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Generalized rough sets based on reflexive relations∗

Yu-Ru Syau and Lixing Jia
†

We study the approximation theory of a special kind of neighbor-
hood systems, called total pure reflexive neighborhood systems,
which is a generalization of pretopological and topological neigh-
borhood systems. In the framework of such neighborhood systems,
the so-called lower and upper approximations are considered. For
a pretopological neighborhood system on a fixed nonempty set U ,
we show that the family T of fixed points of its lower approxima-
tion is a topology for U , and establish a characterization (in terms
of neighborhoods) of T -open sets.

We then regard a reflexive relation R on U as the total pure
reflexive neighborhood system x �−→ {R(x) = { y ∈ U | (x, y) ∈
R}}, whose induced upper approximation is identical to the com-
monly used upper approximation R∗ : 2U → 2U based on R.
We show that the family TR of all subsets X of U for which
R∗(U−X) = U−X is an Alexandroff topology for U , and that the
pre-topologically maximal neighborhood system of the neighbor-
hood system x �−→ {R(x)} associated to R is exactly the pretopo-
logical neighborhood system whose induced upper approximation
is identical to R∗ : 2U → 2U . Accordingly, we show that for each
x ∈ U , its smallest TR-open neighborhood is the intersection of all
TR-open sets containing R(x). In addition, we study the so-called
R-definability. We establish a characterization of R-definable sets
in terms of R∗ and its dual R∗, and present a necessary condition
for R-definability.

Keywords and phrases: Rough sets, reflexive relations, neighborhood
systems, preclosures, pretopological neighborhood systems.

1. Introduction

The fundamental concepts of rough set theory are the lower and upper
approximations [12, 13] defined in a Pawlak’s approximation space. Namely,
an ordered pair (U, β) consists of a fixed nonempty set U of all the objects
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under consideration and an indiscernibility relation β ⊆ U × U which is
assumed to be an equivalence relation.

Some generalizations of Pawlak’s approximation spaces have been made
by considering weaker forms of an indiscernibility relation instead of an
equivalence relation [4, 8, 15]. We will simply call such generalizations ap-
proximation spaces.

Slowinski and Vanderpooten [15] suggested that the reflexivity property
seems quite necessary to express any form of indiscernibility or similarity,
and proposed new definitions of lower and upper approximations, R∗(X) and
R∗(X), based on a reflexive relation R. As it is known [6], the family of fixed
points of such a lower approximation is a topology. However, unlike the lower
approximation based on a reflexive and transitive relation [19], the lower
approximation based on a reflexive relation is not in general idempotent.

Pawlak’s lower and upper approximations are indeed a pair of interior
and closure operators on the set U [12, 13]: in other words, they are dual
and the upper approximation satisfies the Kuratowski closure axioms which
define a topological structure on U . There are various equivalent ways of
defining this structure. This leads us to study the topological structure from
different viewpoints.

In this paper, we study the approximation theory of a special kind of
neighborhood systems, called total pure reflexive neighborhood systems. In
the framework of such neighborhood systems, the so-called lower and upper
approximations are considered. For a pretopological neighborhood system
on the set U , we show that the family T of fixed points of its lower approx-
imation is a topology for U , and establish a characterization (in terms of
neighborhoods) of T -open sets.

We then regard a reflexive relation R on U as the total pure reflexive
neighborhood system x �−→ {R(x) = { y ∈ U | (x, y) ∈ R}}, whose induced
upper approximation is identical to R∗ : 2U → 2U . We show that the family
TR of all subsets X of U for which R∗(U −X) = U −X is an Alexandroff
topology. Namely, a topology in which arbitrary intersections of open sets
are open, or equivalently, every point has a minimal open neighborhood [1].
We show that the smallest TR-open neighborhood of each object x ∈ U is the
intersection of all TR-open sets containing R(x). In addition, we study the
notion of R-definability introduced in [15]. We establish a characterization
of R-definable sets in terms of R∗ and its dual R∗, and present a necessary
condition for R-definability.

In what follows, we provide some preliminary backgrounds in section 2.
We then present total pure reflexive (TPR) neighborhood systems and pre-
topological neighborhood systems in section 3 and 4 respectively. In sec-
tion 5, we consider TPR neighborhood systems under a reflexive relation
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R and characterize R-definable sets. We conclude with some remarks and
future projects in section 6.

2. Preliminaries

Let U be a certain nonempty set referred as the universe (of discourse). The
power set of U , denoted by 2U , is the collection of all subsets of U . That is,
2U = {S | S ⊆ U}.

We use the symbols ⊆ and ⊂ to indicate “subset” and “proper subset”
respectively.

Let R ⊆ U ×U be a (binary) relation on U . We often write xRy instead
of (x, y) ∈ R. The inverse relation of R, denoted by R−1, is obtained by
reversing the ordered pairs of R. That is, R−1 = {(x, y) | (y, x) ∈ R}.

For x ∈ U , the subset of U defined by R(x) = { y ∈ U | xRy} is called
the image of x under R. Observe that

R−1(x) = { y ∈ U | xR−1y} = { y ∈ U | yRx}.
Notice that if R is symmetric then R(x) = R−1(x) for each x ∈ U . If R is
an equivalence relation on U , then for each x ∈ U the set R(x) = R−1(x)
coincides with the R-equivalence class [x]R of x, and we designate by X/R
the family of all distinct R-equivalence classes.

Lemma 1 ([15]). Let R ⊆ U × U be reflexive. For any X ⊆ U , we have

(2.1)
⋃

x∈X
R−1(x) = {x ∈ U | R(x) ∩X 	= ∅}.

Definition 1 ([15]). Considering a subset X ⊆ U and a binary relation R
defined on U , X is R-definable if and only if:

(2.2) ∃ X ′ ⊆ X such that X =
⋃

x∈X′

R−1(x)

(2.3) ∀ x ∈ X ′, R(x) ⊆ X.

Such a set X ′ is referred to as a reference set of the R-definable set X.

2.1. Pawlak’s lower and upper approximations

Let β be an equivalence relation on U . For any X ⊆ U , according to Pawlak
[13], a pair of lower and upper approximations, β∗(X) and β∗(X), respec-
tively, are defined as follows:

(2.4) β∗(X) = ∪{Y ∈ U/β | Y ⊆ X}, β∗(X) = ∪{Y ∈ U/β | Y ∩X 	= ∅}.
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Equivalently, β(X) and β(X) can be also presented as below:

(2.5) β∗(X) = {x ∈ U | [x]β ⊆ X}, β∗(X) = {x ∈ U | [x]β ∩X 	= ∅}.

2.2. The notion of topological spaces

A family T of subsets of U is called a topology on U if it contains the
whole set U and the empty set ∅, and is closed under finite intersections and
arbitrary unions. The pair (U, T ) is called a topological space. The members
of T are called T -open, or open sets.

The complement of an open set is called a closed set. Using de Morgan’s
laws, topology can be alternatively described in terms of closed sets as well;
more precisely, U and ∅ are closed, arbitrary intersections of closed sets are
closed, and finite unions of closed sets are closed.

There are many other ways to set up axioms, including the so-called Ku-
ratowski closure axioms (in short, KC-axioms) and the topological neighbor-
hood axioms (in short, TN-axioms), that can be used to define this structure.

2.2.1. Kuratowski closure axioms An operator c : 2U −→ 2U is called
a (topological) closure on U if it satisfies the following four statements
(known as the Kuratowski closure axioms):

(KC 1) c(∅) = ∅ (Preservation of nullary unions).
(KC 2) For each X, X ⊆ c(X) (Extensivity).
(KC 3) For each X, c(c(X)) = c(X) (Idempotence).
(KC 4) For each X and Y , c(X ∪ Y ) = c(X) ∪ c(Y ) (Additivity).

The last axiom implies the following:

(KC 5) If X ⊆ Y then c(X) ⊆ c(Y ) (Order-preserving).

The dual of a closure c : 2U −→ 2U is the interior i : 2U −→ 2U defined by

i(X) = U − c(U −X), ∀ X ⊆ U .

Then the interior satisfies the so-called Kuratowski interior axioms which
are dual to the Kuratowski closure axioms:

(KI 1) i(U) = U .
(KI 2) For each X, i(X) ⊆ X.
(KI 3) For each X, i(i(X)) = i(X) (Idempotence).
(KI 4) For each X and Y , i(X ∩ Y ) = i(X) ∩ i(Y ).

The last axiom implies the following:

(KI 5) If X ⊆ Y then i(X) ⊆ i(Y ) (order-preserving).
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2.2.2. Topological neighborhood axioms By a neighborhood system
on U we mean a mapping NS : U −→ 22

U

which assigns to each x ∈ U a
nonempty collection NS(x) of subsets of U called neighborhoods of x.

Note that the broader definition given in [3, 10] for a neighborhood
system on U doesn’t require that NS(x) 	= ∅ for each x ∈ U .

A neighborhood system NS : U → 22
U

is called a topological neighbor-
hood system, or a topology, on U if for each x ∈ U , NS(x) satisfies the
following TN-axioms [5]:

(TN 1) If N ∈ NS(x), then x ∈ N .

(TN 2) If N , M are members of NS(x), then N ∩M ∈ NS(x).

(TN 3) Superset condition: If M ⊇ N for a nonempty N ∈ NS(x), then
M ∈ NS(x).

(TN 4) If N ∈ NS(x), then there is a member M of NS(x) such that
M ⊆ N and M ∈ NS(y) for each y ∈ M (that is, M is a neighborhood of
each of its points).

Omitting (TN 4) leads to a so-called pretopological neighborhood system
on U .

3. Total pure reflexive neighborhood systems

A neighborhood system NS : U −→ 22
U

in which each x ∈ U , NS(x)
satisfying axiom (TN 1) will be referred to as a total pure reflexive (TPR)
neighborhood system on U .

Definition 2 ([2, 11]). Let NS : U −→ 22
U

be a TPR neighborhood system.
For each subset X of U , the lower and upper approximations of X, NS(X)
and NS(X), respectively, are defined as follows:

NS(X) = {x ∈ U | N ⊆ X, for some N ∈ NS(x)}(3.6)

NS(X) = {x ∈ U | N ∩X 	= ∅, ∀ N ∈ NS(x)}.(3.7)

The lower and upper approximations are mutually dual in the sense that

(3.8) NS(X) = U −NS(U −X), ∀ X ⊆ U.

Lemma 2. Let NS : U −→ 22
U

be a TPR neighborhood system. Then:

1. NS(∅) = ∅.
2. X ⊆ NS(X), ∀ X ⊆ U .
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3. X ⊂ Y ⊆ U implies NS(X) ⊆ NS(Y ) or equivalently:

NS(X ∪ Y ) ⊇ NS(X) ∪NS(Y ) for all nonempty X,Y ⊆ U .

Proof. Item 1 follows immediately from (3.7).

To prove Item 2, considering Items 1, we just need to prove

(3.9) X ⊆ NS(X), ∀ X 	= ∅.

Suppose that X is a given nonempty subset of U and x ∈ X. If follows

from (3.7) and axiom (TN 1) that x ∈ NS(X). This gives (3.9).

Item 3 follows immediately from (3.7).

Given a TPR neighborhood system NS : U −→ 22
U

, we consider a

new neighborhood system LNS : U −→ 22
U

, due to Lin [9], as follows: Let

x ∈ U , if M ⊇ N for a neighborhood N ∈ NS(x), then M ∈ LNS(x). In

other words,

(3.10) LNS(x) = {M | M ⊇ N for some N ∈ NS(x)}.

The TPR neighborhood system LNS : U −→ 22
U

thus generated will be

referred to as the pre-topologically maximal neighborhood system of NS :

U −→ 22
U

.

Lemma 3. Let NS : U −→ 22
U

be a TPR neighborhood system, and let

LNS : U −→ 22
U

be its pre-topologically maximal neighborhood system.

Then

1. LNS(X) = NS(X) and LNS(X) = NS(X), ∀ X ⊆ U .

2. {X ⊆ U | NS(X) = X} = {X ⊆ U | X ∈ LNS(x) whenever x ∈ X}.

Proof. Item 1 follows immediately from (3.6), (3.7), and (3.10).

We show Item 2 as follows: It is clear that the empty set belong to both

collections. Assume that NS(X) = X and x ∈ X, we have by (3.6) that

there is an N ∈ NS(x) such that N ⊆ X; by (3.10), X ∈ LNS(x). This

gives

{X ⊆ U | NS(X) = X} ⊆ {X ⊆ U | X ∈ LNS(x) whenever x ∈ X}.

We next show that

{X ⊆ U | NS(X) = X} ⊇ {X ⊆ U | X ∈ LNS(x) whenever x ∈ X}.
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Now let X ∈ {X ⊆ U | X ∈ LNS(x) whenever x ∈ X} and X 	= ∅. We

have by Item 1 and (3.6) that X ⊆ LNS(X) = NS(X) and therefore, using

duality and the extensivity of the upper approximation NS : 2U → 2U , we

obtain NS(X) = X.

4. Preclosures, preinteriors, and pretopological
neighborhood systems

By a preclosure on U we mean an operator c : 2U → 2U fulfilling (KC 1),

(KC 2), and (KC 4), but not necessarily (KC 3). That is, a preclosure is

similar to a topological closure, except that it is not required to be idempo-

tent.

4.1. Topologies induced from preclosures

Let c : 2U → 2U and i : 2U → 2U be a preclosure and its dual preinterior on

U . A set N ⊆ U is a neighborhood of x ∈ U if and only if x ∈ U − c(U −N).

Let NS(x) be the family of all neighborhoods of x. It can be shown that

the family of all subsets X of U for which c(U −X) = U −X is a topology

on U , and that the induced neighborhood system NS : x �−→ NS(x) is a

pretopological neighborhood system on U . More precisely:

Lemma 4. Let c : 2U → 2U and i : 2U → 2U be a preclosure and its dual

preinterior on U , and let

(4.11) Fc = {X ⊆ U | c(X) = X}, Tc = {(U −X) ⊆ U | c(X) = X}.

Then

1. the family Tc of complements of members of Fc is a topology on U .

2. Tc = {X ⊆ U | i(X) = X}.
3. the induced neighborhood system

(4.12) NS : x �−→ NS(x) = {N ⊆ U | x ∈ i(N)}, x ∈ U

is a pretopological neighborhood system on U .

If in addition c : 2U → 2U satisfies the axiom of idempotence, then

(4.13) Fc = {c(X) | X ⊆ U}, Tc = {i(X) | X ⊆ U}.



240 Yu-Ru Syau and Lixing Jia

Proof. The proof for Item 1 can be achieved using similar arguments given
by Kelley [5] for Kuratowski closures.

By axiom (KC 1) the empty set belongs to Fc; by axiom (KC 2) U ⊆
c(U); hence U = c(U). This gives U ∈ Fc. Axiom (KC 4) shows that Fc is
closed under binary unions; consequently, Fc is closed under finite unions. It
will follow that Tc is a topology for U if it is shown that Fc is closed under
arbitrary intersections.

By convention,
⋂

∅ = U and therefore, it suffices to show that the in-
tersection of the members of any nonempty subfamily of Fc is a member of
Fc.

We now let A be a nonempty subfamily of Fc, and let B =
⋂

A∈AA.
We then have B ⊆ A for all A ∈ A, and therefore, from axiom (KC 5),
c(B) ⊆ c(A) for all A ∈ A. This gives c(B) ⊆

⋂
A∈A c(A) =

⋂
A∈AA = B,

which implies that c(B) = B and B ∈ Fc. This shows that Tc is a topology.

Item 2 follows from the observation: c(X) = X ⇐⇒ i(U − X) =
U −X, ∀ X ⊆ U .

We show Item 3 as follows.

(i) Let x ∈ U . If N ∈ NS(x) then by (4.12), x ∈ i(N); hence, by axiom
(KI 2), we have x ∈ N .

(ii) If N , M are members of NS(x) then by (4.12), x ∈ i(N) and x ∈
i(M). Hence x ∈ i(N)∩ i(M); by (KI 4), x ∈ i(N ∩M). This gives N ∩M ∈
NS(x).

(iii) We have seen that (KI 4) implies (KI 5). Let x ∈ U . If M ⊇ N for a
nonempty N ∈ NS(x) then by (4.12), x ∈ i(N). By (KI 5), x ∈ i(M). This
gives M ∈ NS(x).

If in addition c : 2U → 2U is idempotent, then (4.13) follows immediately
from (4.11), Item 1 and Item 2.

4.2. Topologies from pretopological neighborhood systems

Let NS : U −→ 22
U

be a pretopological neighborhood system. We show
that the associated upper approximation NS : 2U −→ 2U is a preclosure on
U . By Lemma 2, it suffices to show that

NS(X ∪ Y ) ⊆ NS(X) ∪NS(Y ), ∀ X,Y ⊆ U .

By contradiction, suppose that x /∈ NS(X) ∪NS(Y ). Then

x ∈ U − (NS(X) ∪NS(Y )) = (U −NS(X)) ∩ (U −NS(Y )).
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By (3.7), there exist N1, N2 ∈ NS(x) such that N1∩X = ∅ and N2∩Y = ∅;
consequently, N1 ⊆ (U − X) and N2 ⊆ (U − Y ). Thus (N1 ∩ N2) ⊆ (U −
X) ∩ (U − Y ) = U − (X ∪ Y ); therefore (N1 ∩N2) ∩ (X ∪ Y ) = ∅.

Also, by axioms (TN 1) and (TN 2), x ∈ (N1 ∩ N2) ∈ NS(x); hence

x /∈ NS(X ∪ Y ). NS : 2U → 2U is therefore a preclosure on U . This fact,

combined with Lemmas 3 and 4, leads to the following:

Theorem 1. Let NS : U −→ 22
U

be a pretopological neighborhood system.

Then

1. the induced upper approximation NS : 2U → 2U is a preclosure on U .

2. the family T of all subsets X of U for which NS(X) = X forms a

topology on U .

3. a subset X of U belongs to T if and only if it is a neighborhood of each

of its points.

We have thus seen from Lemma 4 that preclosures, preinteriors, and pretopo-

logical neighborhood systems are equivalent constructions on the universe U .

5. Approximation in reflexive relations

Unless otherwise specified, we assume in the following that R ⊆ U × U is

reflexive. In rough set community, (2.5) is directly generalized to a reflexive

relation R by interpreting [x]β as R(x) [15].

Definition 3 ([15]). Let R ⊆ U ×U be reflexive. For any X ⊆ U , the lower

and upper approximations, R∗(X) and R∗(X), are respectively defined by

(5.14) R∗(X) = {x ∈ U | R(x) ⊆ X}, R∗(X) = {x ∈ U | R(x) ∩X 	= ∅}.

Observe from (5.14) that the reflexive relation R can be regarded as the

TPR neighborhood system x �−→ {R(x)}. Using duality and Lemma 2, we

obtain the following:

Lemma 5. Considering a reflexive relation R on U , we have:

1. R∗(X) = U −R∗(U −X), ∀ X ⊆ U .

2. R∗(∅) = ∅; R∗(U) = U .

3. R∗(X) ⊆ X ⊆ R∗(X), ∀ X ⊆ U .

4. If X ⊆ Y ⊆ U , then R∗(X) ⊆ R∗(Y ) and R∗(X) ⊆ R∗(Y ).
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5.1. Alexandroff topologies induced by reflexive relations

Considering a reflexive relation R on U , it is useful to observe from (5.14)

that for any nonempty subfamily A of 2U , R∗(
⋃

X∈A X) =
⋃

X∈A R∗(X).

By convention,
⋃

∅ = ∅, it follows that

(5.15) R∗(
⋃

X∈A
X) =

⋃

X∈A
R∗(X), ∀ A ⊆ 2U .

Using duality and (5.15), we obtain

(5.16) R∗(
⋂

X∈A
X) =

⋂

X∈A
R∗(X), ∀ A ⊆ 2U .

It follows from Lemma 5 and (5.15) that the upper approximation R∗ :

2U −→ 2U associated with the reflexive relation R is a preclosure on U .

According to Lemma 4, the collection TR = {X ⊆ U | R∗(X) = X} is a

topology on U .

We next show that TR is an Alexandroff topology by showing that the

intersection of the members of any nonempty subfamily of TR is a member

of TR. Let A be a nonempty subfamily of TR, and let B =
⋂

A∈A A. By

(5.16), we obtain

R∗(B) = R∗(
⋂

A∈A
A) =

⋂
A∈A

R∗(A) =
⋂

A∈A
A = B; hence B ∈ TR.

According to Speer [16], the minimal open neighborhoods are the natural

objects of study in an Alexandroff space. In the Alexandroff space (U, TR),
we might naturally ask, “For each x ∈ U , is R(x), or what is, the smallest

open neighborhood of x?”

We have seen that preclosures and pretopological neighborhood systems

are equivalent constructions on the universe U .

According to (3.10), the pretopological neighborhood system

x �−→ NS(x) = {N ⊆ U | N ⊇ R(x)}

is the pre-topologically maximal neighborhood system of x �−→ {R(x)}.
Based on the associated pretopological neighborhood system, it is clear that

the smallest TR-open neighborhood of each object x is the intersection of all

TR-open sets containing R(x).

We summarize the results of this discussion in the following theorem.
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Theorem 2. Considering a reflexive relation R on U , let

(5.17) TR = {X ⊆ U | R∗(X) = X}.

Then

1. the upper approximation R∗ : 2U → 2U is a preclosure on U .
2. the collection TR = {X ⊆ U | R∗(X) = X} is an Alexandroff topology

on U .
3. the induced pretopological neighborhood system of R∗ : 2U → 2U is

given by

(5.18) x �−→ NS(x) = {N ⊆ U | N ⊇ R(x)}, ∀ x ∈ U.

That is, NS : U −→ 22
U

defined by (5.18) is a pretopological neigh-
borhood system and

(5.19) NS(X) = R∗(X) and NS(X) = R∗(X), ∀ X ⊆ U.

4. for each x ∈ U , let S(x) be the smallest open neighborhood of x in the
Alexandroff space (U, TR). Then

(5.20) S(x) = ∩ {N ⊆ U | N ⊇ R(x) and R∗(N) = N}.

Remark. It is proved in Theorem 3.1 of [18] that the family

(5.21) T = {X ⊆ U | R∗(X) = R∗(X)}

is a topology on U . Let FR = {X ⊆ U | R∗(X) = X}. Then, from (5.17)
and (5.21), we obtain T = TR ∩ FR.

Considering a reflexive and transitive relation R ⊆ U ×U and an object
x ∈ U , we have R(x) 	= ∅ and

R(y) ⊆ R(x), ∀ y ∈ R(x).

It is thus seen that R(x) is TR-open; consequently, the neighborhood system

x �−→ NS(x) = {N ⊆ U | N ⊇ R(x)}, ∀ x ∈ U .

is a topological neighborhood system on U . According to (4.13) and Theo-
rem 2, we have an immediate consequence as follows.

Corollary 1. Considering a reflexive and transitive relation R on U , we
have
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1. the upper approximation R∗ : 2U → 2U is a closure on U .
2. the collection TR = {X ⊆ U | R∗(X) = X} is an Alexandroff topology

on U .
3. for each x ∈ U , R(x) is its smallest TR-open neighborhood.
4. the induced neighborhood system of R∗ : 2U → 2U given by

x �−→ NS(x) = {N ⊆ U | N ⊇ R(x)}

is a topological neighborhood system on U .
5. TR = {R∗(X) | X ⊆ U}.

Example 1. Consider a set U = {x1, x2, x3, x4} and a reflexive relation

R = {(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x1, x2), (x3, x4), (x4, x2)}.

R is not symmetric or transitive. The images are:
(5.22)
R(x1) = {x1, x2}, R(x2) = {x2}, R(x3) = {x3, x4} and R(x4) = {x2, x4}.

From these images, we derive the lower and upper approximations as shown
in Table 1.
From Table 1, we have

TR = {∅, {x2}, {x1, x2}, {x2, x4}, {x1, x2, x4}, {x2, x3, x4}, {x1, x2, x3, x4}},

which can be easily checked to be an Alexandroff topology. From (5.22) and
Table 1, we observe that:

• the images R(x1), R(x2) and R(x4) are open.
• the image R(x3) is closed but not open.
• the smallest open neighborhoods are:

S(x1) = {x1, x2}, S(x2) = {x2},
S(x3) = {x2, x3, x4} and S(x4) = {x2, x4}.

5.2. Definability

It is proved in Result 12 of [15] that for a binary relation R on a finite
universe, an R-definable set X has a unique reference set of maximal cardi-
nality. We observe that the arguments in proving this result are still valid
for infinite universe. This observation leads to the definition of maximal
reference sets of R-definable sets as follows:
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Table 1: The lower and Upper Approximations

X R∗(X) R∗(X)

∅ ∅ ∅
{x1} ∅ {x1}
{x2} {x2} {x1, x2, x4}
{x3} ∅ {x3}
{x4} ∅ {x3, x4}

{x1, x2} {x1, x2} {x1, x2, x4}
{x1, x3} ∅ {x1, x3}
{x1, x4} ∅ {x1, x3, x4}
{x2, x3} {x2} {x1, x2, x3, x4}
{x2, x4} {x2, x4} {x1, x2, x3, x4}
{x3, x4} {x3} {x3, x4}

{x1, x2, x3} {x1, x2} {x1, x2, x3, x4}
{x1, x2, x4} {x1, x2, x4} {x1, x2, x3, x4}
{x1, x3, x4} {x3} {x1, x3, x4}
{x2, x3, x4} {x2, x3, x4} {x1, x2, x3, x4}

{x1, x2, x3, x4} {x1, x2, x3, x4} {x1, x2, x3, x4}

Definition 4. Considering a binary relation R on U and an R-definable set
X of U . A reference set X ′′ of X is called the maximal reference set of X if
it contains any reference set of X. That is, X ′′ ⊇ X ′ for any reference set
X ′ of X.

Considering a reflexive relation R on U and a subset X of U , the relation

(5.23) {x ∈ U | R(x) ⊆ X and R−1(x) ⊆ X} = R∗(X) ∩ (R−1)∗(X)

follows from

x ∈ {x ∈ U | R(x) ⊆ X and R−1(x) ⊆ X}
⇐⇒ R(x) ⊆ X and R−1(x) ⊆ X

⇐⇒ x ∈ R∗(X) and x ∈ (R−1)∗(X)

⇐⇒ x ∈ R∗(X) ∩ (R−1)∗(X).

According to (5.14), together with Lemma 1 and Result 12 in [15], we obtain
the following:

Theorem 3. Considering a reflexive relation R on U and a subset X of U ,
let

(5.24) X ′′ = R∗(X) ∩ (R−1)∗(X).
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Then

1. X is R-definable if and only if R∗(X ′′) = X.
2. If X is R-definable, then X ′′ defined by (5.24) is the maximal reference

set of X.

Given a reflexive relation R ⊆ U×U , we associate it with the equivalence
relation E induced by its associated neighborhood system x �−→ {R(x)}.
That is, (x, y) ∈ E if and only if R(x) = R(y). Accordingly, for any X ⊆ U ,
R∗(X) and R∗(X) can be also described as shown below:

(5.25) R∗(X) = ∪{[x]E ∈ U/E | R(x) ⊆ X},
(5.26) R∗(X) = ∪{[x]E ∈ U/E | R(x) ∩X 	= ∅}.

According to Theorem 3, we have immediate consequences as follows.

Corollary 2. Considering a reflexive and symmetric relation R on U and
a subset X of U , then X is R-definable if and only if R∗(R∗(X)) = X.

Corollary 3. Considering a reflexive relation R on U and a subset X of U ,
if X is R-definable then it can be expressed as a union of members of U/E.

Example 2. Consider a set U = {x1, x2, x3, x4} and a reflexive relation

R = {(x1, x1),(x2, x2),(x3, x3),(x4, x4),(x1, x2),(x2, x1),(x3, x4),(x4, x2)}.

R is not symmetric or transitive. The images of R and R−1 are:

R(x1) = {x1, x2}, R−1(x1) = {x1, x2}
R(x2) = {x1, x2}, R−1(x2) = {x1, x2, x4}
R(x3) = {x3, x4}, R−1(x3) = {x3}
R(x4) = {x2, x4}, R−1(x4) = {x3, x4}.

From the images of R, we have

(5.27) X/E = {{x1, x2}, {x3}, {x4}}.

In this example, the set X = {x2, x3, x4} is not R-definable.

• This can been using Item 1 of Theorem 3. We indeed have X ′′ =
{x3, x4} and R∗({x3, x4}) 	= {x2, x3, x4}.

• This can be easily checked using Corollary 3. Indeed, the set X =
{x2, x3, x4} cannot be expressed as a union of members of U/E.

Consider now X = {x1, x2, x4}. Here X is R-definable since X ′′ =
{x1, x2} and R∗({x1, x2}) = X.
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6. Conclusions

Considering a reflexive relation R on a fixed nonempty set U , we use a spe-
cial kind of neighborhood systems, called total pure reflexive neighborhood
systems, to investigate the structure of the approximation space (U,R). We
show that the family of all subsets X of U for which R∗(U −X) = U −X
is an Alexandroff topology for U , and that the pre-topologically maximal
neighborhood system of the neighborhood system x �−→ {R(x)} associated
to R is exactly the pretopological neighborhood system whose induced up-
per approximation is identical to R∗. Accordingly, we show that for each
x ∈ U , its smallest open neighborhood is the intersection of all open sets
containing R(x). We also study the notion of R-definability [15] in rough
approximation theory. We establish a characterization of definable sets in
terms of R∗ and its dual R∗. This result would help explore the concept of
“definability” in neighborhood system approximation theory. In addition,
we give a necessary condition for R-definability.

Approximation spaces (U,R) with the property of R being reflexive,
and reflexive and symmetric, have applications to incomplete information
systems [14]. i.e. to systems in which attribute values for objects may be un-
known (missing, null). In [7], Kryszkiewicz introduced the use of a symmetric
similarity relation to deal with the missing value case. In [17], Stefanowski
and Tsoukias introduced the use of a non symmetric similarity (reflexive)
relation to formalize the idea of absent value semantics. It is our intent to
obtain similar applications under R-definability condition.
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