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Underactuated control in parallel transported
directions: the example of the three dimensional

Heisenberg group

Lance Drager, Jack L. Follis, and Jeffrey M. Lee

The authors consider a natural reachability problem on a Rieman-
nian manifold. Given an initial point on a manifold together with
an initial subspace of the tangent space at that point, consider
piecewise smooth curves such that the velocity at each point along
the curve is tangent to the parallel translation of the given initial
subspace. The problem is to determine or characterize the set of
points reachable by such curves. The authors show that the prob-
lem can be formulated in terms of the standard control theory
machinery of singular distributions and vector fields by lifting to
the frame bundle. It is shown that if the initial velocity subspace is
tangent to a totally geodesic submanifold, then the reachable set
is contained in that submanifold. Thus our problem makes contact
with the existence and uniqueness problem for totally geodesic sub-
manifolds.

In the absence of a general result along these lines, it is natural
to consider special cases. The authors consider the case where M is
the three dimensional Heisenberg group. We show that in this ex-
ample, all points are reachable and further, the final configuration
of the subspace carried along can be specified as well. This stronger
result will be expressed in terms of the orthonormal frame bundle.

1. Introduction

In this paper we consider a problem in control theory which is geometrically

natural and is connected with geometric problems such as the existence of

totally geodesic submanifolds (See [5] and [4]). After proving a few general

results, we will work out the problem in the example of the three dimen-

sional Heisenberg group with a left invariant metric. By working through

this special case we wish to show that our formulation of this problem in

terms of the theory of generalized tangent distributions is both theoretically

natural and computationally feasible.

301

http://www.intlpress.com/CIS/


302 Lance Drager et al.

Our problem can be formulated on a manifold with an arbitrary con-
nection, but our example is not so general. For the general problem, let M
be a complete Riemannian manifold of dimension m > 1. Suppose we are
at the point p in M and we are flying some sort of craft that has controls
on velocity that act in less than m dimensions. Thus, our initial velocity
vector would be confined to a subspace V0 ⊆ TpM of dimension k < m.
As we move through M , how do the directions in which we have control
evolve? A natural assumption is that they evolve inertially, i.e., by parallel
translation. The question is: which points of M can we reach?

To formulate the problem more precisely, given a point p in M and a
subspace V0 ⊆ TpM , we say a smooth curve γ : [a, b] → M is admissible
for the initial data (p, V0) if γ(a) = p and γ′(t) ∈ Vt for all t, where Vt is
the parallel translation of V0 to γ(t) along the curve γ. We can extend the
definition to piecewise smooth curves by requiring this condition on each
subinterval where the curve is smooth.

There is another interesting formulation. Let u0 = (u01, u
0
2, . . . , u

0
k, u

0
k+1,

. . . , u0m) be an orthonormal frame (i.e., basis) for TpM so that
V0 = span(u01, . . . , u

0
k). Then a smooth curve γ is admissible if and only

if there are real-valued functions f1, f2, . . . , fk so that

γ′(t) =
k∑

i=1

f i(t)ui(t),

where ui(t) is the parallel translation of the vector u0i along γ. As we will
see below, the functions f i can be thought of as controls.

Given the initial data (p, V0), we say a point q ∈ M is reachable for
this initial data if there is a piecewise smooth curve γ : [a, b] → M that is
admissible for (p, V0) such that γ(a) = p and γ(b) = q. The set of points
that are reachable with initial data (p, V0) will be denoted by R(p, V0).

A couple of simple examples are evident. If V0 has dimension 1, a smooth
admissible curve must be a reparametrization of a geodesic, and the image
of the geodesic is a one dimensional totally geodesic immersed submanifold,
so our problem is a generalization of the geodesic problem.

If M is m-dimensional Euclidean space, the reachable set is the affine
subspace p + V0 determined by the initial data. More generally, if M is a
space of constant curvature, there is a totally geodesic submanifold N so
that TpN = V0, and the reachable set is N [3, Chap. III, Lemma 1.1].

We will prove below that if N is a complete totally geodesic submanifold
of M so that V0 ⊆ TpN ⊆ TpM , then an admissible curve must stay in N ,
so R(p, V0) ⊆ N .
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Inspired by [15], [14] and [4] one might conjecture that R(p, V0) is the
smallest complete totally geodesic immersed submanifold N of M such that
V0 ⊆ TpN . For an example where the reachable set is immersed but not
imbedded, consider a line of irrational slope on a flat torus, which is a
geodesic and a dense immersed submanifold. As far as we know, this conjec-
ture might be true if we work locally. Globally, things must be more com-
plicated. After all, a special case is the image of a geodesic and geodesics
can cross themselves (consider a cone). In the higher dimensional case there
may be more complex self intersection and perhaps singularities. The source
of these phenomena and an approach to analyze them will be clearer below.
Of course, none of these phenomena occur in the current example.

In our example, we take the ambient manifold M to be the three di-
mensional Heisenberg group H3. We choose this space because it is easy to
visualize, it does not have constant curvature, it is an important example
in the related area of subriemannian geometry, and because everything can
be explicitly calculated.

We will show that the reachable set R(p, V0) is all of H3 for arbitrary
initial data with dim(V0) = 2.

We will also consider, not just the reachable points in M but also ask
about the final result of parallel translating the initial velocity subspace.
Indeed, it is natural to ask for even more. If we are given a frame for the
tangent space at the initial point whose first k members span the initial ve-
locity subspace, then we parallel translate the frame along admissible curves
and ask about the possible final frame at the endpoint. Thus we are led to
ask for a reachable set on the level of the orthonormal frame bundle. If we
adopt the imagery of a craft moving through the manifold and to which
the parallel translated initial velocity subspace is rigidly fixed, then we are
asking about the possibility of arriving with the craft in any prescribed
attitude.

2. Lifting the problem to the frame bundle

As stated, our problem is not phrased in terms vector fields and distribu-
tions, the usual apparatus for nonlinear control theory. We can rephrase the
problem in this form if we lift the problem to the bundle of orthonormal
frames. We very briefly recall the apparatus of connections on frame bun-
dles, mostly to fix our conventions and notation. Some standard references
are [6, 10].

Let M be our complete Riemannian manifold. An orthonormal frame for
the tangent space TpM is just an orthonormal basis u = (u1, . . . , um) of this
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inner product space. We will identify the frame u with the linear isometry
R
m → TpM that sends the i-th standard basis vector ei to ui. Let Fp(M)

denote the set of orthonormal frames of TpM . The orthogonal group O(m)
of orthogonal m×m matrices acts on Fp(M) on the right. If u ∈ Fp(M) and
g ∈ O(m), then u · g can be thought of as the composition of u : Rm → TpM
and the map R

m → R
m given by multiplication by g or, alternatively as the

row vector [u1, . . . , um] multiplied by the matrix g.
Let F (M) be the union of the sets Fp(M) for p ∈ M . There is a projec-

tion π : F (M) → M given by π(Fp(M)) = p. The fibration π : F (M) → M
is a principal fiber bundle with structure group O(m).

If u ∈ F (M), the tangent space at u of the fiber through u is the vertical
space at u, denoted by Vu. It can also be described as the kernel of Tπ =
π∗ : TuF (M) → Tπ(u)M . There is a linear isomophism A �→ Vu(A) from the
Lie algebra so(m) to Vu, defined by

Vu(A) =
d

dt
u · exp(tA)

∣∣∣∣
t=0

.

On F (M), we have an R
m-valued one-form θ̃, called the solder form.

The map θ̃u : TuF (M) → R
m is defined by

θ̃u(X) = u−1[π∗(X)].

In other words, we project X to the base with π∗, and then take the com-
ponents of this element of Tπ(u)M with respect to the frame u. The solder
form has the group invariance property

R∗
g θ̃ = g−1θ̃,

where Rg : F (M) → F (M) : u �→ u · g is right multiplication by g ∈ O(m).
The Levi-Civita connection defined by the Riemannian metric can be

described by its connection one form ω̃ on F (M). This form takes values in
the Lie Algebra so(m). It has the following action on the vertical spaces

ω̃(Vu(A)) = A,

and the group invariance property

R∗
gω̃ = Ad(g−1)ω̃, g ∈ O(m).

Since we are dealing with a matrix group, the map Ad(g) : so(m) → so(m)
is just conjugation A �→ gAg−1.
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The kernel of the mapping ω̃u : TuF (M) → so(m) is denoted by Hu

and is called the horizontal subspace at u. For each u, we have TuF (M) =
Hu ⊕ Vu. Thus, π∗ maps Hu bijectively to Tπ(u)M .

Let γ : [a, b] → M be a smooth curve, let p = γ(a) and let u0 ∈ Fp(M).
Then there is a unique horizontal lift γ̃ of γ starting at u0. In other words,
there is a unique curve γ̃ such that π ◦ γ̃ = γ, γ̃(a) = u0 and γ̃′(t) ∈ Hγ̃(t).
Thought of as a frame, γ̃(t) is the frame for Tγ(t)M obtained by parallel
translation of the frame u0.

We will also need to use the basic horizontal vector fields. Given ξ ∈ R
m,

there is a unique vector field H(ξ) on F (M), the basic horizontal vector field
for ξ, that satisfies the conditions

1. ω̃(H(ξ)) = 0.

2. θ̃(H(ξ)) = ξ.

The first condition just says H(ξ) is horizontal. The second condition
means that u−1[π∗Hu(ξ)] = ξ, so Hu(ξ) is the vector in Hu that projects to
the vector u(ξ) ∈ Tπ(u)M . Thus, the map R

m → Hu : ξ �→ Hu(ξ) is a linear
isomophism. If we let Hi denote H(ei), we have

Hu(ξ) =

m∑
i=1

ξiHi u

We now apply this machinery to our problem. We first consider the
problem of control in parallel translated directions.

Theorem 1. Let p be a point in M and let u0 be a frame for TpM . Then,
given smooth functions f1, . . . , fm : [a, b] → R, there is a unique curve
γ : [a, b] → M such that γ(a) = p and

(1) γ′(t) =
m∑
i=1

f i(t)ui(t),

where ui(t) is the parallel translation of u0i along γ.

Proof. Let f be the R
m-valued function f(t) = (f1(t), . . . , fm(t)). Suppose

that the curve in the Proposition exists. Let γ̃ be the horizontal lift of γ
starting at u0. Thought of as a frame, γ̃(t) = u(t) = (u1(t), . . . , um(t)), the
parallel transport of u0 along γ. From (1),

π∗γ̃
′(t) = γ′(t) =

m∑
i=1

f i(t)ui(t) = u(t)(f(t)),

so θ̃(γ̃′(t)) = f(t). Thus, γ̃′(t) = Hγ̃(t)(f(t)).
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We can define a time dependent vector field on F (M) by (u, t) �→
Hu(f(t)). Our calculation shows that γ̃ is the unique integral curve of this
vector field with initial value u0 at t = a. Conversely, given the initial data
p and u0, we can take γ̃ to be the integral curve of H(f(t)) with initial
value u0 at t = a, and then γ = π ◦ γ̃ will be the curve that satisfies (1).
The existence of this integral curve over the entire time interval [a, b] follows
from a simple compactness argument.

We can now prove our theorem about totally geodesic submanifolds.

Theorem 2. Let M be a complete Riemannian manifold, let p be a point
in M and let V0 ⊆ TpM be a subspace. Suppose that N ⊆ M is a complete
immersed totally geodesic submanifold of M containing p such that V0 ⊆
TpN ⊆ TpM . Then any admissible curve for the initial data (p, V0) stays in
N . Thus, R(p, V0) ⊆ N .

Proof. Let n = dim(N) and k = dim(V0). Choose a frame u0 = (u01, . . . , u
0
m)

such that V0 = span(u01, . . . , u
0
k) and TpN = span(u01, . . . u

0
n).

If γ is an admissible curve for initial data (p, V0), we can write

γ′(t) =
k∑

i=1

f i(t)ui(t)

for some functions f i, where ui(t) is the parallel translate of u0i along γ(t)
with respect to the connection on M .

On the other hand, considering the problem in N , we can use the initial
data p and the frame (u01, . . . , u

0
n), and the control functions f i to construct

a curve γ̄ in N such that

(2) γ̄′(t) =
k∑

i=1

f i(t)ūi(t),

where ūi(t) is the parallel translate of u0i along γ̄ with respect to the in-
duced connection on N . But, N is totally geodesic, so parallel translation of
vectors tangent to N along a curve in N is the same with respect to both
connections. Thus, we can rewrite (2) as

γ̄′(t) =
k∑

i=1

f i(t)ui(t),

where the ui’s are the parallel transports inM . By the uniqueness part of the
last theorem, γ = γ̄, so γ is contained in N .
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3. Distributions, brackets and reachable sets

We can use the frame bundle machinery to reduce our problem to finding the
set of points reachable by curves tangent to a distribution. This machinery
is familiar in control theory, but may be new to some, so we include a
brief discussion. It should be mentioned that we are considering singular
distributions in that the dimension need not be locally constant. The basic
results go back to Chow [1] and Nagano [9] and were later generalized by
Sussmann [12] and Stefan [11]. A good modern exposition is given in [8,
Section 3].

Let N be any smooth manifold. A distribution is a function p �→ Ep that
assigns to each p ∈ N a subspace Ep ⊆ TpN whose dimension may vary with
p.

Let Xloc be the set of smooth vector fields whose domains are open
subsets of N . Given W ⊆ Xloc, we can define a distribution E(W) by

Ep(W) = span{Xp | X ∈ W , p ∈ dom(X)}.

A distribution is smooth if it is spanned locally by smooth vector fields,
i.e., if it is E(W) for some set W of local vector fields. We say a locally
defined vector field X belongs to E if Xp ∈ Ep for all p in the domain of X.

We mention in passing that it has recently been shown in [2] and [13]
that for any such smooth singular distribution E(W), there is a finite family
W0 of smooth globally defined vector fields such that E(W)=E(W0). Thus,
in a limited sense, every singular distribution is finitely generated. However,
it should be noted that space of smooth sections of such distributions need
not be finitely generated as a module over the ring of smooth functions.

A distribution E is integrable if each point of N is contained in an
integral manifold of E, i.e., for every p ∈ N there is an immersed submanifold
S so that S � p and TqS = Eq for all q ∈ S. It follows that each point
is contained in a maximal connected integral submanifold. These maximal
integral manifolds partition N , and form the leaves of a singular foliation
of N . This means that for each leaf L and each point p in L, we can find a
coordinate chart (U, x) centered at p so that each component of L ∩ U is a
coordinate slice. There are countably many such components. In particular,
such a submanifold is weakly imbedded [7].

Let E = E(W) be a smooth distribution. We say that a smooth curve
γ : [a, b] → N is admissible with respect to E if γ′(t) ∈ Eγ(t) for all t ∈ [a, b].
We may say that γ is tangent to the distribution E. This definition extends
to piecewise smooth curves by requiring it to hold on each smooth piece. Let
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Figure 1: Line of reachable points but not an admissible curve.

p be a point in N . We say that a point q ∈ N is reachable from p if there
is an admissible curve γ : [a, b] → N so that γ(a) = p and γ(b) = q. Given p,
we want to determine the set of points that are reachable from p. One way
to get admissible curves is to follow (forwards or backwards) integral curves
of the vector fields that belong to the distribution. For a vector field Z, let
{ΦZ

t } be the flow of of Z.
One should distinguish carefully between the problem of finding the

reachable set and the problem of finding a specific admissible curve between
two specified points. The latter problem goes under the name of motion
planning, which we do not enter into here.

To get an idea of what is going on, let us consider a simple example. Let
the manifold N be R2 with coordinates (x, y). Let Y be the globally defined
vector field Y = ∂/∂y. Let U be the open lower half-plane, and let X be the
vector field ∂/∂x restricted to U . Let W = {X,Y } and E = E(W). Thus,
Ep has dimension 1 for p in the closed upper half-plane and dimension 2
for p in the open lower half plane. The distribution is not integrable. For
example, an integral manifold through the origin would have to be both one
dimensional and two dimensional.

Let p = (−1, 1) and q = (1, 1). We claim that q is reachable from p.
To construct an admissible curve, follow the integral curve of Y through
(−1, 1) backwards for two units of time to reach (−1,−1). From (−1,−1)
follow the integral curve of X forward for two units of time to reach (1,−1).
Now follow the integral curve of Y forward for two units of time to reach
q = (1, 1). To put it another way, q = ΦY

2 Φ
X
2 ΦY

−2(p). See Figure 1. By an
obvious generalization of this construction, we see that all points in the plane
can be reached from p!

Define a curve γ(t) = ΦY
2 Φ

X
t ΦY

−2(p) (the dotted line in the figure). Then
γ(0) = p and γ(2) = q. By our construction, all of the points γ(t) are
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reachable, even though γ itself is not an admissible curve. Thus, γ is a curve
in the reachable set. If we believe that the reachable set is some kind of
submanifold, then γ′(0) must be tangent to it (so the reachable set must be
two dimensional). Clearly we could not see this from local information at p.
The vector γ′(0) is, by definition, the value at p of the vector field

(
ΦY
−2

)∗
X,

the pullback of X by the flow of Y .
This example hints at the general approach. We can not, in general,

determine the reachable set from local information (such as differentiation).
To find directions tangent to the reachable set, we should consider pullbacks
of vector fields tangent to the distribution at other points.

The general construction goes as follows. Let E = E(W) be a smooth
distribution. A set V of locally defined vector fields is stable if whenever X
and Y belong to V and

(
ΦX
t

)∗
Y is defined on a nonempty open set, it belongs

to V. Let S(W) denote the smallest stable set of vector fields containing W .
Let E∗ = E(S(W)), which can also be described as the smallest distribution
containing E (i.e., Ep ⊆ E∗

p for all p) that is invariant under the flows of the
vector fields in W .

The main result in this setting is the following. The distribution E∗ is
integrable, and is the smallest integrable distribution containing E. (Note
that even if E has constant dimension, E∗ may not.) Fix a point p ∈ N . The
set of points that can be reached from p by (piecewise) smooth curves that
are tangent to E is precisely the leaf L(p) of the singular foliation determined
by of E∗ that contains p. If E∗

q = TqN for all q, the leaf is N itself, and all
points can be reached from p.

Of course, E∗ is generally difficult to compute. A standard approach in
control theory is to consider brackets of vector fields which belong to E,
which can be computed by differentiation. These arise if we differentiate
pullback vector fields with respect to the t-parameter, but we can get the
idea from the usual commutator picture of the bracket. Suppose that X and
Y are vector fields that belong to E and that p is a point. Define a curve
by α(t) = ΦY

−tΦ
X
−tΦ

Y
t Φ

X
t (p), (see Figure 2). Again, each of the points α(t) is

reachable from p, even though α is not itself an admissible curve. Thus, α lies
in L(p). As described in any introductory differential geometry book (See [7]
page 107–108), α′(0) = 0, so α′′(0) can be considered to be a tangent vector.
Since α lies in the submanifold L(p), α′′(0) ∈ TpL(p). But, α

′′(0) = 2[X,Y ]p.
Thus, [X,Y ]p is tangent to L(p). If we are using two vector fields that we
already know are tangent to the reachable set, the points on α will all be
reachable, so the bracket will again be tangent to the reachable set.

Thus, we can find some additional directions tangent to the leaves of
the foliation by taking brackets. As our example above shows, we will not
in general get enough directions to find E∗.
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Figure 2: Commutator of Flows.

A distribution F is involutive if the bracket of any two vector fields
belonging to F belongs to F (the bracket of two locally defined vector fields
is defined on the intersection of the domains). Our example above shows
that an involutive singular distribution need not be integrable. A set V of
vector fields is involutive if the bracket of any two vector fields in V is
again in V

If E = E(W), let L(W) be the smallest set of vector fields containing
W that is closed under taking brackets. Then E ⊆ E(L(W)) and E(L(W))
is the smallest involutive distribution containing E. In general we have

E = E(W) ⊆ E(L(W)) ⊆ E(S(W)) = E∗,

and the inclusions may be strict. The following standard theorem tells use
when it will suffice to compute brackets. See [8].

Proposition 3. Consider distributions on a manifold N .

(1) If V is an involutive set of vector fields then E(V) is integrable if and
only if the dimension of E(V) is constant along the integral curves of
the vector fields in V.

(2) If N is real analytic and the involutive set V consists of globally defined
analytic vector fields, then E(V) is integrable.

(3) If E = E(W), then E(L(W)) = E∗ if and only if E(L(W)) is inte-
grable.

(4) In particular, if E(L(W))p = TpN at all points p, then the reachable
set for any point is the whole manifold N .

Note that the first statement also implies the standard Frobenius The-
orem.

To apply this machinery to our problem, let M be a complete Rieman-
nian manifold of dimension m, let p be a point in M and let V0 ⊆ TpM be a
subspace of dimension k. Choose a frame u0 so that V0 = span(u01, . . . , u

0
k).
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Let E be the distribution on F (M) spanned by the basic horizontal
vector fields H1, . . . , Hk.

Lemma 4. A curve γ : [a, b] → M with γ(a) = p is admissible for the initial
data (p, V0) if and only if the horizontal lift γ̃ of γ with γ̃(a) = u0 is tangent
to the distribution E.

Proof. If γ is admissible, there are functions f1, . . . , fk so that

(3) γ′(t) =
k∑

i=1

f i(t)ui(t),

where u(t) = γ̃(t) is the parallel transport of u0 along γ. Let f be the
R
m-valued function f(t) = (f1(t), . . . , fk(t), 0, . . . , 0).
As we saw above, (3) is equivalent to saying γ̃ is an integral curve of the

time dependent vector field H(f(t)). But then

(4) γ̃′(t) = Hu(t)(f(t)) =

m∑
i=1

f i(t)Hi u(t) =

k∑
i=1

f i(t)Hi u(t) ∈ E

since the last m−k components of f are zero. Conversely if γ̃ is the integral
curve of H(f(t)) starting at u0 at t = a, then (4) holds, so γ̃ is tangent to
E. Applying π∗ to γ̃′(t) shows that (3) holds, so γ is admissible.

Thus, we have the following procedure for finding the reachable set
R(p, V0). First, find the smallest integrable distribution E∗ on the frame
bundle that contains the distribution E spanned by H1, . . . , Hk. Given ini-
tial data (p, V0), choose a frame u0 adapted to the initial data, and then
find the maximal integral manifold S of E∗ that passes through u0. Then
R(p, V0) = π(S).

This shows the source of the self-crossings and possible singularities in
the reachable set. The leaf S itself is an immersed, weakly imbedded sub-
manifold of the frame bundle. If S crosses the fiber of the frame bundle
above q and then comes back later to cross it again, the reachable set will
have a self intersection. For example, the horizontal lift of a geodesic is an
integral curve of a basic horizontal vector field and so does not cross itself.
But the geodesic, the projection into the base, may cross itself. Since the
bracket of horizontal vector fields is vertical, Tπ will generally have a kernel
in TuS, so π|S will usually not be an immersion of S into M , thus there may
be singularities in π(S). To find out what happens, we need to study S and
its tangent spaces. Fortunately, none of these complexities arise in the case
of the three dimensional Heisenberg group.
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4. Computing in a global trivialization

In this section, we work out how to express the condition that a vector field

on the frame bundle of a parallelizable Riemannian manifold be horizontal in

terms of a trivialization given by a fixed global frame field. In our example,

there is a natural orientation, so we will work in the oriented frame bundle,

denoted by F (M) again.

Suppose that M is a smooth oriented Riemannian manifold of dimension

m whose oriented orthonormal frame bundle F (M) has a global smooth

section σ : M → F (M). In what follows, let G denote SO(m) and write

so(m) as g. We view G as the group of orthogonal matrices of determinant

1 whenever convenient. Then we have a diffeomorphism

Ψ : M ×G → F (M),

given by (p, g) �→ σ(p)g. This map is also a principal bundle isomophism if

we give M × G → M the product principal bundle structure. We want to

transfer all relevant structures to M ×G for computational convenience. In

particular, we effectively transfer the connection on F (M) to a connection

on M ×G.

Of course, the tangent space T(p,g)(M×G) can be identified with TpM⊕
TgG. For each Xp ∈ TpM , we define its lift X(p,g) ∈ T(p,g)(M × G). If c is

a curve in M with c′(0) = Xp then X(p,g) = c̃ ′(0) where c̃(t) = (c(t), g).

Similarly, for any Yg ∈ TgG we have the lift Y(p,g) ∈ T(p,g)(M × G). All

elements of T(p,g)(M×G) can be decomposed asX(p,g)+Y(p,g) for appropriate

Xp and Yg. We wish to discover the conditions for X(p,g) + Y(p,g) to be

horizontal. For this we push forward to F (M). In what follows, let μ : TG →
g be the right Maurer-Cartan form on G defined by μ(Yg) = (Rg−1)∗Yg where
Rg−1 : a �→ ag−1. Let us first compute Ψ∗X(p,g) where X(p,g) is the lift of

some Xp ∈ TpM . With c and c̃ as above, we have

Ψ∗X(p,g) =
d

dt
Ψ(c̃(t))

∣∣∣∣
t=0

=
d

dt
Ψ(c(t), g)

∣∣∣∣
t=0

=
d

dt
σ(c(t))g

∣∣∣∣
t=0

=
d

dt
(Rg ◦ σ ◦ c) (t)

∣∣∣∣
t=0

= Rg∗σ∗Xp.

Next let Y(p,g) be the lift of some Yg ∈ TgG. For γ a curve with γ′(0) = Yg,

we let γ̃ be given by γ̃(t) = (p, γ(t)) so that Y(p,g) = γ̃ ′(0). We can take γ
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to be γ(t) = exp(tμ(Yg))g. We have

Ψ∗ Y(p,g) =
d

dt
Ψ(p, etμ(Yg)g)

∣∣∣∣
t=0

=
d

dt
σ(p)etμ(Yg)g

∣∣∣∣
t=0

=
d

dt
Rg(σ(p)e

tμ(Yg))

∣∣∣∣
t=0

= (Rg)∗ V(μ(Yg))σ(p).

For any Y ∈ g, we have (Rg)∗V(Y )u = V(Ad(g−1)Y )ug. Indeed,

(Rg)∗ V(Y )u =
d

dt
Rg(ue

tY )

∣∣∣∣
t=0

=
d

dt
uetY g

∣∣∣∣
t=0

=
d

dt
ugg−1etY g

∣∣∣∣
t=0

=
d

dt
(ug) etAd(g−1)Y

∣∣∣∣
t=0

= V(Ad(g−1)Y )ug.

Thus

Ψ∗(Y(p,g)) = V(Ad(g−1)μ (Y ))Ψ(p,g).

We conclude that a typical vector in TuF (M), where u = Ψ(p, g), can be
expressed as

Rg∗σ∗ (Xp) + V(Ad(g−1)μ (Yg))Ψ(p,g).

Let ω̃ denote the Levi-Civita connection form on F (M) and θ̃ denote the
solder form.

In order to take advantage of our global trivialization, we compute Ψ∗ω̃
and Ψ∗θ̃. We use the decomposition discovered above. For Ψ∗θ̃, we first
note that for any Xp ∈ TpM we have σ(p)−1(Xp) = θ(Xp) where θ is the
column vector [θ1, . . . , θd]ᵀ of 1-forms dual to the frame field (X1, . . . , Xm)
determined by σ. We have(

Ψ∗θ̃
)
(X(p,g) + Y(p,g)) = θ̃

(
Rg∗σ∗ (Xp) + V(Ad(g−1)μ (Yg)

)
= g−1θ̃(σ∗ (Xp)) = g−1σ(p)−1 [π∗σ∗ (Xp)]

= g−1σ(p)−1 (Xp) = g−1θ (Xp) ,

where we have used the fact that θ̃ ◦ V ≡ 0.
The local Cartan connection form ω, in the gauge σ, is ω := σ∗ω̃. We

have

(Ψ∗ω̃) (X(p,g) + Y(p,g)) = ω̃ ((Rg)∗σ∗Xp) + ω̃
(
V(Ad(g−1) (μ(Yg))

)
.
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We also have

ω̃ ((Rg)∗σ∗Xp) = (Rg)
∗ω̃ (σ∗Xp) = Ad(g−1)ω̃ (σ∗Xp)

= Ad(g−1)σ∗ω̃ (Xp) = Ad(g−1)ω(Xp).

and

ω̃
(
V(Ad(g−1) (μ(Yg))

)
= Ad(g−1)μ(Yg).

Thus

(Ψ∗ω̃) (X(p,g) + Y(p,g)) = Ad(g−1)(ω(Xp) + μ(Yg)).

Now we see that X(p,g) + Y(p,g) is horizontal if and only if

(Ψ∗ω̃)(X(p,g) + Y(p,g)) = 0

⇐⇒ Ad(g−1)(ω(Xp) + μ(Yg)) = 0

⇐⇒ μ(Yg) = −ω(Xp)

⇐⇒ Yg = −R(ω(Xp))g,

where R(ω(Xp)) is the right invariant vector field onG determined by ω(Xp).
Lifting to the product M × G, it follows that Y(p,g) = −R(ω(Xp))(p,g). In
short, every horizontal vector on M ×G is of the form

X(p,g) −R(ω(Xp))(p,g).

Note that (Ψ∗θ̃)(X(p,g) − R(ω(Xp))(p,g)) = g−1θ(Xp), so in order that a
horizontal vector X(p,g) − R(ω(Xp))(p,g) correspond to the basic horizontal
vector field H(ξ), for ξ ∈ R

m, we must have g−1θ(Xp) = ξ, or θ(Xp) = gξ,
which is the same as Xp = σ(p)(gξ). Thus

H(ξ)(p,g) = (σ(p) (gξ))(p,g) −R(ω(σ(p) (gξ)))(p,g).

In terms of the frame fields Xi, we have

σ(p) (gξ) =
∑

Xi(p)(gξ)
i =

∑
Xi(p)g

i
jξ

j ,

and

ω (σ(p) (gξ)) =
∑

ω (Xi(p)) g
i
jξ

j .

We conclude that

H(ξ)(p,g) =

m∑
i,j=1

[
Xi(p, g)−R(ω(Xi))(p,g)

]
gijξ

j .
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To simplify the notation a bit, we will use the same notation for a vector field

on M (or G) and its lift to M ×G. Then, using yij to denote the function on

M ×G whose value at (p, g) is gij , we write H(ξ) =
∑

[Xi −R(ω(Xi))]y
i
jξ

j .

If we set Hi := H(ei), where (e1, . . . , em) is the standard basis on R
m, then

Hj =
∑

[Xi −R(ω(Xi))] y
i
j .

This will serve as the standard form for the horizontal vectors that we use to

generate a basis for the subspace of T(p,g)(M ×G) tangent to the reachable

set.

5. Computations on H3

We now specialize to the case whereM = H3 is the 3-dimensional Heisenberg

group, which is defined to be the group of 3× 3 matrices of the form⎡
⎣ 1 a b

0 1 c
0 0 1

⎤
⎦ , a, b, c ∈ R,

under matrix multiplication.

The Lie algebra h of H3 will be taken to be the tangent space TeH
3 at

the identity element and this is in turn identified with the linear space of

matrices of the form ⎡
⎣ 0 a b

0 0 c
0 0 0

⎤
⎦ , a, b, c ∈ R,

so that the Lie Bracket becomes the commutator bracket as usual. We take

as a basis for h the following three matrices:

X1 =

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ , X2 =

⎡
⎣ 0 0 0

0 0 1
0 0 0

⎤
⎦ , X3 =

⎡
⎣ 0 0 1

0 0 0
0 0 0

⎤
⎦ .

We have the bracket relations [X1, X2] = X3, [X2, X3] = 0, and [X1, X3] =

0.

The left invariant vector field associated to any X ∈ h will be denoted

by X̃ and is defined by X̃g := (Lg)∗X, where Lg is left multiplication by g.
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We declare that the global left invariant fields X̃1, X̃2, X̃3 are everywhere
orthonormal, thereby providing H3 with a left invariant Riemannian metric.
These fields also provide H3 with an orientation and the frame bundle has
the structure group SO(3) with Lie algebra so(3) consisting of 3 × 3 skew-
symmetric matrices. In order to use the trivialization as in the previous
section we take σ : H3 → F (H3) to be given by X̃1, X̃2, X̃3.

As a basis [A1, A2, A3] for so(3) we take

A1 =

⎡
⎣ 0 0 0

0 0 1
0 −1 0

⎤
⎦ , A2 =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , A3 =

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦ .

We have the bracket relations

[A1, A2] = A3, [A2, A3] = A1, [A1, A3] = −A2.

We have a global frame field [R(A1), R(A2), R(A3)] for SO(3) consisting of
the corresponding right invariant fields. Using the same notation for the
lifts, we have a global frame field for H3 × SO(3):

Z = [X̃1, X̃2, X̃3, R (A1) , R (A2) , R(A3)]

Let ω be the Cartan connection form corresponding to the metric on H3 in
the gauge σ and let θ1, θ2, θ3 be the basis of 1-forms dual to X̃1, X̃2, X̃3. By
Cartan’s Lemma [10, Vol. II, p. 281, and Chap. 8, in particular p. 336], ω is
the unique skew-symmetric matrix of 1-forms determined by the equation

dθ + ω ∧ θ = 0,

where θ is the column vector [θ1, θ2, θ3]
ᵀ and d is exterior differentiation on

each entry. Using the relations dθk(X̃i, X̃j) = −θk([X̃i, X̃j ]), and θi(X̃j) =
δij , Cartan’s equations for ω = (ωi

j) become

⎡
⎣ 0

0
−θ1 ∧ θ2

⎤
⎦ = −

⎡
⎣ 0 ω1

2 ω1
3

−ω1
2 0 ω2

3

−ω1
3 −ω2

3 0

⎤
⎦
⎡
⎣ θ1

θ2

θ3

⎤
⎦

with the obvious solution

ω =
1

2

⎡
⎣ 0 θ3 θ2

−θ3 0 −θ1

−θ2 θ1 0

⎤
⎦ =

1

2

(
−A1θ

1 +A2θ
2 +A3θ

3
)
.
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With this determination of ω, we have the basic horizontal vector fields

Hj =

3∑
i=1

[Xi −R(ω(Xi))] y
i
j .

Notice that given any two dimensional subspace V0 of TpM we may choose
g so that the tangent bundle projections of Ψ∗(H1(p, g)) and Ψ∗(H2(p, g))
span V0. The fields H1 and H2 span a distribution E on H3 × SO(3).

A curve in γ : [a, b] → H3 × SO(3) that is tangent to E corresponds to
an admissible path and the set of frames reachable by curves tangent to E
is exactly the leaf through (p, g) of the smallest integrable distribution E∗

containing E. Since we are in the real analytic setting, E∗ is the distribution
spanned by L({H1, H2}), the Lie algebra of vector fields generated by H1

and H2.

We will show that this distribution is in fact the whole tangent bundle
of F (M) and is spanned by sufficiently many iterated brackets of H1 and
H2.

Since

ω(X1) = −1

2
A1, ω(X2) =

1

2
A2, ω(X3) =

1

2
A3

we also have

R (ω(X1)) = −1

2
R (A1) , R (ω(X2)) =

1

2
R (A2) , R (ω(X3)) =

1

2
R (A3) .

Thus we have

H1 = y11X̃1 + y21X̃2 + y31X̃3 +
1

2
y11R (A1)−

1

2
y21R (A2)−

1

2
y31R(A3),

H2 = y12X̃1 + y22X̃2 + y32X̃3 +
1

2
y12R (A1)−

1

2
y22R (A2)−

1

2
y32R(A3).

Let W := [H1, H2]. We wish to calculate W as a linear combination of
Z = [X̃1, X̃2, X̃3, R(A1), R(A2), R(A3)]. A few remarks are in order.

1. In our calculation of the brackets of vectors fields we treat vector
fields as derivations. The X̃k act as zero on the functions yij while

[X̃k, R(Ai)] = 0.
2. The R(Ak) act on the yij according to R(Ak)y

i
j =

∑
ail(k)y

l
j where

Ak = [ail(k)].
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3. [R(Ai), R(Aj)] = −R([Ai, Aj ]). The minus sign occurs because the
R(Ai) are right invariant fields while bracket is defined in terms of left
invariant fields.

The first two observations can be incorporated into a Maple routine in
order to calculate W while the third observation allows for an immediate
simplification of the rather complicated Maple output1. This results in the
following expression:

W =
1

4

(
y31y

2
2 − y21y

3
2

)
R(A1)+

1

4

(
y31y

1
2 − y32y

1
1

)
R(A2)+

3

4
(y11y

2
2−y12y

2
1)R(A3).

Notice that this expression does not involve any of the X̃k. We may simplify
our expression for W even further using the fact that the matrix function
Y = [yij ] takes values in SO(3). We have

(5)

3∑
k=1

yki y
k
j = δij , because Y ᵀY = I = [δij ],

3∑
k=1

yiky
j
k = δij , because Y Y ᵀ = I.

Since det(Y ) = 1 we have

(6) y11y
2
2y

3
3 + y31y

1
2y

2
3 + y21y

3
2y

1
3 − y21y

1
2y

3
3 − y11y

3
2y

2
3 − y31y

2
2y

1
3 − 1 = 0.

If we multiply relation (6) by y33, then after a bit of grouping and fac-
toring, we obtain

(7) y33 =
(
y33
)2

(y11y
2
2 − y21y

1
2) + y23y

3
3(y

3
1y

1
2 − y11y

3
2) + y13y

3
3(y

2
1y

3
2 − y31y

2
2).

From (5) we have y13y
3
3 = −(y11y

3
1+y12y

3
2) and y23y

3
3 = −(y21y

3
1+y22y

3
2). Plugging

these expressions for y13y
3
3 and y23y

3
3 into (7) above, we obtain, after some

rearrangement,

y33 = ((y31)
2 + (y32)

2 + (y33)
2)(y11y

2
2 − y21y

1
2).

Then we use (5) again to see that the first factor on the right hand side
above is 1 and thus obtain

(8) y33 = (y11y
2
2 − y21y

1
2).

1The routine and the output are available from the authors on request.
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In a similar way we obtain

y23 = (y31y
1
2 − y11y

3
2),(9)

y13 = (y21y
3
2 − y22y

3
1).(10)

Using the last three relations (8), (9) and (10), we obtain

W = −1

4
y13R(A1) +

1

4
y23R(A2) +

3

4
y33R(A3).

We represent vector fields as the column vectors of their coefficient func-
tions with respect to our global frame Z. So far we have

H1 =

[
y11, y

2
1, y

3
1,

1

2
y11,−

1

2
y21,−

1

2
y31

]ᵀ
,

H2 =

[
y12, y

2
2, y

3
2,

1

2
y12,−

1

2
y22,−

1

2
y32

]ᵀ
,

W = [H1, H2] =

[
0, 0, 0,−1

4
y13,

1

4
y23,

3

4
y33

]ᵀ
.

But we need higher brackets and this is where we need to use Maple again.
Our routine uses Maple’s ability to simplify with respect to side relations
((5) and (6)). This gives somewhat complicated expressions for the following
vector fields obtained by iterated bracketing:

W1 := [H1,W ]

W2 := [H2,W ]

W12 := [W1,W2]

Y1 := [H1,W12]

Y2 := [H2,W12].

For example, the column vector expression for Y1 is

Y1 :=

[
9

8
(y33)

2y21 −
67

64
y21y

3
3 −

3

8
y31y

2
3(y

3
3)

2 − 9

64
y31y

2
3,

− 3

4
(y33)

4y22 +
3

4
(y33)

3y23y
3
2 +

13

16
y22(y

3
3)

2 − 19

16
y32y

3
2y

3
3 +

9

64
y22,

25

64
y32 +

15

8
(y33)

2y32, −
1

128
y12, −

1

128
y22,

13

128
y32

]ᵀ
.
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Our next goal is to show that [H1, H2,W,W1,W2,W12, Y1, Y2] spans the
whole tangent space at every point (p, g) of H3×SO(3). This will show that
the reachable set is the entire frame bundle. Since each tangent space in
question is 6 dimensional we need only show that at each point, some six of
our vectors are linearly independent.

To do this, we will use the Gramian. Recall that if L = [v1, . . . , vk] is a
list of vectors in R

n, then this list is linearly independent if and only if the
Gramian

gram(L) = det(〈vi, vj〉), i, j = 1, . . . , k

is not zero. Here 〈·, ·〉 is the usual inner product on R
n.

First consider the list M1 = [H1, H2,W,W1,W2,W12]. Using Maple we
compute the Gramian of M1:

gram(M1) =
1

4096
(y33)

2
(
1− 6(y33)

2 + 11(y33)
4
)2

.

This is a polynomial in x = (y33)
2. The factor 1 − 6(y33)

2 + 11(y33)
4 has

discriminant −8 and so gram(M1) vanishes exactly when y33 = 0. Thus,
at points where y33 �= 0, the vectors H1, H2,W,W1,W2,W12 are linearly
independent.

We need to find out what happens where y33 = 0. We consider the list
M2 = [H1, H2,W,W12, Y1, Y2]. We obtain

gram(M2) =
9

268435456

(
12(y33)

4 − 13(y33)
2 + 2

)2
×
(
24(y33)

8 − 24(y33)
6 + 11(y33)

4 + 10(y33)
2 − 1

)2
.

When y33 = 0 this reduces to a nonzero constant and so at these points,
H1, H2,W,W12, Y1, Y2 are linearly independent.

In conclusion, we see that [H1, H2,W,W1,W2,W12, Y1, Y2] spans the
whole tangent space at each point. Thus, we have E∗

(p,g) = T(p,g)(H
3×SO(3))

at every point (p, g) ∈ H3 × SO3. Thus, any point in H3 × SO(3) can be
reached from any other point by a curve tangent to E.

We need only recall that by the principal bundle trivialization Ψ we may
interpret the result in terms of F (H3) itself with the distribution spanned
by the horizontal fields Ψ∗H1,Ψ∗H2. The result can then be expressed in
terms of the problem on M = H3 as originally stated.

Theorem 5. The distribution defined by the horizontal fields Ψ∗H1,Ψ∗H2

has as reachable set from any point, the entire frame bundle F (H3). In terms
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of H3, this means that if V0 and V1 are 2-dimensional subspaces of Tp0
H3 and

Tp1
H3 respectively, then there is a piecewise smooth curve γ : [0, 1] → H3,

and a family {Vt}t∈[0,1], such that

(i) γ(0) = p0 and γ(1) = p1;
(ii) Vt is the parallel translate of V0 to a subspace of Tγ(t)H

3.
(iii) γ′(t) ∈ Vt for all t ∈ [0, 1].
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