free boundary conditions.
Furthermore, as a result of the nonlinear self-interaction of the bulk waves
in the interior of the half-space, the displacement of the boundary in a
weakly nonlinear Rayleigh wave satisfies a quadratically nonlinear, spatially
nonlocal asymptotic equation [16].

A model asymptotic equation for weakly nonlinear Rayleigh waves is

(5) ut +H[hhx]x + huxx = 0, h = H[u].

In (5) and below, H denotes the spatial Hilbert transform, which is the
linear singular-integral operator defined by

(6) H[eikx] = −i(sgn k)eikx, sgn k =

⎧⎪⎨
⎪⎩
1 if k > 0,

0 if k = 0,

−1 if k < 0.

Equation (5) was introduced by Hamilton, Il’insky, and Zabolotskaya [15]
as a simplification of the full asymptotic equation for Rayleigh waves, so
we refer to it as the HIZ equation; it also describes surface waves on a
tangential discontinuity in MHD [1]. Thus, (5) serves as a model equation
for genuine surface wave solutions of hyperbolic conservation laws, analogous
to the inviscid Burger’s equation for bulk waves. Other, more complicated,
asymptotic surface wave equations arise from hyperbolic conservation laws,
but they have the same qualitative scaling and Hamiltonian properties as
the HIZ equation [3].

The director-field system (2)–(3) has finite-energy surface wave solutions
that are analogous to Rayleigh waves, in which the splay waves and twist
waves are linearly coupled through natural boundary conditions and self-
interact nonlinearly in the interior of the half-space. In Section 8, we obtain
an asymptotic equation for a weakly nonlinear surface wave in a director
field.
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The algebra involved in deriving this equation from the director-field
system is extremely complicated. For most of this paper, we therefore an-
alyze a model system of variational wave equations that exhibits the main
features in a simpler setting.

Surface waves in IBVPs for scalar wave equations are always radiative
(see Majda, p. 144 [24] for an example), and genuine surface waves only arise
in systems of wave equations, such as the ones that describe the motion of
elastic solids or director fields. As a model, we consider a variational principle
for two real-valued functions u(x, y, t), v(x, y, t) defined in the half-space
R2
+ = {(x, y) : x > 0} of the form

(7) δ

∫
R

2
+×R

{
1

2

[
u2t + v2t

]
−W (u, v,∇u,∇v)

}
dxdydt = 0,

where the potential energy density W is given by
(8)

W (u, v,∇u,∇v) =
1

2
α2(u)

[
u2x + u2y

]
+

1

2
β2(v)

[
v2x + v2y

]
− η [uxvy − uyvx] .

We assume that the bulk wave speeds α, β : R → R+ in (8) are smooth,
positive functions, and η is a real, nonzero constant multiplying the null-
Lagrangian uxvy − uyvx.

The Euler-Lagrange equation for (7)–(8) consists of decoupled varia-
tional wave equations in x > 0,

(9) utt = α2(u)Δu+ α(u)α′(u)|∇u|2, vtt = β2(v)Δv+ β(v)β′(v)|∇v|2.

We impose natural boundary conditions on x = 0,

(10) α2(u)ux − ηvy = 0, β2(v)vx + ηuy = 0,

which couple together u, v through the null-Lagrangian.
In Section 2, we derive the Lopatinski condition for the linearization of

(9)–(10), which is a necessary condition for the IBVP to be well-posed [6].
Serre [27] gives a full discussion of Lopatinski conditions for wave equations
described by variational principles of the form (1). In Section 3, we describe
the linearized surface wave solutions, and in Section 4, we use the method
of multiple scales to derive an asymptotic equation for weakly nonlinear,
genuine surface wave solutions of (9)–(10).

The result is a spectral asymptotic equation of the form

(11) âτ (k, τ) + i sgn(k)E0

∫
R

Λ(−k, k − l, l)â(k − l, τ)â(l, τ) dl = 0,
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where â(k, τ) denotes the amplitude of the surface wave on the boundary
as a function of a “slow” time τ and a tangential wavenumber k, and the
kernel Λ is given by

Λ(k1, k2, k3) = [A0 − iB0 sgn(k1k2k3)]
|k1k2|+ |k2k3|+ |k1k3|

|k1|+ |k2|+ |k3|

− [C0 − iD0 sgn(k1k2k3)]
k1k2 + k2k3 + k1k3
|k1|+ |k2|+ |k3|

.

(12)

The constants A0–E0 are defined in (29)–(30). For definiteness, we consider
solutions on the real line. The same equation applies to spatially periodic
solutions after replacing integrals by sums.

The kernel Λ(k1, k2, k3) in (11)–(12) is an interaction coefficient that
describes the strength of the quadratically nonlinear interactions between
wavenumbers k1, k2, k3 that satisfy the three-wave resonance condition

k1 + k2 + k3 = 0.

Only wavenumbers that satisfy this condition appear in (11), and the value of
Λ on other wavenumbers is irrelevant. It is, however, convenient to retain all
three wavenumbers to exhibit the symmetry of Λ(k1, k2, k3). This “detailed
balance” symmetry is a consequence of the fact that (11) is Hamiltonian
with respect to the complex canonical variables â(k, τ) [3]. In Section 5,
we use the Hamiltonian formulation of (7) to derive the same asymptotic
equation (11).

In Section 6, we show how to write (11) as a spatial equation for

a(θ, τ) =

∫
â(k, τ)eikθ dk,

where θ = y − λt denotes a spatial variable tangent to the boundary in a
reference frame moving with the linearized surface wave speed λ. We also
introduce a simplified asymptotic equation with the kernel

(13) Λ(k1, k2, k3) =
1

2
(|k1|+ |k2|+ |k3|) ,

corresponding to A0 = C0 and B0 = D0 = 0 in (12). After rescaling a to
remove an inessential constant, the associated spatial form of the equation
is

(14) aτ +

(
1

2
a2
)

θ

= H[a|∂|a],
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where H is the Hilbert transform with respect to θ, and |∂| = H∂θ has
symbol |k|.

Equation (14) plays an analogous role for surface wave solutions of vari-
ational wave equations to the HIZ equation (5) for hyperbolic conservation
laws. It may also provide an example of a nonlocal surface wave equation
that is easier to analyze than the HIZ equation.

We remark that the HIZ equation (5) can also be written in the spectral
form (11) with a kernel proportional to

Λ(k1, k2, k3) =
2|k1k2k3|

|k1|+ |k2|+ |k3|
.

This kernel is homogeneous of degree two, corresponding to the appearance
of two spatial derivatives in (5), whereas the kernel (13) is homogeneous of
degree one, corresponding to the appearance of one spatial derivative in (14).
This difference in the scaling properties of the interaction coefficient Λ, when
expressed with respect to complex canonical variables, is the fundamental
qualitative difference between the weak nonlinearity in surface waves for
conservation laws and variational wave equations.

In Section 7, we establish the short-time existence of smooth, spatially
periodic solutions of (14) and show some numerical solutions. These simu-
lations indicate that smooth solutions break down in finite time and appear
to form cusp singularities proportional to sgn θ|θ|α with α ≈ 1/3, which is in
reasonable agreement with an exact time-independent weak cusp solution of
(14) with α = 1/3. The corresponding asymptotic solution remains smooth
in the interior of the half-space, since its Fourier coefficients with respect
to θ decay exponentially as |k| → ∞ when x > 0. Thus, this mechanism
for the breakdown of smooth solutions on the boundary differs from the
more familiar one of the formation of singularities in the interior, which for
variational wave equations is described asymptotically by the HS equation.

It is interesting to compare the singularities in bulk and surface vari-
ational waves. Smooth solutions of the HS equation (4) conserve the spa-
tial L2-norm of ux, and the HS equation has global (dissipative or conser-
vative) weak H1-solutions that are Hölder continuous with exponent 1/2
[7, 31]. In addition, the HS equation has time-independent cusp solutions
with α = 2/3. Similarly, one-dimensional variational wave equations of the
form (9) have global H1-solutions [8, 9].

By contrast, smooth solutions of the surface-wave equation (14) conserve
the spatial L2-norm of |∂|1/2a, given in (47), and as noted above the numeri-
cal results suggest that general, global weak solutions are Hölder continuous
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with exponent at most approximately equal to 1/3. These weak solutions
are less regular than the HS solutions. On the other hand, Sobolev em-
bedding does not explain the fact that they appear to be continuous, since
H1/2-functions need not even be locally bounded. We remark also that the
H1/2-estimate for surface wave solutions on the boundary is consistent with
the standard H1-energy estimate for free-space solutions of the variational
wave equations in (9), since there is a loss of half an L2-derivative in the
trace map for Sobolev functions,

Finally, in Section 8, we return to an analysis of surface wave solutions
of the director-field equations. For definiteness, we consider surface waves
on a half-space in the case when the unperturbed director field is tangent to
the boundary. The result is an asymptotic equation (70) of the same form
as (11), with a more complicated kernel Λ(k1, k2, k3) that is given in (71).
Like the model kernel, this kernel is a symmetric, homogeneous function of
(k1, k2, k3) of degree one, and it has an similar relationship to the model
kernel as the full Rayleigh-wave kernel has to the HIZ kernel [3, 15].

There are many open problems about nonlocal surface wave equations
such as (5) or (14). For example: a proof of singularity formation; the exis-
tence of global weak solutions, conservative or dissipative; and whether or
not any of these equations are completely integrable. Although these equa-
tions are scalar, their intrinsic, and apparently non-removable, nonlocality
seems to make their analysis significantly harder than the analysis of the
inviscid Burgers or HS equations for bulk waves.

2. The Lopatinski condition

The linearization of the model IBVP (9)–(10) at (u, v) = (0, 0) consists of a
pair of two-dimensional wave equations in the half-space x > 0,

(15) utt = α2
0 (uxx + uyy) , vtt = β2

0 (vxx + vyy) ,

where α0 = α(0) and β0 = β(0), with the boundary conditions on x = 0

(16) α2
0ux − ηvy = 0, β2

0vx + ηuy = 0.

In this section, we derive the Lopatinski condition for (15)–(16), which is a
necessary condition for the well-posedness of the IBVP.

We look for Fourier-Laplace solutions of (15)–(16) of the form

(17)

[
u
v

]
=

[
ûe−kx

v̂e−kx

]
eτt+ily,



Nonlinear variational surface waves 11

where l ∈ R, τ ∈ C with �τ > 0, and k ∈ C with �k > 0. Then (17) satisfies
(15) if and only if:

τ2 = α2
0

(
k2 − l2

)
,

[
û
v̂

]
=

[
R
0

]
; or τ2 = β2

0

(
k2 − l2

)
,

[
û
v̂

]
=

[
0
S

]
.

The corresponding solution of the PDE for a given tangential wavenum-
ber l and complex frequency τ is[

u
v

]
=

[
Re−kαx

Se−kβx

]
eτt+ily,

where R and S are arbitrary constants and

kα =

√
l2 +

τ2

α2
0

, kβ =

√
l2 +

τ2

β2
0

.

Here, we take the branch of the square root with positive real part, which
defines kα, kβ uniquely in �τ > 0.

Using this solution in the boundary condition (16), we obtain the alge-
braic system [

−α2
0kα −iηl

iηl −β2
0kβ

] [
R
S

]
=

[
0
0

]
.

Hence, (15)–(16) has a nonzero solution of the form (17) if and only if
L(τ, l) = 0, where

L(τ, l) = α2
0β

2
0kαkβ − η2l2

is the Lopatinski determinant associated with the IBVP.
The IBVP is invariant under the rescaling x �→ rx, y �→ ry, t �→ rt, for

all r > 0, and the reflection y �→ −y, v �→ −v, so we may set l = 1 without
loss of generality. In that case, writing kα = γα and kβ = γβ , we have

(18) L(τ, 1) = α2
0β

2
0γαγβ − η2, γα =

√
1 +

τ2

α2
0

, γβ =

√
1 +

τ2

β2
0

.

A necessary condition for the well-posedness of the IBVP forward in
time is the Lopatinski condition [6]

(19) L(τ, 1) 	= 0 for all τ ∈ C with �τ > 0.
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In other words, there are no Fourier-Laplace modes that oscillate in the
tangential spatial direction, decay in the normal spatial direction, and grow
in time. If such modes do exist, then the IBVP is catastrophically unstable,
since rescaling them gives finite-energy modes that grow arbitrarily quickly
in time.

We define

(20) a =
α2
0

|η| , b =
β2
0

|η| , s2 =
τ2

|η| ,

where 0 < a, b < ∞. Then (19) is satisfied if and only if the quartic equation

ab
(
a+ s2

) (
b+ s2

)
= 1

has no roots for s with positive real part. Since

(21) s2 =
1

2

{
−(a+ b)±

√
4

ab
+ (a− b)2

}
,

we get the following cases:

1. If ab > 1, then s2 < 0, and there are four imaginary roots for τ , so
(19) holds;

2. If ab = 1, then s2 < 0 or s2 = 0, and there are two imaginary and one
double-zero root for τ , so (19) holds;

3. If 0 < ab < 1, then s2 < 0 or s2 > 0, and there are two imaginary and
two real roots for τ , one of which is positive, so (19) fails.

Thus, neglecting the marginal case ab = 1, we see that (15)–(16) satisfies
the Lopatinski condition (19) if ab > 1, or α0β0 > |η|. We assume from now
on that this condition is satisfied.

3. Linearized surface waves

Next, we consider surface wave solutions of the linearized model IBVP, which
correspond to Fourier-Laplace modes with a purely imaginary frequency τ
that oscillate in time. The discussion in Section 2 shows that these modes
exist for all parameter values.

We distinguish between two types of surface waves: (i) radiative, or leaky,
waves that oscillate but do not decay in the normal spatial direction; (ii) gen-
uine, or finite-energy, waves that decay exponentially in the normal spatial
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direction. Radiative surface waves are coupled with bulk waves in the inte-
rior of the half-space, whereas genuine surface waves are localized near the
boundary.

To analyze the surface waves in more detail, it is convenient to write

τ = −iλ, r2 =
λ2

|η| = −s2,

where λ ∈ R. Since we have normalized the tangential wavenumber l to one,
λ is the speed of the surface wave along the boundary. The normal spatial
decay constants in (18) are then given by

γα =

√
1− r2

a
, γβ =

√
1− r2

b
.

For the negative square root in (21), we get

r2 =
1

2

{
(a+ b) +

√
4

ab
+ (a− b)2

}
>

1

2
{(a+ b) + |a− b|} = max(a, b).

Thus, γα and γβ are both purely imaginary, and the surface waves are ra-
diative. In this case, |λ| > max(α0, β0), meaning that the surface waves are
faster than the bulk waves.

On the other hand, for the positive square root in (21), we get

r2 =
1

2

{
(a+ b)−

√
4

ab
+ (a− b)2

}
<

1

2
{(a+ b)− |a− b|} = min(a, b).

Thus, γα and γβ are both real and positive, and the surface waves are gen-
uine, with both u and v decaying exponentially in the normal spatial di-
rection. In this case, |λ| < min(α0, β0), meaning that the surface waves are
slower than the bulk waves.

We remark that it is these genuine surface-wave modes that lead to
instability as ab decreases through 1; their wave-speeds coalesce at λ = 0
and become complex. Hunter and Thoo [20] carry out a bifurcation analysis
of a similar problem in MHD.

The aim of this paper is to study the effect of weak nonlinearity on
genuine variational surface waves. These problems typically lead to nonlo-
cal asymptotic equations because the surface-wave speed is slower than the
bulk-wave speeds, so that what happens at one point of the boundary can
influence what happens elsewhere on the boundary through the half-space.
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The qualitative behavior of radiative surface waves, which are faster
than the bulk waves, is different from that of the genuine surface waves, and
one typically obtains local asymptotic equations. Weakly nonlinear radiative
surface waves in this problem could be analyzed in a similar way to the
radiative surface waves on a compressible vortex sheet studied in [4].

4. Weakly nonlinear surface waves

Weakly nonlinear, genuine surface wave solutions of the model IBVP (9)–
(10) may be derived by standard multiple-scale methods. The dominant
nonlinear effects on surface waves are quadratic; for waves whose amplitude
is of the order ε 
 1, they become significant on time-scales of the order ε−1

in a reference frame moving with the linearized wave speed.
In this section, we outline the multiple-scale expansion. Some details of

the (lengthy) algebraic computations are given in the Appendix. In the next
section, we outline an alternative derivation based on an expansion of the
surface-wave Hamiltonian.

We introduce “fast” space variables θ = y−λt and x, tangent and normal
to the boundary, respectively, and a “slow” time variable τ = εt. (We do not
use τ to denote a complex frequency in this section, so this notation should
cause no confusion.) We assume that the wave speeds α(u) and β(v) in (15)
have the expansions

(22) α2(u) = α2
0 + 2α0α1u+O(u2), β2(u) = β2

0 + 2β0β1v +O(v2)

as u, v → 0, where α0 = α(0), β0 = β(0), α1 = α′(0), β1 = β′(0), and
α0, β0 > 0. We then seek an asymptotic expansion as ε → 0 for a solution
(u, v) of (15)–(16) of the form

u(x, y, t; ε) = εu1(x, y − λt, εt) + ε2u2(x, y − λt, εt) +O(ε3),

v(x, y, t; ε) = εv1(x, y − λt, εt) + ε2v2(x, y − λt, εt) +O(ε3),
(23)

where λ is the linearized surface wave speed. The leading-order approxima-
tions u1(x, θ, τ), v1(x, θ, τ) are determined from the requirement that this
expansion is formally valid for times t = O(ε−1).

At the order ε, we find that (u1, v1) satisfies the linearized equations. The
solution for (u1, v1) is a linear superposition of the Fourier-Laplace modes
described in the previous section and is given by

(24)

[
u1
v1

]
(x, θ, τ) =

∫
R

â(k, τ)

[
R(k)e−γα|k|x

S(k)e−γβ |k|x

]
eikθ dk,
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where â(k, τ) is an arbitrary complex-valued amplitude-function of the tan-
gential wavenumber k and the slow time τ , with â(−k, τ) = â∗(k, τ).

The decay constants

(25) γα =

√
1− λ2

α2
0

, γβ =

√
1− λ2

β2
0

in (24) satisfy equation (18),

(26) α2
0β

2
0γαγβ = η2,

and the wave speed λ is given by

(27) λ2 =
1

2

{
α2
0 + β2

0 −
√

(α2
0 − β2

0)
2 +

4η4

α2
0β

2
0

}
.

Here, we assume the stability condition α0β0 > |η|, and we choose the sign of
the square root that corresponds to genuine surface waves. The coefficients
R and S in (24) give the relative amplitudes of u and v in the surface wave,
and are determined up to a scalar factor. A convenient choice is

(28) R = η, S = iα2
0γα sgn(k).

At the order ε2, we find that (u2, v2) satisfies a nonhomogeneous lin-
earized system, where the nonhomogeneous term depends on (u1, v1). A so-
lution for (u2, v2) exists only if the nonhomogeneous term satisfies an ap-
propriate solvability condition, which yields an evolution equation for the
amplitude-function â(k, τ). After some algebra, we get (11)–(12) stated in
the introduction, with

E0 = λ

[
1

γ2α
+

1

γ2β
− 2

]−1

,(29)

A0 =
ηα1

α0
, B0 =

α2
0γαβ1
β0

, C0 =
A0

γ2α
, D0 =

B0

γ2β
.(30)

In summary, the weakly nonlinear, genuine surface wave solution of
(9)–(10) has the asymptotic expansion (23)–(24), where the spectral wave-
amplitude â(k, τ) satisfies (11). Assuming that we have “prepared” initial
data of the same form as (24), corresponding to a unidirectional surface
wave, we supplement (11) with an initial condition â(k, 0) = â0(k).
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5. Hamiltonian equations

In this section, we derive equation (11) for a weakly nonlinear surface wave
solution of (9)–(10) by expanding its Hamiltonian up to cubic terms in the
wave amplitude and evaluating the cubic terms on the linearized surface
wave solution. This procedure is somewhat heuristic, but it involves less
algebra than the multiple-scale approach and, as we will verify, it leads to
the same result. It also provides an independent check on the multiple-scale
analysis. See [30] for further explanation of the Hamiltonian formalism we
use here.

5.1. Expansion of the Hamiltonian

The variational principle for the model IBVP (9)–(10) is (7)–(8). We denote
the canonically conjugate momenta to u and v by p = ut and q = vt,
respectively. The corresponding Hamiltonian functional H is given by

H(u, v, p, q) = A(u, p) + B(v, q) + E(u, v),

where

A(u, p) =
1

2

∫
R

2
+

[
p2 + α2(u)(u2x + u2y)

]
dxdy,

B(v, q) = 1

2

∫
R

2
+

[
q2 + β2(v)(v2x + v2y)

]
dxdy,

E(u, v) =
∫
R

2
+

η [uyvx − uxvy] dxdy.

Using the Taylor expansion (22) of the wave speeds in A and B, we get
that

A = A2 +A3 +O(u4), B = B2 + B3 +O(v4),

where

A2 =
1

2

∫
R

2
+

[
p2 + α2

0

(
u2x + u2y

)]
dxdy, A3 = α0α1

∫
R

2
+

u
[
u2x + u2y

]
dxdy,

B2 =
1

2

∫
R

2
+

[
q2 + β2

0

(
v2x + v2y

)]
dxdy, B3 = β0β1

∫
R

2
+

v
[
v2x + v2y

]
dxdy.

Thus, the expansion of the Hamiltonian as u, v → 0 is

(31) H = H2 +H3 +O(u4 + v4),
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where the quadratic and cubic terms H2 and H3, respectively, are given by

H2 = A2 + B2 + E , H3 = A3 + B3.

To apply the Hamiltonian formalism, we separate the positive and nega-
tive frequency components of the wave amplitude. The linearized frequency
of the surface wave is given by

ω(k) = λk

where the wave speed λ satisfies (27). For definiteness, we consider right-
moving waves with λ > 0. In that case, the positive frequency components
are the ones with positive wavenumbers, and the spatial Fourier coefficients

{ã(k, t), ã∗(k, t) : k > 0}

are complex-canonical conjugate variables for the wave, provided they are
scaled appropriately.

The expression for (u, v, p, q) in a unidirectional, linear surface wave
solution has the form

u = C0

∫ ∞

0

[
Rã(k, t)eiky−γαkx +R∗ã∗(k, t)e−iky−γαkx

]
dk,

v = C0

∫ ∞

0

[
Sã(k, t)eiky−γβkx + S∗ã∗(k, t)e−iky−γβkx

]
dk,

p = C0

∫ ∞

0
iω(k)

[
Rã(k, t)eiky−γαkx −R∗ã∗(k, t)e−iky−γαkx

]
dk,

q = C0

∫ ∞

0
iω(k)

[
Sã(k, t)eiky−γβkx − S∗ã∗(k, t)e−iky−γβkx

]
dk,

(32)

where γα, γβ are defined in (25). Moreover, from (28), we have for k > 0 that

(33) R = η, S = iα2
0γα.

We choose the positive scaling constant C0 in (35) below, after we com-
pute H2.

We use the linearized solution (32) in the Hamiltonian (31) and evaluate
the resulting integrals with respect to (x, y).

A straightforward computation, using Parseval’s theorem, shows that
the quadratic term in the Hamiltonian is given by

H2(ã, ã
∗) = σ0C

2
0

∫ ∞

0
λk ã∗(k, t)ã(k, t)dk,
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where

(34) σ0 =
ρ0
E0

, ρ0 = 2πα2
0γα|R|2 = 2πβ2

0γβ|S|2,

and E0 is defined in (29). We note that σ0 > 0 for λ > 0. When expressed in

terms of complex canonical variables, the quadratic part of the Hamiltonian

should have the form [30]

H2(ã, ã
∗) =

∫ ∞

0
ω(k)ã∗(k, t)ã(k, t)dk, ω(k) = λk.

This is the case if we choose

(35) C0 =
1√
σ0

.

A longer computation [5] shows that the cubic term in the Hamiltonian

(31) is given by

H3(ã, ã
∗) = ρ0C

3
0

∫ ∞

0

∫ ∞

0
T (−l−m, l,m)ã∗(l+m)ã(l, t)ã(m, t) dldm+c.c.,

where ρ0 is defined in (34) and the kernel T may be written as

T (k1, k2, k3) =

[
Rα1

α0
+

Sβ1
β0

] [
−k1k2 + k2k3 − k1k3

−k1 + k2 + k3

]

−
[
Rα1

α0γ2α
+

Sβ1
β0γ2β

][
k1k2 + k2k3 + k1k3

−k1 + k2 + k3

]
.

(36)

From (34) and (35), we have ρ0C
2
0 = E0. Thus, neglecting quartic

and higher-degree terms, our final expression for the expanded surface-wave

Hamiltonian is

H(ã, ã∗) =

∫ ∞

0
λk ã∗(k, t)ã(k, t)dk

+ C0E0

∫ ∞

0

∫ ∞

0
T (−l −m, l,m)ã∗(l +m)ã(l, t)ã(m, t) dldm

+ C0E0

∫ ∞

0

∫ ∞

0
T ∗(−l −m, l,m)ã(l +m, t)ã∗(l, t)ã∗(m, t) dldm.

(37)
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5.2. Hamilton’s equation

The complex canonical form of Hamilton’s equation for {ã(k, t) : k ∈ R+} is

(38) iãt(k, t) =
δH

δã∗(k, t)
,

where δH/δã∗ denotes the functional derivative of H(a, a∗) with respect to

ã∗, keeping ã fixed. Hamilton’s equation for the Hamiltonian (37) is

iãt(k, t) = λk ã(k, t) + C0E0

∫ k

0
T (−k, k − l, l)ã(k − l, t)ã(l, t) dl

+ 2C0E0

∫ ∞

0
T ∗(−k − l, k, l)ã(k + l, t)ã∗(l, t) dl.

(39)

Following [3], we rewrite equation (39) for the positive wavenumber com-

ponents {ã(k, t) : k ∈ R+} as a convolution-type equation for all of the

wavenumber components {ã(k, t) : k ∈ R}, where ã(−k, t) = ã∗(k, t). The
result is that

(40) iãt(k, t) = λk ã(k) + C0E0 sgn k

∫ ∞

−∞
Λ(−k, k − l, l)ã(k − l, t)ã(l, t) dl,

where the kernel Λ : R3 → C is given in terms of the kernel T : R−×R2
+ → C

on k1 + k2 + k3 as follows:

1. Λ(k1, k2, k3) = T (k1, k2, k3) if k2, k3 > 0 and k1 < 0;

2. Λ(k1, k2, k3) = T (k2, k1, k3) if k1, k3 > 0 and k2 < 0;

3. Λ(k1, k2, k3) = T (k3, k1, k2) if k1, k2 > 0 and k3 < 0;

4. Λ(k1, k2, k3) = T ∗(−k1,−k2,−k3) if k2, k3 < 0 and k1 > 0;

5. Λ(k1, k2, k3) = T ∗(−k2,−k1,−k3) if k1, k3 < 0 and k2 > 0;

6. Λ(k1, k2, k3) = T ∗(−k3,−k1,−k2) if k1, k2 < 0 and k3 > 0.

By considering the different possible sign combinations of k1, k2, k3, one can

verify [5] that if T (k1, k2, k3) is given by (36), with R and S defined as in (33),

then this expression for Λ(k1, k2, k3) agrees with (12) on k1 + k2 + k3 = 0.

By comparing the multiple-scale solution (23)–(24) with the Hamiltonian

solution (32), we see that the corresponding wave amplitudes are related by

ã(k, t) =
ε

C0
â(k, εt)e−iλkt.
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The use of this expression for ã(k, t) in equation (40) gives equation (11)
for â(k, τ). The factor e−iλkt in ã corresponds to a Galilean transforma-
tion which removes the linear term from (40). Thus, the Hamiltonian and
multiple-scale approaches lead to identical results.

Finally, we remark that a similar procedure can be applied to the La-
grangian instead of the Hamiltonian. One expands the Lagrangian up to
cubic terms in the field variables and then evaluates these terms on the
linearized surface wave solution. This gives a variational principle whose
Euler-Lagrange equation is the asymptotic equation.

6. Spatial form of the asymptotic equation

In this section, we show how to rewrite the spectral form of the asymptotic
equation (11) in an equivalent spatial form, and we give a simplified, but
representative, spatial equation.

We write (11) as

(41) âτ (k, τ) + i sgn(k)E0f̂(k, τ) = 0,

where

f̂(k, τ) =

∫ ∞

−∞
Λ(−k, k − l, l)â(k − l, τ)â(l, τ) dl.

Let

a(θ, τ) =

∫
â(k, τ)eikθ dθ

denote the spatial amplitude, with corresponding notation for f . Then, tak-
ing the inverse Fourier transform of (41), we get that aτ = E0Hf where H
is the Hilbert transform with respect to θ.

To express f in terms of a, it is convenient to write the kernel Λ in (12)
as

Λ(k1, k2, k3) =
1

2

[(
1− 1

γ2α

)
A0 − i sgn(k1k2k3)

(
1− 1

γ2β

)
B0

]
Λ+(k1, k2, k3)

+
1

2

[(
1 +

1

γ2α

)
A0 − i sgn(k1k2k3)

(
1 +

1

γ2β

)
B0

]
Λ−(k1, k2, k3),

(42)

where

Λ+(k1, k2, k3) =
|k1k2|+ |k2k3|+ |k1k3|+ k1k2 + k2k3 + k1k3

|k1|+ |k2|+ |k3|
,
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Λ−(k1, k2, k3) =
|k1k2|+ |k2k3|+ |k1k3| − k1k2 − k2k3 − k1k3

|k1|+ |k2|+ |k3|
.

The kernels Λ±(k1, k2, k3) may be written on k1+k2+k3 = 0 in the equivalent

forms

Λ+(k1, k2, k3) =
1

2

[
|k2k3|+ k2k3

|k1|
+

|k1k3|+ k1k3
|k2|

+
|k1k2|+ k1k2

|k3|

]
,

Λ−(k1, k2, k3) =
1

2

[
|k1|+ |k2|+ |k3|

]
,

(43)

as one can verify by considering the different sign combinations of k1, k2, k3.

Using the expressions in (43), the fact that |∂| has symbol |k|, and the

convolution theorem, we can read off the spatial terms in the equation that

correspond to the spectral terms. For example, if

f̂+(k) =

∫
Λ+(−k, k − ξ, ξ)â(k − ξ)â(ξ) dξ,

f̂−(k) =

∫
Λ−(−k, k − ξ, ξ)â(k − ξ)â(ξ) dξ,

then

f+(θ) =
1

2
|∂|−1

{
(|∂|a)2 − (∂a)2

}
+ |∂|

{
|∂|a · |∂|−1a

}
+ ∂

{
∂a · |∂|−1a

}
,

f−(θ) =
1

2
|∂|

(
a2
)
+ a|∂|a.

The terms in Λ(k1, k2, k3) with factors of i sgn(k1k2k3) lead to additional

Hilbert transforms on each factor and on the whole function.

The spatial form of the full asymptotic equation follows from the previ-

ous discussion, but it is somewhat lengthy, and we will not write it out explic-

itly here. Instead, we consider a simplification of the asymptotic equation in

which Λ only includes a Λ− term. This corresponds to taking γα = γβ = 1 in

(42), which arises from the limit λ → 0 in the original problem, and B0 = 0,

meaning that the only nonlinearity comes from the u-equation.

The derivation of the asymptotic equation does not apply when λ = 0,

since the linearized surface wave speeds coalesce at that point and the linear

time-scale factor E0 in (29) diverges as λ → 0. Nevertheless, if λ is small, it

is reasonable to approximate the coefficients of the kernel Λ, which describe

the effects of nonlinearity, by their values at λ = 0.
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We then get the spectral equation

âτ (k, τ) +
1

2
i sgn(k)A0E0

∫ ∞

−∞

(
|k|+ |k − l|+ |l|

)
â(k − l, τ)â(l, τ) dl = 0.

The corresponding spatial equation for a(θ, τ) is

aτ +A0E0

{(
1

2
a2
)

θ

−H [a|∂|a]
}

= 0.(44)

7. A simplified asymptotic equation

In this section, we consider the simplified asymptotic equation (44). We
write (x, t) instead of (θ, τ), so x is now a tangential spatial variable, and
rescale a to remove the inessential constant A0E0.

After this change in notation, we get the following equation for a(x, t)

(45) at +

(
1

2
a2
)

x

= H [a|∂|a] ,

where H is the Hilbert transform with respect to x and |∂| = H∂x. We can
also write (45) as

(46) at +
(
a2
)
x
= [a,H] |∂|a,

where [a,H] denotes the commutator of multiplication by a and H. The
right-hand side of (46) satisfies the estimate

‖ [a,H] |∂|a ‖L2 ≤ C‖a‖2
Ḣ1/2 ,

so it is a lower-order term for smooth solutions.

The Hamiltonian form of (45) is

at = H

[
δH
δa

]
, H(a) =

1

2

∫
a2|∂|a dx.

The Hilbert transform H is the spatial Hamiltonian operator correspond-
ing to the spectral Hamiltonian operator of multiplication by −i on posi-
tive wavenumbers. We can consider either free-space solutions of (45), with
x ∈ R, or spatially periodic solutions, with x ∈ T, and interpret integrals
over x as appropriate.
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The Hamiltonian H is conserved by smooth solutions of (45), but this is
not particularly useful for analytical purposes sinceH is cubic and indefinite.
An additional positive conserved quantity, associated with the invariance of
(45) under spatial translations, is the momentum

(47) P(a) =
1

2

∫
a|∂|a dx.

The mean
∫
a dx is also conserved, but we do not know of any other con-

served quantities for (45).
The momentum P provides an a priori H1/2-estimate. It also plays the

role of an entropy for dissipative weak solutions of (45). To show this, we
consider the viscous equation

at +

(
1

2
a2
)

x

= H [a|∂|a] + εaxx.

One finds that smooth solutions satisfy

(a|∂|a)t +
(
1

2
a|∂|(a2) + a2|∂|a

)
x

=
1

2
ax|∂|(a2) + |∂|a ·H[a|∂|a] + ε (a|∂|ax + ax|∂|a)x − 2εax|∂|ax.

Integrating this equation with respect to x, using the skew-adjointness of
H, and assuming that the boundary terms vanish, we get that

d

dt

∫
a|∂|a dx = −2ε

∫
ax|∂|ax dx ≤ 0.

7.1. Short-time existence of smooth solutions

We consider the following initial-value problem (IVP) for a(x, t)

at +

(
1

2
a2
)

x

= H [a|∂|a] ,

a(x, 0) = f(x).

(48)

where f : T → R is a 2π-periodic function with zero mean. We look for
spatially periodic solutions with zero mean,

a(x, t) =
∑
k∈Z

â(k, t)eikx,
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where â(0, t) = 0 and â(−k, t) = â∗(k, t), and denote by Ḣs(T) the usual

L2-Sobolev space with norm

‖a‖Ḣs =

(∑
k∈Z

|k|2s|â(k)|2
)1/2

.

Theorem 7.1. Suppose that f ∈ Ḣs(T) where s > 3/2. Then there is a

unique local solution of (48) with

a ∈ C(I; Ḣs) ∩ C1(I; Ḣs−1)

defined on a time interval I = (−T, T ), where T = Cs/‖f‖Ḣs for some

constant Cs > 0.

Proof. The proof is by a standard Galerkin method [28]. We omit the details

and just give the required a priori energy estimate following [17]. The same

estimate and proof applies to equations with the more general kernels (12)

or (71).

The spectral form of (48) is

ât(k, t) +
1

2
i sgn k

∑
ξ∈Z

(|k|+ |k − ξ|+ |ξ|) â(k − ξ, t)â(ξ, t) = 0.

It follows that

d

dt

∑
k∈Z

|k|2s+1|â(k, t)|2

+ i
∑
k,ξ∈Z

k|k|2s (|k|+ |k − ξ|+ |ξ|) â(−k, t)â(k − ξ, t)â(ξ, t) = 0.

Using the symmetry of the kernel, we can write this equation as

d

dt

∑
k∈Z

|k|2s+1|â(k, t)|2+ 1

3
i
∑
k,ξ∈Z

Λs(−k, k− ξ, ξ)â(−k, t)â(k− ξ, t)â(ξ, t) = 0,

where

Λs(k1, k2, k3) =
(
k1|k1|2s + k2|k2|2s + k3|k3|2s

)
(|k1|+ |k2|+ |k3|) .
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The following inequalities [17] hold on k1 + k2 + k3:

|k1|+ |k2|+ |k3| ≤
2
√
2|k1k2k3|1/2

min(|k1|1/2, |k2|1/2, |k3|1/2)
,∣∣ k1|k1|2s + k2|k2|2s + k3|k3|2s

∣∣
min(|k1|1/2, |k2|1/2, |k3|1/2)

≤ Cs

(
|k1|s|k2|s|k3|1/2 + |k2|s|k3|s|k1|1/2 + |k3|s|k1|s|k2|1/2

)
,

where Cs denotes a generic constant depending on s > 0. Using these in-
equalities, we get that

|Λs(k1, k2, k3)|

≤ Cs

(
|k1|s+1/2|k2|s+1/2|k3|+ |k2|s+1/2|k3|s+1/2|k1|+ |k3|s+1/2|k1|s+1/2|k2|

)
on k1 + k2 + k3 = 0. By the Cauchy-Schwartz and Young inequalities, we
can then estimate∣∣∣∣∣∣

∑
k,ξ∈Z

Λs(−k, k − ξ, ξ)â(−k, t)â(k − ξ, t)â(ξ, t)

∣∣∣∣∣∣
≤ Cs

〈
|k|s+1/2|â|, |k|s+1/2|â| ∗ |k||â|

〉
≤ Cs

∥∥∥ |k|s+1/2â
∥∥∥
	2
·
∥∥∥|k|s+1/2|â| ∗ |k||â|

∥∥∥
	2

≤ Cs

∥∥∥ |k|s+1/2â
∥∥∥2
	2
‖ |k|â ‖	1 ,

where, as usual,

〈
|â|, |b̂|

〉
=
∑
k∈Z

|â(k)| |b̂(k)|, ‖ â ‖	p =

(∑
k∈Z

|â(k)|p
)1/p

.

Since ‖ |k|â ‖	1 ≤ Cr ‖ |k|râ ‖	2 for r > 3/2, we conclude that

d

dt

∑
k∈Z

|k|2s+1|â(k, t)|2 ≤ Cs

(∑
k∈Z

|k|2s+1|â(k, t)|2
)3/2

if s+ 1/2 > 3/2, which gives an a priori Ḣr-estimate for a if r > 3/2.
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Figure 1: Numerical solution of (48) for 0 ≤ t ≤ 1 with initial data f(x) =
sinx.

The number of L2-derivatives, s > 3/2, that are required for local exis-
tence for (45) is the same as the number required for local existence for the
inviscid Burgers equation.

7.2. Numerical solutions

In this section, we show some numerical solutions of (48), which indicate
that the spatial derivatives of smooth solutions blow up in finite time and
that smooth solutions can be continued by weak dissipative solutions. The
weak solutions appear to remain continuous after singularities form, with
cusps rather than shocks, and they become continuous even if the initial
data contains jump discontinuities.

We use a standard pseudo-spectral method with spectral viscosity and
a fourth-order Runge-Kutta method in time. These numerical solutions are
dissipative in nature; we do not address here the question whether or not
(48) also has conservative weak solutions, as is the case for the HS equation
that describes the corresponding bulk waves.

Figure 1 shows a surface plot of the solution with sinusoidal initial data
for times 0 ≤ t ≤ 1. The solution steepens in a similar way to solutions of
the inviscid Burgers equation, and its derivative ax blows up at t ≈ 0.55.
This singularity formation time is a little longer than the time t = 0.5 one
would get by neglecting the lower-order term on the right-hand side of (46).

Figure 2 plots the momentum P in (47) of this solution as a function of
time and shows the numerically computed spectrum at t = 1. The momen-
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Figure 2: Left: The momentum P defined in (47) as a function of time for
the solution shown in Figure 1. Right: The numerical spectrum log |â(k, t)|
at t = 1.0 as a function of log |k|. The dashed line is a best linear fit to the
spectrum for 8 ≤ |k| ≤ 128, and is log |â(k, t)| ≈ −1.315 · log |k|+9.591. The
numerical solution is computed for wavenumbers |k| ≤ 214, after dealiasing.
Spectral viscosity is switched on starting at |k| = 256.

tum is constant until the singularity forms; after that it decreases. In contrast
to the inviscid Burgers equation, the solution appears to remain continuous
even after its derivative blows up. The power-law numerical spectrum of the
solution at t = 1, together with the following analytical solution, suggests
that solutions have an xα-singularity with α ≈ 1/3.

If α is not an odd integer, then

H [ |x|α ] = −Cα sgn(x)|x|α, CαH [ sgn(x)|x|α ] = |x|α, Cα = tan
(πα

2

)
in a distributional sense. Using this formula, we find that

(49) a(x) = a0 sgn(x)|x|α

is a distributional solution of the steady equation(
1

2
a2
)

x

= H[a|∂|a]

if α satisfies C2α−1 + Cα = 0. The solutions of this equation are

α = 2n± 1

3
, n ∈ Z.
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Figure 3: Numerical solution of (48) with square-wave initial data (50).

The smallest positive solution is α = 1/3. The corresponding spectral power
law |â(k)| = â0|k|−4/3 is in approximate agreement with the numerical spec-
trum shown in Figure 2; there appears to be, however, a slight discrepancy,
and our numerically computed spectrum has an exponent α that is below
1.32.

This numerical solution of (45) is qualitatively similar to the numerical
solution of the HIZ equation (5) with sinusoidal initial data, where a cusp
singularity like (49) with α = 2/3 appears to form [18].

In Figure 3, we show a numerical solution of (48) with discontinuous
square-wave initial data

(50) f(x) =

{
1 for π/4 < x < 5π/4,

0 for 0 < x < π/4 or 5π/4 < x < 2π.

The global structure of the solution is similar to that of the solution for an
inviscid Burgers equation, but it has a continuous cusp singularity instead
of a shock and additional cusp singularities at each edge of the “expansion
fan.” In a periodic domain, these singularities hit each other and coalesce
into one singularity.

8. Orientation waves in a director field

We conclude this paper with a description of a weakly nonlinear surface
wave solution of the director-field equation. The derivation parallels the
one for the model equation, but the algebra is more involved and we will
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only summarize the results. Additional details of the computations are given
in [5].

We consider a half-space IBVP in R3
+ = {(x, y, z) : x > 0} for the

system of nonlinear hyperbolic partial differential equations for a massive
director field that is obtained from the variational principle (2)–(3). The
Euler-Lagrange equation in x > 0 is

ntt = α∇(divn)− β [curl(An) +A curln]

+ γ [B× curln− curl(B× n)] + λn
(51)

where A = n · curln and B = n× curln; the natural boundary condition on
x = 0 is

(52) (α− η)(divn)ν + β(An× ν) + η
(
ν · (∇n)T

)
= μn,

where ν = (−1, 0, 0) is the outward unit normal on the boundary ∂R3
+. The

scalar fields λ and μ in (51) and (52) are Lagrange multipliers that enforce
the constraint n ·n = 1 in the interior and on the boundary. They are given
explicitly by

λ = −|nt|2 + α
[
|∇n|2 − | curln|2

]
+
[
βA2 + γ|B|2

]
+ (α− γ) divB,

μ = (α− η)(divn)(ν · n).

This system is more complicated than the model system. Due to the
anisotropic nature of the equations, the behavior of solutions depends on
the direction of wave propagation and on the direction of the normal to the
boundary. Nevertheless, we get asymptotic equations for weakly nonlinear
surface waves that are qualitatively similar to the ones arising from the
model system.

For definiteness, we consider only the case of surface waves that are small
perturbations of a constant director field n0 = (0, 0, 1) that is tangent to the
boundary.

8.1. The Lopatinski condition

We expand the solution of (51)–(52) as ε → 0 as

n(x, t) = n0 + εn′(x, t) +O(ε2), n0 = (0, 0, 1).

Since n is a unit vector, n′ is orthogonal to n0, and we write it as

(53) n′(x, t) = (u(x, t), v(x, t), 0) ,
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where x = (x, y, z). The linearization of the Euler-Lagrange equation (51)
in x > 0 is

utt = αuxx + βuyy + γuzz + (α− β)vxy,

vtt = βvxx + αvyy + γvzz + (α− β)uxy,
(54)

and the linearization of the boundary condition (52) on x = 0 is

−αux + (η − α)vy = 0,

−βvx + (β − η)uy = 0.
(55)

We look for Fourier-Laplace solutions of the form[
u
v

]
=

[
ûe−kx

v̂e−kx

]
eτt+ily+imz,(56)

where l,m ∈ R, τ ∈ C with �(τ) > 0, and k ∈ C with �(k) > 0. Using (56)
in (54), we find that (56) is a solution of the PDE if[

τ2 − αk2 + βl2 + γm2 (α− β)ikl
(α− β)ikl τ2 − βk2 + αl2 + γm2

] [
û
v̂

]
=

[
0
0

]
.

It follows that (k, l,m, τ) satisfies the linearized dispersion relation[
τ2 − αk2 + βl2 + γm2

] [
τ2 − βk2 + αl2 + γm2

]
+ (α− β)2k2l2 = 0,

and

(57)

[
u
v

]
= R

[
ikα
l

]
eτt+ily+imz−γαx + S

[
−l
ikβ

]
eτt+ily+imz−γβx,

where R, S are arbitrary constants. The decay constants γα, γβ in (57) are
given by

γα =

√
l2 +

τ2 + γm2

α
, γβ =

√
l2 +

τ2 + γm2

β
,

where we take the branch of the square root with positive real part.
Using (57) in the boundary condition (55), we obtain the algebraic equa-

tion

(58)

[
ηl2 + γm2 + τ2 iηlγβ

−iηlγα ηl2 + γm2 + τ2

] [
R
S

]
=

[
0
0

]
.



Nonlinear variational surface waves 31

This equation has a nontrivial solution if and only if L(τ, l,m) = 0, where
L is the Lopatinski determinant

(59) L(τ, l,m) =
(
ηl2 + γm2 + τ2

)2 − η2l2γαγβ.

The Lopatinski condition for this problem is then

(60) L(τ, l,m) 	= 0 for all l,m ∈ R and τ ∈ C with �(τ) > 0.

If the Lopatinski condition for a second-order, variational IBVP fails,
then it fails for a real value of τ (see Theorem 3.4 in [27]). Thus, writing

(61) a =
α

η
, b =

β

η
, c =

γ

η
, X =

τ2

η
,

we see that the Lopatinski condition (60) is satisfied if and only if there are
no l,m ∈ R with l2 +m2 = 1 such that the polynomial equation

(62) ab
(
l2 + cm2 +X

)4 − l4
(
al2 + cm2 +X

) (
bl2 + cm2 +X

)
= 0

has a real, strictly positive root for X. (Recall that we assume α, β, γ, η > 0.)
If l = 1 and m = 0, corresponding to a tangential wavenumber vector

that is orthogonal to the unperturbed director field n0, then one can show
that (62) has no real, positive root X if

(63)
1

a
+

1

b
≤ 4.

We numerically computed the roots of (62) as l and m varied over l2+m2 =
1, and found that if the parameters satisfy (63), then either X < 0 or X ∈ C

with �X < 0. Although we do not have a proof, the numerical results suggest
that the Lopatinski condition holds when (63) is satisfied (and a, b, c > 0).

8.2. Linearized surface waves

Surface wave solutions correspond to Fourier-Laplace solutions with purely
imaginary frequency τ = −iω0 with ω0 ∈ R such that L(−iω0, l,m) = 0
for some l,m ∈ R. It follows from (59) that the linearized surface-wave
dispersion relation of (54)–(55) for ω0(l,m) is

(64)
(
ηl2 + γm2 − ω2

0

)2
= η2l2γαγβ,
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Table 2: Roots X = xk of the quartic polynomial (62) when a = 2, b = 0.5,
and c = 3 and l2 + m2 = 1. Solutions with X < 0 correspond to surface
waves with speed λ = (−ηX)1/2

l x1 x2 x3 x4

0.000 -3.0000 -3.0000 -3.0000 -3.0000
0.125 -2.9810 + 0.0082i -2.9810 - 0.0082i -2.9599 -2.9531
0.250 -2.9239 + 0.0326i -2.9239 - 0.0326i -2.8397 -2.8125
0.375 -2.8288 + 0.0734i -2.8288 - 0.0734i -2.6393 -2.5781
0.500 -2.6956 + 0.1304i -2.6956 - 0.1304i -2.3587 -2.2500
0.625 -2.5245 + 0.2038i -2.5245 - 0.2038i -1.9980 -1.8281
0.750 -2.3152 + 0.2935i -2.3152 - 0.2935i -1.5571 -1.3125
0.875 -2.0679 + 0.3994i -2.0679 - 0.3994i -1.0360 -0.7031
1.000 -1.7826 + 0.5217i -1.7826 - 0.5217i -0.4348 0

where γα, γβ > 0 are given by

(65) γα =

√
l2 +

γm2 − ω2
0

α
, γβ =

√
l2 +

γm2 − ω2
0

β
.

It is convenient to introduce the scaled parameters (61). To find genuine
surface wave solutions, we first look for real, negative roots X = −ω2

0/η
of (62). If such a root exists, then we check that γα, γβ are real numbers.
Finally, we verify that

(
l2 + cm2 +X

)2 − l2
√

l2 +
cm2 +X

a

√
l2 +

cm2 +X

b
= 0.

This last step is necessary to rule out extraneous solution due to squaring
the Lopatinski condition to obtain (62).

There is a simple explicit solution of these equations with

(66) ω2
0 = γm2, γα = γβ = |l|,

and [
u
v

]
=

[
1

i sgn l

]
ei(ly+mz±√

γmt)−|l|x.

This is a genuine surface wave solution if l 	= 0. It turns out, however, that
the quadratically nonlinear effects on this transverse surface wave vanish, so
it is not of interest for the present analysis.

This is not the only solution, however. For example, in Table 2 we show
the roots X = xk of (62) with a = 2, b = 0.5, c = 3 for several values of l
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Table 3: Decay constants for the negative root x3 in Table 2, showing that
it corresponds to a genuine surface wave

l x3 (α/η)1/2γα (β/η)1/2γβ

0.000 -3.0000 0.0000 0.0000
0.125 -2.9599 0.0245 0.0010
0.250 -2.8397 0.0978 0.0041
0.375 -2.6393 0.2201 0.0092
0.500 -2.3587 0.3913 0.0163
0.625 -1.9980 0.6114 0.0255
0.750 -1.5571 0.8804 0.0367
0.875 -1.0360 1.1984 0.0499
1.000 -0.4348 1.5652 0.0652

with l2+m2 = 1. The root x4 corresponds to the explicit solution (66). The
root x3 is a second real, negative root. As Table 3 shows, it corresponds to
a genuine surface wave.

In summary, surface wave solutions to the IBVP (54)–(55) can be written
in the form[

u
v

]
=

{
R

[
iγα
l

]
e−γαx + S

[
−l
iγβ

]
e−γβx

}
ei(ly+mz−ω0t).

Here, γα and γβ are given by (65), the surface-wave frequency ω0 satisfies

(
ηl2 + γm2 − ω2

0

)2 − η2l2

√
l2 +

γm2 − ω2
0

α

√
l2 +

γm2 − ω2
0

β
= 0,

and R, S satisfy (58). This solutions represents a genuine surface wave whose
phase velocity along the boundary is at an angle φ = tan−1(m/l) to n0 =
(0, 0, 1). General solutions may be obtained by Fourier-superposition of these
solutions.

8.3. Weakly nonlinear surface waves

Asymptotic equations for weakly nonlinear surface wave solutions may de-
rived following the procedure for the model problem. The algebra involved
in a direct multiple-scale expansion is prohibitively complicated, but one can
derive the equation by expanding the Hamiltonian or Lagrangian. Austria
[5] gives details for the expansion of the Lagrangian. In this paper, we simply
report the result.
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Let ε > 0 be a small dimensionless parameter. We introduce a “slow”

time variable τ = εt and a “fast” phase variable

θ = ly +mz − ω0t,

where (l,m) ∈ R2 is a fixed nonzero vector, ω0 satisfies (64), and γα, γβ > 0

are given in (65). The asymptotic solution has an expansion as ε → 0 of the

form

n(x, θ, τ ; ε) = n0 + εn1(x, θ, τ) +O(ε2)(67)

where n0 = (0, 0, 1), and

n1(x, θ, τ) = (u(x, θ, τ), v(x, θ, τ), 0) .(68)

The first-order term (u, v) is the linearized surface wave solution

[
u
v

]
=

∫
R

â(ρ, τ)

{
R(ρ)

[
i sgn(ρ)γα

l

]
e−γα|ρ|x

+ S(ρ)

[
l

−i sgn(ρ)γβ

]
e−γβ |ρ|x

}
eiρθ dρ,

(69)

where we represent the solution as a Fourier integral with respect to ρ, and

R(ρ) = ηl2 + γm2 − ω2
0, S(ρ) = −i sgn(ρ)lηγα.

Expanding the surface-wave Lagrangian up to cubic terms in â, one finds

that the corresponding Euler-Lagrange equation for â(ρ, τ) has the form

(70) âτ (ρ, τ) + i sgn(ρ)

∫
R

Λ (−ρ, ρ− ξ, ξ) â(ρ− ξ)â(ξ) dξ = 0.

The kernel Λ(k1, k2, k3) in (70) is given on k1 + k2 + k3 = 0 by

Λ(k1, k2, k3) =
Γ0(k1, k2, k3)

|k1|+ |k2|+ |k3|

+
sgn(k2k3)Γ1(k1, k2, k3)

γα|k1|+ γβ(|k2|+ |k3|)
+

sgn(k1k3)Γ1(k2, k1, k3)

γα|k2|+ γβ(|k1|+ |k3|)

+
sgn(k1k2)Γ1(k3, k2, k1)

γα|k3|+ γβ(|k1|+ |k2|)
(71)
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+
sgn(k1)Γ2(k1, k2, k3)

γα(|k2|+ |k3|) + γβ|k1|
+

sgn(k2)Γ2(k2, k1, k3)

γα(|k1|+ |k3|) + γβ|k2|

+
sgn(k3)Γ2(k3, k2, k1)

γα(|k1|+ |k2|) + γβ|k3|
,

where Γ0, Γ1, Γ2 are given by

Γ0(k1, k2, k3)

= c1(γ − β)
(
l2 − γ2β

) [(
k21 + k22 + k23

)
− (|k1|+ |k2|+ |k3|)2

]
− c1(γ − β)

(
l2 − γ2β

)
(k1|k1|+ k2|k2|+ k3|k3|) sgn(k1k2k3)

− c2(η − α)
(
l2 − γ2α

)
γ2α (k1|k1|+ k2|k2|+ k3|k3|) sgn(k1k2k3)

+ c2(η − α)
(
l2 − γ2α

)
l2
(
k21 + k22 + k23

)
− c1(γ − η)γ2β (|k1|+ |k2|+ |k3|)2

+ c2(γ − η)γ2αl
2 (|k1|+ |k2|+ |k3|)2 ,

(72)

Γ1(k1, k2, k3)

= c3(γ − β)
(
l2 − γ2β

) (
l2 − sgn(k1k2)γαγβ

) (
k21 − k22

)
+ c3(γ − β)

(
l2 − γ2β

) (
l2 − sgn(k1k3)γαγβ

) (
k21 − k23

)
− c3(η − α)

(
l2 − γ2α

) (
l2 − sgn(k2k3)γ

2
β

)
k21

− c3(γ − η)l2 (sgn(k1)γα − sgn(k3)γβ) (γα|k1|+ γβ(|k2|+ |k3|)) k2
− c3(γ − η)l2 (sgn(k1)γα − sgn(k2)γβ) (γα|k1|+ γβ(|k2|+ |k3|)) k3
− c3(γ − η)

(
l2 − sgn(k2k3)γ

2
β

) (
γαγβ(|k1k2|+ |k1k3|) + l2k21

)
,

(73)

Γ2(k1, k2, k3)

= c4(γ − β)
(
l2 − γ2β

)
γα (sgn(k3)− sgn(k2))

(
k23 − k22

)
− c4(η − α)

(
l2 − γ2α

)
(sgn(k1)γβ − sgn(k3)γα) k

2
2

− c4(η − α)
(
l2 − γ2α

)
(sgn(k1)γβ − sgn(k2)γα) k

2
3(74)

− c4(γ − η) (sgn(k1)γβ − sgn(k3)γα)
(
γ2α|k2k3|+ γαγβ |k1k2|+ l2k22

)
− c4(γ − η) (sgn(k1)γβ − sgn(k2)γα)

(
γ2α|k2k3|+ γαγβ |k1k3|+ l2k23

)
− c4(γ − η)

(
l2 − sgn(k2k3)γ

2
α

)
(γα(|k2|+ |k3|) + γβ |k1|) k1.

The constants are given by

c1 = γα

[
m (ηlγα)

2 ηl2

4E0

]
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c2 =
γβ
γ2α

[
m (ηlγα)

2

4E0

] (
ηl2 + γm2 − ω2

0

)

c3 =

[
m (ηlγα)

2

4E0

] (
ηl2 + γm2 − ω2

0

)

c4 = γβ

[
m (ηlγα)

2 ηl2

4E0

]
,

where

E0 =

(
l2 + γ2α
2γα

)
|R|2 +

(
l2 + γ2β
2γβ

)
|S|2 − il [RS∗ −R∗S] .

We note that for the surface wave solution (66), we get

Γ0(k1, k2, k3) = (γ − η)l2(c2l
2 − c1) (|k1|+ |k2|+ |k3|)2 ,

sgn(k2k3)Γ1(k1, k2, k3) = (γ − η)l2(c3l) (|k1|+ |k2|+ |k3|)2 ,
sgn(k1)Γ2(k1, k2, k3) = (γ − η)l2(c4) (|k1|+ |k2|+ |k3|)2 ,

and 3(c3l− c4) + c2l
2 − c1 = 0. Thus, Λ(k1, k2, k3) = 0 for all k1, k2, k3 with

k1 + k2 + k3 = 0, so the quadratically nonlinear effects drop out, and one
would have to include higher-order terms in the expansion (67) to determine
the nonlinear behavior of these surface waves.

If ω2
0 	= γm2, then the asymptotic equation is typically nontrivial, and

we get a qualitatively similar kernel to the one we obtained for the model
equation.

Appendix

In this Appendix, we briefly describe the derivation of the multiple-scale
solution (23) of (9)–(10) for a weakly nonlinear surface wave. Further details
of the computations are given in [5].

We introduce multiple-scale variables θ = y − λt, x, τ = εt and expand
partial derivatives with respect to x, y, t as

∂x = ∂x, ∂y = ∂θ, ∂t = −λ∂θ + ε∂τ .

We use these expansions and (22)–(23) in (9)–(10) and equate coefficients
of ε and ε2 to zero in the resulting equations.
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At the order ε, we find that (u1, v1) satisfies

(α2
0 − λ2)u1θθ + α2

0u1xx = 0, (β2
0 − λ2)v1θθ + β2

0v1xx = 0(75)

in x > 0, with the boundary condition

(76) α2
0u1x − ηv1θ = 0, β2

0v1x + ηu1θ = 0

on x = 0. The slow time τ occurs as a parameter in these equations.
At the order ε2, we find that (u2, v2) satisfies

(α2
0 − λ2)u2θθ + α2

0u2xx = −2λu1θτ

+ α0α1

[
u21x − (u21)xx + u21θ − (u21)θθ

]
(β2

0 − λ2)v2θθ + β2
0v2xx = −2λv1θτ

+ β0β1
[
v21x − (v21)xx + v21θ − (v21)θθ

]
(77)

in x > 0, with the boundary condition

α2
0u2x − ηv2θ = −α0α1(u

2
1)x,

β2
0v2x + ηu2θ = −β0β1(v

2
1)x

(78)

on x = 0.
The Fourier-Laplace solution of the leading-order equations (75)–(76)

has the form

(79)

[
u1
v1

]
(x, θ, τ) =

∫
R

â(k, τ)

[
R(k)e−γα|k|x

S(k)e−γβ |k|x

]
eikθ dk,

where â(−k, τ) = â∗(−k, τ). This expression satisfies (75) if

γα =

√
1− λ2

α2
0

, γβ =

√
1− λ2

β2
0

,

and it satisfies (76) if

(80)

[
−α2

0γα|k| −iηk
iηk −β2

0γβ |k|

] [
R(k)
S(k)

]
=

[
0
0

]
.

Equation (80) has a nontrivial solution for (R,S) if α2
0β

2
0γαγβ = η2, which

implies that
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λ2 =
1

2

{
α2
0 + β2

0 ±
√

(α2
0 − β2

0)
2 +

4η4

α2
0β

2
0

}
.

We choose the negative sign, as in (27), in which case γα and γβ are real

and positive for α0β0 > |η|. We also take R = η and S = i sgn(k)α2
0γα.

Next, using the Fourier-Laplace transform, we solve the non-homoge-

neous system of PDEs (77) for (u2, v2), where (u1, v1) is given by (79). After

some algebra, we find that

u2 =

∫
R

[
R0(k) + i sgn(k)

η

α2
0γα

λâτ (k, τ)x

]
eikθ−γα|k|x dk

+

∫∫
U1

R1(k, l)â(k, τ)â(l, τ)xe
i(k+l)θ−γα(|k|+|l|)x dkdl

+

∫∫
U2

R2(k, l)â(k, τ)â(l, τ)e
i(k+l)θ−γα(|k|+|l|)x dkdl,

v2 =

∫
R

[
S0(k)−

α2
0γα

β2
0γβ

λâτ (k, τ)x

]
eikθ−γβ |k|x dk

+

∫∫
U1

S1(k, l)â(k, τ)â(l, τ)xe
i(k+l)θ−γβ(|k|+|l|)x dkdl

+

∫∫
U2

S2(k, l)â(k, τ)â(l, τ)e
i(k+l)θ−γβ(|k|+|l|)x dkdl,

(81)

where U1 = {(l, k) ∈ R2 : sgn k = sgn l}, U2 = {(k, l) ∈ R2 : sgn k 	= sgn l},

R1(k, l)=
α0α1η

2[γ2α((|k|+ |l|)2− |k||l|)− ((k+ l)2− kl)]

2α2
0γα(|k|+ |l|)

R2(k, l)=−α0α1η
2[γ2α((|k|+ |l|)2− |k||l|)− ((k+ l)2− kl)]

α2
0γ

2
α[(|k|+ |1|)2− (k+ l)2]

S1(k, l)=−
β0β1(α

2
0γα)

2 sgn(k) sgn(l)[γ2β((|k|+ |l|)2− |k||l|)− ((k+ l)2− kl)]

2β2
0γβ(|k|+ |l|)

S2(k, l)=
β0β1(α

2
0γα)

2 sgn(k) sgn(l)[γ2β((|k|+ |l|)2− |k||l|)− ((k+ l)2− kl)]

β2
0γ

2
β [(|k|+ |l|)2− (k+ l)2]

,

and R0(k), S0(k) are arbitrary functions of integration.

Using (79) and (81) in the second-order boundary condition (78) and

simplifying the result, we get a singular linear system of equations for
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(R0, S0) of the form

(82)

[
−α2

0γα|k| −iηk
iηk −β2

0γβ |k|

] [
R0(k)
S0(k)

]
=

[
F1

F2

]
,

where

F1 = −i sgn(k)ηλâτ (k, τ) +

∫ ∞

−∞
Γ1(k − l, l)â(k − l, τ)â(l, τ) dl

F2 =
α2
0γα
γβ

λâτ (k, τ) +

∫ ∞

−∞
Γ2(k − l, l)â(k − l, τ)â(l, τ) dl.

(83)

The kernels Γi(k − l, l) in Fi are given by

Γ1(k − l, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P2(k − l, l), if k > 0 and −∞ < l < 0
P1(k − l, l), if k > 0 and 0 < l < k
P2(k − l, l), if k > 0 and k < l < +∞
P2(k − l, l), if k < 0 and −∞ < l < k
P1(k − l, l), if k < 0 and k < l < 0
P2(k − l, l), if k < 0 and 0 < l < +∞

and

Γ2(k − l, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q2(k − l, l), if k > 0 and −∞ < l < 0
Q1(k − l, l), if k > 0 and 0 < l < k
Q2(k − l, l), if k > 0 and k < l < +∞
Q2(k − l, l), if k < 0 and −∞ < l < k
Q1(k − l, l), if k < 0 and k < l < 0
Q2(k − l, l), if k < 0 and 0 < l < +∞

where

P1(k, l) =
α0α1γαη

2

2

[
(|k|+ |l|)2 + |k||l|+ (k + l)2 − kl

γ2α

]
1

|k|+ |l|

P2(k, l) =
α0α1γαη

2

2

[
|k||l| − (k + l)2 +

(k + l)2 − kl

γ2α

]
|k|+ |l|
|k||l| − kl

+ i
β1(α

2
0γα)

2η

2β0

[
(|k|+ |l|)2 − |k||l| − (k + l)2 − kl

γ2β

]

× (k + l) sgn(k) sgn(k)

|k||l| − kl
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and

Q1(k, l)=−β0β1γβ(α
2
0γα)

2

2

[
(|k|+ |l|)2 + |k||l|+ (k + l)2 − kl

γ2β

]
sgn(k) sgn(l)

|k|+ |l|

Q2(k, l)=−β0β1γβ(α
2
0γα)

2

2

[
|k||l| − (k + l)2 +

(k + l)2 − kl

γ2β

]

× (|k|+ |l|) sgn(k) sgn(l)
|k||l| − kl

+ i
α1η

3

2α0

[
(|k|+ |l|)2 − |k||l| − (k + l)2 − kl

γ2α

]
(k + l)

|k||l| − kl
.

The solvability condition for (82) is

ηF1 − i sgn(k)α2
0γαF2 = 0.

Using (83) in this condition and simplifying the result, we get an equation
for â(k, τ), which may be written as

âτ (k, τ) + i sgn(k)

∫ +∞

−∞
Λ(−k, k − l, l)â(k − l, τ)â(l, τ) dl = 0,

where

Λ(−k, k−l, l) =
γαγβη

2

λ(α2
0γ

2
α + β2

0γ
2
β)

[
1

α2
0γαη

Γ1(k − l, l)− i sgn(k)

η2
Γ2(k − l, l)

]
.

Finally, by considering the possible signs of −k, k − l, l one can verify
that this expression for Λ(−k, k − l, l) agrees with the expression given in
(12) for Λ(k1, k2, k3) on k1 + k2 + k3 = 0.
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