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Random walk and linear switching systems

Yulei Pang, Alex Wang, Xiaozhen Xue, and Clyde F. Martin

In this paper we address the question “for a deck of cards, how
many times a top-in shuffle should be performed before the top
card goes back to the original position?” This problem has been
studied in the literature but we are interested in the implications
for linear switching systems. We simulate top-in shuffling for 6, 12,
and 54 cards, and determine the underlying statistics. Finally we
prove that the distribution of the stoping time is an exponential
distribution, and the expect value approaches to that of the uni-
form distribution for large number of shuffling. We make essential
use of the properties of linear, stochastic switching systems.

1. Introduction

Suppose we have a deck of n cards, labeled by integers from 1 to n. We
will number the deck so that an original unshuffled deck would be writ-
ten (1, 2, 3, . . . , n)′. Hereafter, we will call this the natural order. From a
mathematical viewpoint, shuffling a deck of n cards can be thought of as
a permutation of the the numbers from 1 to n. A deck of n cards can be
ordered in n! ways. The outcome order is dependent on which method we
choose to shuffle the cards. A description of the most popular shuffles is
described in [2]. In this paper we focus on just one type, the so called top-in
shuffle. Top-in Shuffle: Take the card from the top and insert it at a random
position in the deck [1].

An important part of this paper is to describe the random shuffling
of a deck of cards as a linear switching system. We use some results from
the theory of linear discrete time stochastic switching systems to describe
limiting phenomena of shuffling.

In Section 2 we examine the dynamics of a repeated shuffle and the
dynamics of a pair of interlacing shuffles. In Section 3 we introduce the idea
of linear stochastic switching system as a model for shuffling. In Section 4 we
examine the dynamics of the expected value of random shuffling using the
theory of switching systems. In Section 5 We do an indepth study of top-in
shuffling and report three simulations on various size decks. In Section 6 we
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construct the distribution of hitting time for all top in shuffles and show
that each distribution is approximately geometric and hence has limit as an
exponential distribution. The rate of convergence is explicit in the proof. In
Section 7 we study the limiting behavior of the expected value of the top-in
shuffle. Again the result is for decks of arbitrary size. Tables and code are
contained in the appendices.

2. Dynamics and control

The basis for many tricks with cards revolve around the fact that if a deck is
carefully shuffled using the same exact shuffle the cards will eventually return
to their original order. We look at a series of simple examples before proving
general results. One standard shuffle is given by the following example.

Let a deck of six cards be ordered from 1 to 6, so we have a vector
(1, 2, 3, 4, 5, 6)′. We shuffle by interlacing the two halves of the deck to obtain
the ordering (1, 4, 2, 5, 3, 6)′. Repeating this we see that

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

1
4
2
5
3
6

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

1
5
4
3
2
6

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

1
3
5
2
4
6

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can think of this as acting on the vector with the 6 by 6 matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and the shuffling is represented by the dynamical system

xn+1 = Axn.

The fact that it repeated is a simple consequence of the fact that A4 = I.
The underlying mathematics of this card trick is that the trickster ap-

pears to be randomizing the order of the deck by repeatedly shuffling but
in fact he is simply rearranging the deck in a very precise manner so that in
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the end it is identical to the first position. The mathematics is simply that
a shuffle is a permutation and the permutation can be represented by a sin-
gle matrix. Because the permutation group is finite we must have that any
matrix, C, that represents a shuffle, has to have the property that Cn = I
for some value of n.

Now suppose we do really want to randomize the deck. As we see above a
single permutation will not work. So let’s consider another interlacing shuffle
that is given by ⎛

⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

4
1
5
2
6
3

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

2
4
6
1
3
5

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This quick calculation shows that the order of this permutation is 3. The
matrix representing this shuffle is given by

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If we simply alternate the two shuffles, we are just repeating the shuffle given
by AD and we know that (AD)n = I for some n ≤ 6. But if we randomly
choose the shuffle, we get a shuffle given by

AnkDmk · · ·An2Dm2An1Dm1 ,

where ni ≤ 3 and mi ≤ 2. Now there are 6! possible shuffles and so it is a
question of algebra if we can generate all the shuffles with these two. We
will come back to this question later.

With a single shuffle we were able to represent it mathematically as the
dynamical system xn+1 = Axn, but here it is either represented as xn+1 =
Axn or randomly as xn+1 = Dxn. We can rewrite these two equations as
one stochastic dynamic system

(2.1) xn+1 = (u(n)A+ (1− u(n))D)xn

where u(n) ∈ {0, 1} and P (un = 1) = .5.
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3. Switching systems

A stochastic discrete time linear switching system is a stochastic system of
the form

(3.1) xn+1 = (u1(n)A1 + · · ·+ uk(n)Ak)xn

where the ui satisfy the following properties

ui(n) ∈ {0, 1}
k∑

i=1

ui(n) = 1.

If the uis are chosen randomly then we must assign a probability at each
time n, i.e.

Prob(ui(n) = 1) = pin

and for the purposes of this paper we will assume that the probabilities are
constant with respect to n and equal to 1

n . See references [7] and [6] for
examples and the treatment of such systems. An example of an application
of a linear switching system is given in [5].

In this paper one of our goals is to describe a particular type of shuffle
as a stochastic switching system. We use the top-in shuffle because of its
simplicity but all shuffles can be represented by similar systems. Basically,
any shuffle is given by a set of permutations acting on an ordered deck
of cards. Thus the switching systems have as their natural state space the
permutations of a single vector. Thus the matrices of the system in given by
equation 3.1 are the elements of a matrix representation of the symmetric
group. We can take the state space to be the set of n! vectors obtained by
taking all permutations of the vector (1, 2, . . . , n)′.

The questions usually ask about shuffles are somewhat foreign to sys-
tems theory but are interesting never the less. In systems theory the usual
questions have to with stability, controllability, reachability, etc. We will, in
the next section, study the expected value of these systems using material
from [7].

4. Some system theoretic questions

In [7] it was shown that the expected value and the variance of a discrete time
stochastic switching system could be computed recursively with associated
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dynamical systems. In [3] there is an indepth discussion of when a random

walk on a finite group becomes uniformly distributed on the group elements.

We examine this issue with the system of equation 2.1. From [7] we see that

the expected value of the system acting on the space of permutations is given

by

E[xn+1] =
1

2
(A+D)E[xn]

and

F6 =
1

2
(A+D) =

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

First it is clear that the kernel of F6 is three dimensional and that the vec-

tor (1, 1, 1, 1, 1, 1)′ is an eigenvector with eigenvalue 1. A bit of calculation

yields that another eigenvector is given by (1, 1,−2,−2, 1, 1)′ with eigenvalue

−1
2 . With more calculation we find that −1

2 is an eigenvalue with multiplic-

ity 2. The kernel of F is spanned by the three vectors (1, 0, 0,−1, 0, 0)′,
(0, 1, 0, 0,−1, 0)′ and (0, 0, 1, 0, 0,−1)′. So it remains to find the generalized

eigenvector associated with the eigenvalue −1
2 . It is somewhat easier to cal-

culate a vector that is orthogonal to the five known eigenvectors. It is easy

to find (−1, 0, 1,−1, 0, 1)′.

We now use this basis to represent the vector (1, 2, 3, 4, 5, 6)′. We write

x1

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
−1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x3

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
−0
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x4

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
−2
−2
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.1)

+ x5

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x6

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
1
−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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We now act on both sides of this equation with the matrix F6 to get

(4.2) x4

⎛
⎜⎜⎜⎜⎜⎜⎝

−.5
−.5
1
1
.5
.5

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x5

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+ x6

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2.5
2.5
3.5
3.5
4.5
4.5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Some arithmetic shows that x4 = 0, x5 = 3.5 and x6 = 1. Thus we have
that

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

= 3.5

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
−1
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

After more calculation we that

lim
n→∞

1

2

n

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

n⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

= 3.5

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We now calculate what the expected value of the uniform distribution would
be. There are 5! vectors that have 1 in the first position. Thus the sum
of all 6! vectors is given by 5!6(6 + 1)/2(1, 1, 1, 1, 1, 1)′ and hence the ex-
pected value is (3.5, 3.5, 3.5, 3.5, 3.5)′. Thus the expected value converges
to the expected value of the uniform distribution. This does not guaran-
tee that the system given by equation 2.1 results in a uniform distribu-
tion on the entire state space but it does not rule it out. So in order to
determine if the system is reachable we still would have to do the alge-
bra.

Another property of a stochastic system is the concept of hitting time.
Many of the stopping time problems can be reduced to hitting times. In
general what we are studying is the mixing of the deck and stopping when
the deck is well mixed. An important treatment of mixing is given in [8]
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and [9]. Given an initial point and a large subset of the state space, we ask

for the expected time for an orbit to intersect the subset. For the system we

will consider in the next section, the subset is the set of all permutations

with 1 as the first element. This set has cardinality (n−1)! and we will show

that expected time to hit this set is governed by a geometric distribution

and the limiting distribution as the deck size grows is exponential. On the

other hand the question that we ask here is how long do we expect to operate

before position one is filled by the first entry in the deck is an example of a

strong uniform time.

5. Experiment and analysis

In this section, we will discuss the following questions:

(1) For a deck of cards, how many times of top-in shuffle should be

performed before the top card goes back to the original posi-

tion?

(2) To what distribution does the hitting time of the top-in shuffling con-

form?

We simulate top-in shuffling for 6 cards, 12 cards and extend the simu-

lation to a standard deck of 54 cards, obtaining conjectures fore the distri-

bution of the hitting time of the top-in shuffle.

5.1. The top-in shuffling1

If we consider shuffling 6 cards with top-in shuffle, using matrices to describe

this process. A permutation can be represented by its incidence matrix.

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If we take a card from the top and insert it at the kth position in the

deck, it corresponds to Ak, since in this example there are 5 other place

1Part of the remaining material is taken from [10].
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could be chosen for the top card. Hence, we will get the following matrices.

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, A4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, A6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For example, if we insert the top card in the 4th position, it corresponds
to the matrix A4 above.

We assume that the cards are represented by an incidence vector with
initial vector

X0 = (1, 2, 3, 4, 5, 6)′

and then the act of shuffling can be represented in the form

X1 = AiX0

where the Ais are as above.
After determining the incidence matrices for top-in shuffle of 6 cards,

now consider shuffling two or even more times consecutively, which can be
represented as a random product of the 6 matrices, i.e. X2 = AjAiX0. Note
that since the 6 matrices are from a group the Xi is simply a permutation
of the ordering in X0. The question that we will answer and examine in this
paper is what is the expected length of the random product until a vector
of the form X = (1, i2, . . . , in)

′ is achieved, i.e. how long does it take for the
top card to return to the top.
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If we use Xn to denote the corresponding vector after the nth shuffle
then we will get the relationship between Xn+1 and Xn as

(5.1) Xn+1 = (δ1(n)A1 + δ2(n)A2 + · · ·+ δ6(n)A6)Xn

with

δi(n) ∈ {0, 1}
6∑

i=1

δi(n) = 1

P (δi(n) = 1) = 1/6

That is the process can be represented as a linear stochastic switching sys-
tem.

5.2. Simulation

In this section, we still use 6, 12 and 54 cards as examples, Using 6 cards
and doing complete shuffles 1000 times, we get Table (a). The data sets have
been moved to the appendix. The odd numbered column in the table (a)
represents the number of shuffles needed to move the top card back to the
top position. The even column stands for how many times this situation will
happen in the 1000 complete shuffles. For example, if we look at the line
(6,54|31,0) which means in the 1000 complete shuffles there are 54 times after
we took 6 shuffles to bring the top card back to the top and 0 times after
31 shuffles. Meanwhile we realize with the growing first column, the second
column contains more and more 0s. As a result, truncating insignificant
trailing zeroes we can plot the histogram in Figure 1 and calculate the
mean and standard deviation for this data set. The C++ code for 6 cards
is contained in the appendix.

We repeat the above process for 12 cards to get the data in Table (b) and
shuffle 10,000 times to obtain the histogram in Figure 2. Similarly, we also
extend it to the entire standard deck of cards, (52 cards plus two jokers) for
which we need many more shuffles to get the approximate distribution. So
we do the top-in shuffling 100,000 times (see Table (c) and obtain histogram
graph (see Figure 3).

The statistics from these experiments and the figures, suggest that the
number of shuffles to return 1 to the top spot satisfies the exponential dis-
tribution. In the following we will prove this.
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Figure 1: Steps needed for shuffling 6 cards when the top card goes back to
original position. Mean = 6.02, Standard deviation: 5.55.

Figure 2: Steps needed for shuffling 12 cards when the top card goes back
to original position. Mean; 11.97, Standard deviation; 11.48.

6. Exponential distribution

In this section, we prove some results about the distribution of the number of
shuffles to make the top card back to top again. These results are indicated
strongly by our experiments.
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Figure 3: Steps needed for shuffling 54 cards when the top card goes back
to original position. Mean = 53.93, Standard deviation = 53.47.

Theorem 6.1. Let x be the number of shuffles to make the top card back to

top again the first time. For a deck of k cards, the distribution of x is

(6.1) p(x) =

{
1
k (

k−1
k )x−1, x ≥ 1

0, x < 0.

Proof. Clearly x ≥ 1, so the distribution is 0 for x < 1.

Let xi be the position of the original top card after i shuffles before it

returns back to the top. We claim that

P (xi = j) =
1

k

(
k − 1

k

)i−1

for all j = 2, 3, . . . , k.

We use induction on i. It is true for i = 1 because the probability of top

card going to any position after one shuffle is 1/k. Assume it is true for i.

Then

P (xi+1 = j) =

k∑
m=1

P (xi+1 = j|xi = m)P (xi = m).

Notice that

P (xi+1 = j|xi = m) = 0 for all m �= j, j + 1,



288 Yulei Pang et al.

and since there are j−1 positions above the jth card and k− j+1 positions
below the jth card, we have

P (xi+1 = j|xi = j) =
j − 1

k
and

P (xi+1 = j|xi = j + 1) =
k − (j + 1) + 1

k
=

k − j

k
.

So

P (xi+1 = j) = P (xi+1 = j|xi = j)P (xi = j)

+P (xi+1 = j|xi = j + 1)P (xi = j + 1)

=
j − 1

k

(
1

k

)(
k − 1

k

)i−1

+
k − j

k

(
1

k

)(
k − 1

k

)i−1

=
1

k

(
k − 1

k

)i

, for all j = 2, . . . , k − 1

and

P (xi+1 = k) = P (xi+1 = k|xi = k)P (xi = k)

=
k − 1

k

(
1

k

)(
k − 1

k

)i−1

=
1

k

(
k − 1

k

)i

.

Now we are ready to prove the result. Clearly for j = 1

p(1) = P (x = 1) =
1

k
.

For every j ≥ 2

p(j) = P (x = j) = P (x = j|xj−1 = 2)P (xj−1 = 2)

=

(
k − 1

k

)(
1

k

(
k − 1

k

)j−2
)

=
1

k

(
k − 1

k

)j−1

=
1

k

(
k − 1

k

)x−1

.

Theorem 6.2. Let x be the number of shuffles to make the top card returns
to the top again the first time. Then for a deck of k cards,
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i) the mean of x is E(x) = k;

ii) the m-th moment E(xm) satisfies

(6.2) E(xm) = k2
d

dk

(
k − 1

k
E(xm−1)

)
+ (k − 1)E(xm−1)

and

(6.3) E(xm) = m!km +O(km−1);

iii) the standard deviation of x is σ =
√
k2 − k.

Proof. i) The mean of x is given by

E(x) =

∞∑
i=1

ip(i) =

∞∑
i=1

i

k

(
k − 1

k

)i−1

= k
d

dk

∞∑
i=1

(
k − 1

k

)i

= k
d

dk
(k − 1) = k.

ii)

k2
d

dk

(
k − 1

k
E(xm−1)

)
+ (k − 1)E(xm−1)

= k2
d

dk

∞∑
i=1

im−1

k

(
1− 1

k

)i

+ (k − 1)

∞∑
i=1

im−1

k

(
1− 1

k

)i−1

= k2

( ∞∑
i=1

−im−1

k2

(
1− 1

k

)i

+

∞∑
i=1

im

k3

(
1− 1

k

)i−1
)

+(k − 1)

∞∑
i=1

im−1

k

(
1− 1

k

)i−1

=

∞∑
i=1

−im−1(k − 1)

k

(
1− 1

k

)i−1

+

∞∑
i=1

im

k

(
1− 1

k

)i−1

+(k − 1)

∞∑
i=1

im−1

k

(
1− 1

k

)i−1

=

∞∑
i=1

im

k

(
1− 1

k

)i−1

= E(xm) for m = 2, 3, . . . .
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To prove E(xm) = m!km+O(km−1), we use induction on m. It is true

for m = 1. Assume it is true for m − 1, E(xm−1) = (m − 1)!km−1 +

O(km−2), then

E(xm) = k2
d

dk
((m− 1)!km−1 +O(km−2))

+ (k − 1)((m− 1)!km−1 +O(km−2))

= k2((m− 1)(m− 1)!km−2 +O(km−3))

+ (m− 1)!km +O(km−1)

= (m− 1)(m− 1)!km + (m− 1)!km +O(km−1)

= m!km +O(km−1).

iii) By ii)

E(x2) = k2
d

dk

(
k − 1

k
k

)
+ (k − 1)k = 2k2 − k,

and

σ =
√

E(x2)− E(x)2 =
√

k2 − k.

Theorem 6.3. As the number of cards k becomes large, the distribution

p(x) asymptotically approaches to exponential distribution that

(6.4) f(x) =

{ 1
k exp

(
− 1

k (x− 1)
)
, x ≥ 1

0, x < 1.

for each fixed x.

Proof. Since

(6.5) p(x) =

{
1
k (

k−1
k )x−1, x ≥ 1

0, x < 0.

Note that

1

k

(
k − 1

k

)x−1

=
1

k
exp

(
(x− 1) log

(
1− 1

k

))
.
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Therefore

p(x) =

{ 1
k exp

(
(x− 1) log

(
1− 1

k

))
, x ≥ 1

0, x < 0.

Since

log

(
1− 1

k

)
= −1

k
+O

(
1

k2

)
,

So for each fixed x, p(x) approaches to

f(x) =

{ 1
k exp

(
− 1

k (x− 1)
)
, x ≥ 1

0, x < 1,

as k becomes large.

7. Distribution

We begin by calculating the expected value for shuffling of the 6 card deck

in the example. The expected value is given by the

E[xn+1] = FE[xn]

where F is given by the weighted sum of the matrices.

(7.1) F =
1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

1 5 0 0 0 0
1 1 4 0 0 0
1 0 2 3 0 0
1 0 0 3 2 0
1 0 0 0 4 1
1 0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that there are eigenvalues 1,23 and 0 but it is not so

obvious that there are eigenvalues 1
6 ,

1
3 and 1

2 . These are discovered by taking

advantage of the structure of F which make the characteristic polynomial

fairly easy to evaluate. Since there is a dominate eigenvalue the system will

converge to the final distribution. It is best to start with the unit vector

(1, 2, 3, 4, 5, 6)′. If we had the eigenvectors of F then the we could expand

the initial vector in terms of the eigenvectors and the limit would be given

by the coefficient of the eigenvector (1, 1, 1, 1, 1, 1). The structure of the

eigenvectors is not immediately obvious.
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F 10
6

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.4566
3.4740
3.4913
3.5087
3.5260
3.5434

⎤
⎥⎥⎥⎥⎥⎥⎦
, F 20

6

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.4992
3.4995
3.4998
3.5002
3.5005
3.5008

⎤
⎥⎥⎥⎥⎥⎥⎦
, and

F 30
6

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.5000
3.5000
3.5000
3.5000
3.5000
3.5000

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Generally for a deck of n cards we have the following results:

Theorem 7.1. The eigenpairs of F are

(1, βn) ,

(
0,

[
−n+ 1
βn−1

])
,

⎛
⎝k

n
,

⎡
⎣ k − n+ 1

αk

βn−k−1

⎤
⎦
⎞
⎠ for k = 1, . . . , n− 2

where βi is the i-vector with all entries equal 1 and

αk =

⎡
⎢⎣

ak1
...

akk

⎤
⎥⎦ with ak1 =

(1− k)(n− k − 1)

n− 1
and

aki =
n− k − 1 + (k + 1− i)ai−1

n− i
, for i = 2, . . . , k.

Proof. The eigenvectors associated with eigenvalues 1 and 0 are obvious. For

each k = 1, . . . , n− 2, write

F =
1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 n− 1 0 · · · · · · 0

1 1 n− 2
. . .

...
... 0 2

. . .
. . .

...
...

...
. . .

. . . 2 0
...

...
. . . n− 2 1

1 0 · · · · · · 0 n− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

n

⎡
⎣ βk Ak 0

1 γk δk
βn−k−1 0 Bk

⎤
⎦
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where Ak, Bk, γk, δk are k× k, (n− k− 1)× (n− k− 1), 1× k, 1× (n− k− 1)
matrices, respectively, given by

Ak =

⎡
⎢⎢⎢⎢⎣

n− 1 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
0 · · · k − 1 n− k

⎤
⎥⎥⎥⎥⎦, Bk =

⎡
⎢⎢⎢⎢⎣

k + 1 n− k − 2 · · · 0

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 n− 1

⎤
⎥⎥⎥⎥⎦,

γk = [0, . . . , 0, k], δk = [n− k − 1, 0, . . . , 0].

Let

1

n

⎡
⎣ βk Ak 0

1 γk δk
βn−k−1 0 Bk

⎤
⎦
⎡
⎣ k − n+ 1

αk

βn−k−1

⎤
⎦ =

k

n

⎡
⎣ k − n+ 1

αk

βn−k−1

⎤
⎦

we then have

(k − n+ 1)βk +Akαk = k ((k − n+ 1)e1 + Ekαk) ,(7.2)

e1 =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , Ek =

⎡
⎢⎢⎢⎢⎣

0 · · · · · · 0

1
. . .

...
...

. . .
. . .

...
0 · · · 1 0

⎤
⎥⎥⎥⎥⎦

(7.3) k − n+ 1 + γkαk + δkβn−k−1 = kakk,

(7.4) (k − n+ 1)βn−k−1 +Bkβn−k−1 = kβn−k−1.

(7.4) is clearly satisfied because (n− 1, βn−k−1) is an eigenpair of Bk.
(7.3) is an identity

k − n+ 1 + kakk + n− k − 1 = kakk.

(7.2) is equivalent to (Ak − kEk)αk = −k(n− k − 1)e1 + (n− k − 1)βk,
or ⎡

⎢⎢⎢⎢⎣
n− 1 0 · · · 0

−k + 1
. . .

. . .
...

...
. . .

. . . 0
0 · · · −1 n− k

⎤
⎥⎥⎥⎥⎦αk =

⎡
⎢⎢⎢⎣

(1− k)(n− k − 1)
n− k − 1

...
n− k − 1

⎤
⎥⎥⎥⎦ .

The iteration formula for the entries of αk follows immediately.
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Theorem 7.2. The expected value E[xm] approaches to that of the uniform
distribution as m → ∞, i.e.

lim
m→∞

Fm

⎡
⎢⎣

1
...
n

⎤
⎥⎦ =

n+ 1

2

⎡
⎢⎣

1
...
1

⎤
⎥⎦ .

Proof. Let vk be the eigenvector of F associated with the eigenvalue k/n,
k = 0, 1, . . . , n − 2, n, and let x = [1, 2, . . . , n]′. Then x = c0v0 + · · · +
cn−2vn−2 + cnvn for some c0, . . . , cn−2, cn and

lim
m→∞

Fnx = lim
m→∞

(
c1

(
1

n

)m

v1 + · · · cn−2

(
n− 2

n

)m

vn−1 + cnvn

)
= cnvn.

So we only need to show that cn = (n + 1)/2. Note that (1, vn) is also
an eigenpair for F ′. So 〈vn, vk〉 = 〈F ′vn, vk〉 = 〈vn, Fvk〉 = k

n〈vn, vk〉, and
it implies that 〈vn, vk〉 = 0 for k = 0, 1, . . . , n − 2. Therefore 〈vn, x〉 =
c0〈vn, v0〉+ · · · cn−2〈vn, vn−2〉+ cn〈vn, vn〉 = cn〈vn, vn〉, and

cn =
〈x, vn〉
〈vn, vn〉

=
1 + 2 + · · ·+ n

n
=

n+ 1

2
.

It is interesting to note that the largest eigenvalue less than 1 is given
by n−2

n and so we expect the system to converge at the rate

(
n− 2

n

)n

.

Note that the explicit calculation for F6 confirms this.

8. Conclusion

In this paper we have begun the process of using discrete time stochastic
linear switching systems to study the mathematics of card shuffling. We have
shown that any shuffling scheme can be represented by such a system. In
future work we will extend this to other more complicated shuffles and will
explore some of the tree based schemes proposed in [3] and [4].
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Appendix 1. Data sets

(a) The top-in shuf-
fle with 6 cards

1 162 26 1
2 141 27 2
3 123 28 1
4 97 29 1
5 81 30 0
6 54 31 0
7 57 32 1
8 58 33 1
9 35 34 1
10 27 35 1
11 22 36 0
12 23 37 1
13 27 38 0
14 13 39 0
15 17 40 0
16 15 41 0
17 3 42 0
18 11 43 0
19 4 44 1
20 3 45 0
21 4 46 0
22 1 47 0
23 6 48
24 3 49
25 2 ... ...

(b) The top-in shuffle with 12 cards

1 824 29 84 57 8 85 0 113 0 141 0
2 748 30 83 58 7 86 0 114 0 142 0
3 721 31 58 59 7 87 0 115 0 143 0
4 634 32 47 60 7 88 0 116 0 144 0
5 635 33 49 61 1 89 0 117 0 145 0
6 501 34 41 62 6 90 0 118 0 146 0
7 515 35 40 63 2 91 0 119 0 147 0
8 465 36 45 64 1 92 0 120 0 148 0
9 397 37 38 65 5 93 0 121 0 149 0

10 386 38 33 66 7 94 0 122 0 150 0
11 366 39 31 67 2 95 0 123 0 ... ...
12 325 40 21 68 3 96 0 124 0
13 276 41 32 69 2 97 1 125 0
14 246 42 19 70 4 98 0 126 0
15 270 43 20 71 1 99 1 127 0
16 233 44 15 72 1 100 0 128 0
17 193 45 11 73 2 101 0 129 1
18 164 46 21 74 3 102 0 130 0
19 166 47 15 75 0 103 0 131 0
20 166 48 10 76 0 104 0 132 0
21 150 49 13 77 0 105 1 133 0
22 145 50 15 78 0 106 1 134 0
23 132 51 15 79 2 107 0 135 0
24 113 52 10 80 1 108 0 136 0
25 110 53 7 81 1 109 0 137 0
26 82 54 6 82 2 110 0 138 0
27 90 55 9 83 0 111 0 139 0
28 72 56 7 84 0 112 0 140 0
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(c) The top-in shuffle with 54 cards

1 1773 29 1051 57 672 85 425 113 232 141 153 169 59
2 1816 30 1025 58 679 86 388 114 225 142 128 170 75
3 1889 31 1094 59 645 87 348 115 226 143 118 171 80
4 1737 32 1052 60 607 88 355 116 218 144 131 172 85
5 1775 33 954 61 606 89 359 117 226 145 122 173 66
6 1712 34 957 62 576 90 365 118 220 146 124 174 85
7 1610 35 933 63 557 91 353 119 201 147 140 175 76
8 1599 36 961 64 575 92 335 120 196 148 116 176 78
9 1613 37 964 65 588 93 334 121 190 149 132 177 56

10 1668 38 968 66 572 94 308 122 191 150 118 178 71
11 1584 39 873 67 563 95 313 123 170 151 118 179 72
12 1515 40 913 68 533 96 284 124 192 152 124 180 71
13 1501 41 845 69 494 97 324 125 191 153 97 181 69
14 1493 42 842 70 458 98 326 126 197 154 113 182 71
15 1404 43 854 71 499 99 248 127 154 155 107 183 71
16 1370 44 807 72 474 100 290 128 186 156 94 184 72
17 1412 45 833 73 487 101 259 129 161 157 124 185 67
18 1372 46 731 74 500 102 279 130 163 158 104 186 56
19 1402 47 820 75 462 103 255 131 149 159 105 187 74
20 1265 48 727 76 450 104 272 132 174 160 85 188 41
21 1280 49 752 77 397 105 261 133 181 161 120 189 45
22 1170 50 715 78 427 106 259 134 145 162 98 190 55
23 1260 51 686 79 409 107 229 135 144 163 89 ... ...
24 1179 52 694 80 409 108 243 136 175 164 74
25 1232 53 731 81 454 109 263 137 139 165 83
26 1132 54 675 82 392 110 238 138 159 166 90
27 1162 55 668 83 401 111 229 139 124 167 97
28 1166 56 667 84 387 112 220 140 144 168 85

Appendix 2. C++ code for 6 cards

#include<i o s t ream . h>
#include<s t r i n g . h>
#include <time . h>
#include <s t d l i b . h>
#include <iomanip . h>
#include <f s t ream . h>
class CardList {

public :
int cardNode [ 6 ] ;

public :
void i n i t i a l ( ) {
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for ( int i =0; i <6; i++){
cardNode [ i ]= i +1;

}
}

void n r e s h u f f l e ( int n) {
int temp = cardNode [ n−1] ;
i f (n>1){

for ( int j=n−1; j>=1;j−−){
cardNode [ j ]=cardNode [ j −1] ;

}
cardNode [0 ]= temp ;

}
}
void a l l P r i n t ( ) {

for ( int k=0;k<54;k++){
cout<<cardNode [ k ] ;
cout<<” ” ;

}
}

} ;
void main ( ) {

CardList c a rdL i s t ;
c a rdL i s t . i n i t i a l ( ) ;
cout<<” the o r i g i n a l order i s : ” ;
c a rdL i s t . a l l P r i n t ( ) ;
cout<<”\n” ;
int s t ep s [ 1 0 0 0 0 2 ] ;
for ( int k=0;k<100002;k++){

s t ep s [ k ]=0;
}

// compute a l l t he s t e p s
int sum=1000001;
srand (unsigned ( time (0 ) ) ) ;
for ( int i =1; i<sum ; i++){

int tempstep=0;
while ( true ) {

int auton = rand ( )%12+1;
ca rdL i s t . n r e s h u f f l e ( auton ) ;
tempstep++;

i f ( c a rdL i s t . cardNode [11]==1){
i f ( tempstep<=100000){ s t ep s [ tempstep ]++;}
else { s t ep s [100001]++;}

ca rdL i s t . i n i t i a l ( ) ;
break ;
}

}
}
// open an f i l e to record
ofstream f1 ( ” t e s t . txt ” ) ;
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i f ( ! f 1 ) cout<<”no t e s t . txt f i l e ” ;

double average=0;

for ( int j =1; j <100002; j++){
cout<<j<<” s t ep s occur ”<<s t ep s [ j ]<<” t imes ” ;

f1<<j<<” s t ep s occur ”<<s t ep s [ j ]<<” t imes ”<<endl ;

cout<<”\n” ;
average+=j ∗ s t ep s [ j ] ;

}
for ( j =1; j <100002; j++){

f1<<j<<endl ;

}
for ( j =1; j <100002; j++){

f1<<s t ep s [ j ]<<endl ;

}
average=average /sum ;

cout<<” the average s tep i s ”<<average<<” s t ep s ” ;

cout<<”\n” ;
f1<<” the average s tep i s ”<<average<<” s t ep s ”<<endl ;

f 1 . c l o s e ( ) ;

}
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