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Generalized rough sets based on reflexive relations*

YU-RU SYAU AND LixiNg Jiaf

We study the approximation theory of a special kind of neighbor-
hood systems, called total pure reflexive neighborhood systems,
which is a generalization of pretopological and topological neigh-
borhood systems. In the framework of such neighborhood systems,
the so-called lower and upper approximations are considered. For
a pretopological neighborhood system on a fixed nonempty set U,
we show that the family 7 of fixed points of its lower approxima-
tion is a topology for U, and establish a characterization (in terms
of neighborhoods) of T-open sets.

We then regard a reflexive relation R on U as the total pure
reflexive neighborhood system z — {R(z) = { y € U | (z,y) €
R}}, whose induced upper approximation is identical to the com-
monly used upper approximation R* : 2V — 2U based on R.
We show that the family Tg of all subsets X of U for which
R*(U—X) =U—X is an Alexandroff topology for U, and that the
pre-topologically maximal neighborhood system of the neighbor-
hood system  — {R(z)} associated to R is exactly the pretopo-
logical neighborhood system whose induced upper approximation
is identical to R* : 2V — 2V, Accordingly, we show that for each
x € U, its smallest Tr-open neighborhood is the intersection of all
Tr-open sets containing R(z). In addition, we study the so-called
R-definability. We establish a characterization of R-definable sets
in terms of R* and its dual R,, and present a necessary condition
for R-definability.

KEYWORDS AND PHRASES: Rough sets, reflexive relations, neighborhood
systems, preclosures, pretopological neighborhood systems.

1. Introduction

The fundamental concepts of rough set theory are the lower and upper
approximations [12, 13] defined in a Pawlak’s approximation space. Namely,
an ordered pair (U, ) consists of a fixed nonempty set U of all the objects
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under consideration and an indiscernibility relation 8 C U x U which is
assumed to be an equivalence relation.

Some generalizations of Pawlak’s approximation spaces have been made
by considering weaker forms of an indiscernibility relation instead of an
equivalence relation [4, 8, 15]. We will simply call such generalizations ap-
proximation spaces.

Slowinski and Vanderpooten [15] suggested that the reflexivity property
seems quite necessary to express any form of indiscernibility or similarity,
and proposed new definitions of lower and upper approximations, R, (X) and
R*(X), based on a reflexive relation R. As it is known [6], the family of fixed
points of such a lower approximation is a topology. However, unlike the lower
approximation based on a reflexive and transitive relation [19], the lower
approximation based on a reflexive relation is not in general idempotent.

Pawlak’s lower and upper approximations are indeed a pair of interior
and closure operators on the set U [12, 13]: in other words, they are dual
and the upper approximation satisfies the Kuratowski closure axioms which
define a topological structure on U. There are various equivalent ways of
defining this structure. This leads us to study the topological structure from
different viewpoints.

In this paper, we study the approximation theory of a special kind of
neighborhood systems, called total pure reflexive neighborhood systems. In
the framework of such neighborhood systems, the so-called lower and upper
approximations are considered. For a pretopological neighborhood system
on the set U, we show that the family T of fixed points of its lower approx-
imation is a topology for U, and establish a characterization (in terms of
neighborhoods) of 7T-open sets.

We then regard a reflexive relation R on U as the total pure reflexive
neighborhood system z — {R(z) = { y € U | (x,y) € R}}, whose induced
upper approximation is identical to R* : 2V — 2V, We show that the family
Tr of all subsets X of U for which R*(U — X) = U — X is an Alexandroff
topology. Namely, a topology in which arbitrary intersections of open sets
are open, or equivalently, every point has a minimal open neighborhood [1].
We show that the smallest Tr-open neighborhood of each object x € U is the
intersection of all Tr-open sets containing R(x). In addition, we study the
notion of R-definability introduced in [15]. We establish a characterization
of R-definable sets in terms of R* and its dual R,, and present a necessary
condition for R-definability.

In what follows, we provide some preliminary backgrounds in section 2.
We then present total pure reflexive (TPR) neighborhood systems and pre-
topological neighborhood systems in section 3 and 4 respectively. In sec-
tion 5, we consider TPR neighborhood systems under a reflexive relation
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R and characterize R-definable sets. We conclude with some remarks and
future projects in section 6.

2. Preliminaries

Let U be a certain nonempty set referred as the universe (of discourse). The
power set of U, denoted by 2V, is the collection of all subsets of U. That is,
2V ={S|ScCU}.

We use the symbols C and C to indicate “subset” and “proper subset”
respectively.

Let R C U x U be a (binary) relation on U. We often write x Ry instead
of (z,y) € R. The inverse relation of R, denoted by R™!, is obtained by
reversing the ordered pairs of R. That is, R~! = {(z,v) | (y,7) € R}.

For x € U, the subset of U defined by R(z) ={ y € U | xRy} is called
the image of x under R. Observe that

Rl z)={yeUl|zR 'y} ={yeU|yRa}.

Notice that if R is symmetric then R(x) = R~!(z) for each z € U. If R is
an equivalence relation on U, then for each x € U the set R(z) = R (=)
coincides with the R-equivalence class [z|g of x, and we designate by X/R
the family of all distinct R-equivalence classes.

Lemma 1 ([15]). Let R C U x U be reflexive. For any X C U, we have
(2.1) U R ') ={zr e U|R@x)nX #0}.
zeX

Definition 1 ([15]). Considering a subset X C U and a binary relation R
defined on U, X s R-definable if and only if:

(2.2) IX'CX suchthat X= | ) R'(x)
zeX’
(2.3) VzeX', R(z)CX.

Such a set X’ is referred to as a reference set of the R-definable set X.
2.1. Pawlak’s lower and upper approximations

Let 8 be an equivalence relation on U. For any X C U, according to Pawlak
[13], a pair of lower and upper approximations, 3.(X) and 5*(X), respec-
tively, are defined as follows:

(24) B.(X) = U{Y € U/B|Y C X}, B'(X)=U{Y €U/B|YNX £0}.
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Equivalently, 3(X) and B(X) can be also presented as below:
(25) B(X)={zeU|[zlgC X}, B (X)={zeUl[z]lgnX #0}.
2.2. The notion of topological spaces

A family T of subsets of U is called a topology on U if it contains the
whole set U and the empty set ), and is closed under finite intersections and
arbitrary unions. The pair (U, T) is called a topological space. The members
of T are called T-open, or open sets.

The complement of an open set is called a closed set. Using de Morgan’s
laws, topology can be alternatively described in terms of closed sets as well;
more precisely, U and () are closed, arbitrary intersections of closed sets are
closed, and finite unions of closed sets are closed.

There are many other ways to set up axioms, including the so-called Ku-
ratowski closure axioms (in short, KC-axioms) and the topological neighbor-
hood axioms (in short, TN-axioms), that can be used to define this structure.

2.2.1. Kuratowski closure axioms An operator ¢ : 2V — 2V is called
a (topological) closure on U if it satisfies the following four statements
(known as the Kuratowski closure axioms):

(KC 1) ¢(@) = 0 (Preservation of nullary unions).

(KC 2) For each X, X C ¢(X) (Extensivity).

(KC 3) For each X, ¢(c¢(X)) = ¢(X) (Idempotence).

(KC 4) For each X and Y, ¢(X UY) = ¢(X) U c(Y) (Additivity).

The last axiom implies the following:
(KC 5) If X CY then ¢(X) C ¢(Y) (Order-preserving).
The dual of a closure ¢ : 2V — 2V is the interior i : 2V — 2V defined by
(X)=U—-cU-X), VXCU.

Then the interior satisfies the so-called Kuratowski interior axioms which
are dual to the Kuratowski closure axioms:

(KI'1) i(U)=U.

(KI 2) For each X, i(X) C X.

(KI 3) For each X, i(i(X)) = i(X) (Idempotence).

(KI 4) For each X and Y, (X NY) =i(X) Ni(Y).
The last axiom implies the following:

(KI5) If X CY then i(X) Ci(Y) (order-preserving).
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2.2.2. Topological neighborhood axioms By a neighborhood system
on U we mean a mapping NS : U — 22" which assigns to each z € U a
nonempty collection N S(x) of subsets of U called neighborhoods of z.

Note that the broader definition given in [3, 10] for a neighborhood
system on U doesn’t require that N.S(z) # ) for each z € U.

A neighborhood system NS : U — 22" is called a topological neighbor-
hood system, or a topology, on U if for each x € U, NS(z) satisfies the
following TN-axioms [5]:

(TN 1) If N € NS(z), then x € N.

(TN 2) If N, M are members of NS(z), then NN M € NS(x).

(TN 3) Superset condition: If M D N for a nonempty N € NS(z), then
M e NS(x).

(TN 4) If N € NS(x), then there is a member M of NS(z) such that
M C N and M € NS(y) for each y € M (that is, M is a neighborhood of
each of its points).

Omitting (TN 4) leads to a so-called pretopological neighborhood system
on U.

3. Total pure reflexive neighborhood systems

A neighborhood system NS : U — 227 in which each € U, NS(z)
satisfying axiom (TN 1) will be referred to as a total pure reflexive (TPR)
neighborhood system on U.

Definition 2 ([2, 11]). Let NS : U — 22" be a TPR neighborhood system.
For each subset X of U, the lower and upper approximations of X, NS(X)
and NS(X), respectively, are defined as follows:

(3.6) NS(X)={zxe€U|N CX, for some N € NS(x)}
(3.7) NS(X)={zcU|NNX#0, VNecNS(z)}.

The lower and upper approximations are mutually dual in the sense that
(3.8) NS(X)=U-NS(U-X), VXCU.

Lemma 2. Let NS : U —» 22 be a TPR netghborhood system. Then:

S(0) = 0.
CNS(X),VXCU

-2

1.
2.
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3. X CY CU implies NS(X) C NS(Y) or equivalently:
NS(XUY)DNS(X)UNS(Y) for all nonempty X,Y C U.
Proof. Item 1 follows immediately from (3.7).

To prove Item 2, considering Items 1, we just need to prove
(3.9) X CNS(X), VX#0.

Suppose that X is a given nonempty subset of U and z € X. If follows
from (3.7) and axiom (TN 1) that € NS(X). This gives (3.9).

Item 3 follows immediately from (3.7).

Given a TPR neighborhood system NS : U — 22", we consider a
new neighborhood system LNS : U —s 227, due to Lin [9], as follows: Let
x €U, if M D N for a neighborhood N € NS(x), then M € LNS(z). In
other words,

(3.10) LNS(z)={M | M 2D N for some N € NS(z)}.

The TPR neighborhood system LNS : U — 22 thus generated will be
referred to as the pre-topologically maximal neighborhood system of NS :
U — 22,

Lemma 3. Let NS : U — 22" be a TPR neighborhood system, and let
LNS : U — 227 be its pre-topologically mazimal neighborhood system.
Then

1. LNS(X) = NS(X) and INS(X) = NS(X), V X C U.
22{XCU|NS(X)=X}={XCU|X € LNS(z) whenever z € X}.

Proof. Item 1 follows immediately from (3.6), (3.7), and (3.10).

We show Item 2 as follows: It is clear that the empty set belong to both
collections. Assume that NS(X) = X and z € X, we have by (3.6) that
there is an N € NS(z) such that N C X; by (3.10), X € LNS(x). This

gives
{XCU|NSX)=X} C{X CU|X € LNS(x) whenever z € X}.
We next show that

{XCU|NSX)=X}D{X CU|X € LNS(x) whenever z € X}.
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Now let X € {X CU | X € LNS(z) whenever z € X} and X # ). We
have by Item 1 and (3.6) that X C LN.S(X) = NS(X) and therefore, using

duality and the extensivity of the upper approximation NS : 2V — 2V we
obtain NS(X) = X.

4. Preclosures, preinteriors, and pretopological
neighborhood systems

By a preclosure on U we mean an operator ¢ : 2V — 2U fulfilling (KC 1),
(KC 2), and (KC 4), but not necessarily (KC 3). That is, a preclosure is
similar to a topological closure, except that it is not required to be idempo-
tent.

4.1. Topologies induced from preclosures

Let ¢: 2V — 2V and i : 2V — 2V be a preclosure and its dual preinterior on
U. A set N C U is a neighborhood of z € U if and only if x € U —¢(U — N).
Let NS(z) be the family of all neighborhoods of x. It can be shown that
the family of all subsets X of U for which ¢(U — X) = U — X is a topology
on U, and that the induced neighborhood system NS : x — NS(z) is a
pretopological neighborhood system on U. More precisely:

Lemma 4. Let ¢ : 2V — 2V and i : 2V — 2V be a preclosure and its dual
preinterior on U, and let

(411) F.={XCU|cX)=X}, T.={{U-X)CU|c(X)=X)

Then

1. the family T. of complements of members of F. is a topology on U.
2. T.={XCU|iX)=X}.
3. the induced neighborhood system

(4.12) NS:z+—— NS(x)={NCU|xz€i(N)}, z€U

is a pretopological neighborhood system on U.

If in addition ¢ : 2V — 2V satisfies the aziom of idempotence, then

(4.13) Fo={c(X)| X CU}, T.={i(X)|XCU}.
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Proof. The proof for Item 1 can be achieved using similar arguments given
by Kelley [5] for Kuratowski closures.

By axiom (KC 1) the empty set belongs to F.; by axiom (KC 2) U C
¢(U); hence U = ¢(U). This gives U € F.. Axiom (KC 4) shows that F. is
closed under binary unions; consequently, F. is closed under finite unions. It
will follow that 7. is a topology for U if it is shown that F, is closed under
arbitrary intersections.

By convention, ﬂ@ = U and therefore, it suffices to show that the in-
tersection of the members of any nonempty subfamily of F. is a member of
Fe.

We now let A be a nonempty subfamily of F., and let B = (1,4 A.
We then have B C A for all A € A, and therefore, from axiom (KC 5),
c(B) C ¢(A) for all A € A. This gives ¢(B) C (yeqc(A) = Ngend = B,
which implies that ¢(B) = B and B € F.. This shows that 7. is a topology.

Item 2 follows from the observation: ¢(X) = X <<= (U — X) =
U-X,VXCU.

We show Item 3 as follows.

(i) Let x € U. If N € NS(x) then by (4.12), = € i(N); hence, by axiom
(KI 2), we have z € N.

(ii) If N, M are members of NS(x) then by (4.12), x € i(N) and z €
i(M). Hence z € i(N)Ni(M); by (KI4), z € i(NNM). This gives NN M €
NS(z).

(iii) We have seen that (KI 4) implies (KI 5). Let z € U. If M D N for a
nonempty N € NS(z) then by (4.12), z € i(N). By (KI 5), z € i(M). This
gives M € NS(z).

If in addition ¢ : 2V — 2V is idempotent, then (4.13) follows immediately
from (4.11), Item 1 and Item 2.

4.2. Topologies from pretopological neighborhood systems

Let NS : U — 22" be a pretopological neighborhood system. We show
that the associated upper approximation NS : 2V — 2V is a preclosure on
U. By Lemma 2, it suffices to show that

NS(XUY)C NS(X)UNS(Y), ¥YX,Y CU.
By contradiction, suppose that ¢ NS(X) U NS(Y). Then
r €U~ (NS(X)UNS(Y))=(U~-NS(X))n(U—-NS(Y)).




Generalized rough sets based on reflexive relations 241

By (3.7), there exist N1, No € NS(x) such that NyNX = () and NoNY = ;
consequently, Ny C (U — X) and Ny C (U —Y). Thus (N; N Ny) C (U —
X)N(U -Y)=U— (XUY); therefore (NN Ny)N(XUY) = 0.

Also, by axioms (TN 1) and (TN 2), x € (N1 N N2) € NS(x); hence
¢ NS(XUY). NS : 2V — 2V is therefore a preclosure on U. This fact,
combined with Lemmas 3 and 4, leads to the following:

Theorem 1. Let NS : U — 22" be a pretopological neighborhood system.
Then

1. the induced upper approzimation NS : 2V — 2V is a preclosure on U.

2. the family T of all subsets X of U for which NS(X) = X forms a
topology on U.

3. a subset X of U belongs to T if and only if it is a neighborhood of each
of its points.

We have thus seen from Lemma 4 that preclosures, preinteriors, and pretopo-
logical neighborhood systems are equivalent constructions on the universe U.

5. Approximation in reflexive relations

Unless otherwise specified, we assume in the following that R C U x U is
reflexive. In rough set community, (2.5) is directly generalized to a reflexive
relation R by interpreting [z]g as R(z) [15].

Definition 3 ([15]). Let R C U x U be reflexive. For any X C U, the lower
and upper approzimations, R.(X) and R*(X), are respectively defined by

(5.14) R.(X)={z €U |R(x) C X}, R*(X)={zeU|R()nX #0}

Observe from (5.14) that the reflexive relation R can be regarded as the
TPR neighborhood system x —— {R(z)}. Using duality and Lemma 2, we
obtain the following:

Lemma 5. Considering a reflexive relation R on U, we have:

1. Ry(X) = U‘WW X), VX CU.

2. R*(0) =0; R, (U) = U.
3RA)§X§WM%VX§U

4. If X CY CU, then R.(X) C R.(Y) and R*(X) C R*(Y).
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5.1. Alexandroff topologies induced by reflexive relations

Considering a reflexive relation R on U, it is useful to observe from (5.14)
that for any nonempty subfamily A of 2V, R*(Uyxes X) = Uyea R*(X).
By convention, | Jy = 0, it follows that

(5.15) R X)=J R(X), vAac2
XeA XeA

Using duality and (5.15), we obtain

(5.16) R[] X)=[) Re(X), VAC2Y

XeA XeA

It follows from Lemma 5 and (5.15) that the upper approximation R* :
2U — 2V associated with the reflexive relation R is a preclosure on U.
According to Lemma 4, the collection Tp = {X C U | Ry(X) = X} is a
topology on U.

We next show that Tg is an Alexandroff topology by showing that the
intersection of the members of any nonempty subfamily of Tr is a member
of Tr. Let A be a nonempty subfamily of 7r, and let B = (4.4 A. By
(5.16), we obtain

R.(B)=R.(() A = () R«(A) = () A= B, hence B € Txg.
AcA AeA AcA

According to Speer [16], the minimal open neighborhoods are the natural
objects of study in an Alexandroff space. In the Alexandroff space (U, Tr),
we might naturally ask, “For each = € U, is R(z), or what is, the smallest
open neighborhood of x?7”

We have seen that preclosures and pretopological neighborhood systems
are equivalent constructions on the universe U.

According to (3.10), the pretopological neighborhood system

x — NS(@x)={NCU| N2R(z)}

is the pre-topologically maximal neighborhood system of z +— {R(z)}.
Based on the associated pretopological neighborhood system, it is clear that
the smallest Tr-open neighborhood of each object x is the intersection of all
Tr-open sets containing R(x).

We summarize the results of this discussion in the following theorem.
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Theorem 2. Considering a reflexive relation R on U, let
(5.17) Tr={X CU|R(X)=X}.

Then

1. the upper approzimation R* : 2V — 2V is a preclosure on U.
2. the collection Tp = {X C U | R.(X) = X} is an Alexandroff topology

onU.

3. the induced pretopological neighborhood system of R* : 2V — 2U s
given by
(5.18) z+— NS(z)={NCU| N2DR(x)}, YVzeUl.

That is, NS : U —s 22° defined by (5.18) is a pretopological neigh-
borhood system and

(5.19) NS(X) = R.(X) and NS(X)=R*(X), VX CU.

4. for each x € U, let S(x) be the smallest open neighborhood of x in the
Alexandroff space (U, Tr). Then

(5.20) S(x)=N{NCU| N D R(x) and R.(N)= N}.
Remark. It is proved in Theorem 3.1 of [18] that the family
(5.21) T = {X CU| Ru(X) = R*(X))

is a topology on U. Let Fr = {X C U | R*(X) = X}. Then, from (5.17)
and (5.21), we obtain "= Tr N Fg.

Considering a reflexive and transitive relation R C U x U and an object
x € U, we have R(z) # () and

R(y) € R(z), Vye€ R(z).
It is thus seen that R(z) is Tr-open; consequently, the neighborhood system
x+— NS(x)={NCU| N2OR(z)}, YexeU.

is a topological neighborhood system on U. According to (4.13) and Theo-
rem 2, we have an immediate consequence as follows.

Corollary 1. Considering a reflexive and transitive relation R on U, we
have
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~

the upper approzimation R* : 2V — 2V is a closure on U.

2. the collection Tp = {X C U | R«(X) = X} is an Alexandroff topology
onU.

3. for each x € U, R(x) is its smallest Tr-open neighborhood.

4. the induced neighborhood system of R* : 2V — 2U given by

x+— NS(z)={NCU| NDR(z)}
s a topological neighborhood system on U.

Example 1. Consider a set U = {x1,29,x3,24} and a reflexive relation

R= {(xl’ xl)’ (l‘?v xQ)a (.563, 563)7 ($47 SU4), (‘Tla 1:2)7 (m3a 'T4>v (3347 xQ)}

R is not symmetric or transitive. The images are:
(5.22)

R(z1) = {x1,22}, R(z2) = {2}, R(x3)={z3,z4} and R(z4) = {x2,z4}.

From these images, we derive the lower and upper approximations as shown
in Table 1.
From Table 1, we have

Tr = {(2)7 {3:2}, {xl,l’g}, {$27$4}7 {xlax27x4}7 {.Iz,xg,ah;}, {x1,$2,$3,$4}},

which can be easily checked to be an Alexandroff topology. From (5.22) and
Table 1, we observe that:

e the images R(x1), R(x2) and R(x4) are open.
e the image R(x3) is closed but not open.
e the smallest open neighborhoods are:

S(x1) =A{z1, 22}, S(x2) = {w2},
S(x3) = {xe,x3,24} and S(x4) = {x2,x4}.

5.2. Definability

It is proved in Result 12 of [15] that for a binary relation R on a finite
universe, an R-definable set X has a unique reference set of maximal cardi-
nality. We observe that the arguments in proving this result are still valid
for infinite universe. This observation leads to the definition of maximal
reference sets of R-definable sets as follows:
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Table 1: The lower and Upper Approximations

| X | R.(X) ‘ R*(X) ‘
0 0 0
{z1} 0 {z1}
{w2} {w2} {a1, 22, 24}
{3} 0 {zs}
{x4} 0 {w3, 4}
{Il,zz} {Il,l’z} {$1,12,$4}
{z1, 23} 0 {z1, 23}
{1’1,1'4} @ {I1,$3,$4}
{22, 3} {xa2} {@1, 20, 23,24}
{332,1‘4} {x2’$4} {x17x27$3ﬂx4}
{3, 24} {3} {3, 24}
{xl,itg,l'g} {1’1,1’2} {%171'2,1'3,‘%4}
{@1, 0,24} {1, 00,24} | {x1, 02,23, 24}
{w1, 23,24} {3} {w1, 23,24}
{$2,$37$4} {$2,$3,$4} {1317962,373,1‘4}
{21, 0, 23,24} | {&1, 00,23, 24} | {21, 20,23, 24}

Definition 4. Considering a binary relation R on U and an R-definable set
X of U. A reference set X" of X is called the maximal reference set of X if
it contains any reference set of X. That is, X" D X' for any reference set
X' of X.

Considering a reflexive relation R on U and a subset X of U, the relation
(5.23) {2z €U|R(z)CX and R '(z) C X} =R.(X)N (R H.(X)
follows from

re{rcU|R(x)CX and R '(z) C X}
< R@)CX and R '(z)C X
— 2€R(X) and z € (R).(X)
— z€R(X)N(R).(X).
According to (5.14), together with Lemma 1 and Result 12 in [15], we obtain
the following:

Theorem 3. Considering a reflexive relation R on U and a subset X of U,
let

(5.24) X" = R.(X)N(R7Y).(X).
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Then

1. X is R-definable if and only if R*(X") = X.
2. If X is R-definable, then X" defined by (5.24) is the maximal reference
set of X.

Given a reflexive relation R C U x U, we associate it with the equivalence
relation E induced by its associated neighborhood system = —— {R(z)}.
That is, (z,y) € E if and only if R(z) = R(y). Accordingly, for any X C U,
R.(X) and R*(X) can be also described as shown below:

(5.25) R.(X) =U{[z]p € U/E| R(z) € X},
(5.26) R*(X)=U{[z]g € U/E | R(z) N X # (}.

According to Theorem 3, we have immediate consequences as follows.

Corollary 2. Considering a reflexive and symmetric relation R on U and

a subset X of U, then X is R-definable if and only if R*(R«(X)) = X.

Corollary 3. Considering a reflexive relation R on U and a subset X of U,
if X is R-definable then it can be expressed as a union of members of U/E.

Example 2. Consider a set U = {x1,29,x3,24} and a reflexive relation

R = {(xh xl)a(x% xg),(l‘g, $3),($4, $4)>(x1> 1‘2),(1'2, xl)v(x?n .CE4),(:B4, $2)}

R is not symmetric or transitive. The images of R and R™' are:

R(:L’l) = {:cl,xg}, Ril(xl) = {1’1,1‘2}
R(z2) = {w1, 22}, R (x2)

(z3) = {w3, x4}, R '(x3) = {3}
R(zs) = {22, x4}, R (24)

Il
—~
8

=
8
g
8
N
-

From the images of R, we have

(5.27) X/E = {{x1, 22}, {3}, {x4}}.
In this example, the set X = {x9,x3, 24} is not R-definable.

e This can been using Item 1 of Theorem 3. We indeed have X" =

{z3, 4} and R*({x3,x4}) # {22, 23,24}
e This can be easily checked using Corollary 3. Indeed, the set X =
{x9, 3,24} cannot be expressed as a union of members of U/E.

Consider now X = {x1,x2,24}. Here X is R-definable since X" =
{z1,22} and R*({z1,22}) = X
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6. Conclusions

Considering a reflexive relation R on a fixed nonempty set U, we use a spe-
cial kind of neighborhood systems, called total pure reflexive neighborhood
systems, to investigate the structure of the approximation space (U, R). We
show that the family of all subsets X of U for which R*(U — X) =U — X
is an Alexandroff topology for U, and that the pre-topologically maximal
neighborhood system of the neighborhood system =z —— {R(z)} associated
to R is exactly the pretopological neighborhood system whose induced up-
per approximation is identical to R*. Accordingly, we show that for each
x € U, its smallest open neighborhood is the intersection of all open sets
containing R(z). We also study the notion of R-definability [15] in rough
approximation theory. We establish a characterization of definable sets in
terms of R* and its dual R,. This result would help explore the concept of
“definability” in neighborhood system approximation theory. In addition,
we give a necessary condition for R-definability.

Approximation spaces (U, R) with the property of R being reflexive,
and reflexive and symmetric, have applications to incomplete information
systems [14]. i.e. to systems in which attribute values for objects may be un-
known (missing, null). In [7], Kryszkiewicz introduced the use of a symmetric
similarity relation to deal with the missing value case. In [17], Stefanowski
and Tsoukias introduced the use of a non symmetric similarity (reflexive)
relation to formalize the idea of absent value semantics. It is our intent to
obtain similar applications under R-definability condition.
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