COMMUNICATIONS IN INFORMATION AND SYSTEMS © 2012 International Press
Vol. 12, No. 2, pp. 157-184, 2012 002

POLYNOMIAL CALCULATIONS IN DOPPLER TRACKING

TSUNG-LIN LEE*, SONG-SUN LINt, WEN-WEI LINf, SHING-TUNG YAUS$,
AND JUBO ZHUY

Abstract. Tracking a moving object by the Doppler effect is an important tool to locate the
position and to measure the velocity of a moving object. In theory, the corresponding movement of
the object can be formulated by a system of 12 quadratic polynomials in 12 unknowns. In this paper,
we mainly propose a novel simplification to reduce the original system to a system of 4 polynomials
of degrees 4, 3, 2 and 2 in 4 unknowns. Furthermore, we can also reduce the original system to
a new system of only three quadratic polynomials in 3 unknowns when the 6 observation stations
are located at the vertices and centre of a regular pentagon, numerical experiments show that the
simplified polynomial system can be solved by the homotopy method efficiently and reliably. The
method is much more robust than Newton’s method when the initial vector is far from the solution.

Also, the regular pentagon case outperforms the other configurations in terms of numerical accuracy.

1. Introduction. Tracking of moving objects is an important subject in many
applications [2, 3, 9]. In general, the relative positions of moving objects are unknown
and to be determined. Nevertheless, the relative speed of a moving object is known
and can be measured by the Doppler effect by some observation stations. For tracking
an object in the space, we are interested in finding its position u(t) = (z(t), y(t), z(t))"
and the associated velocity u(t) = (&(t),9(t), 2(t))" in time . Suppose we have N
observation stations located at {sj = (zj, 95, zj)T}j - The distances between u(t)

and s;, and the associated derivatives, can be formul_ated, for j=1,...,N, as

(1) (& —2)* + (y —y)* + (2 — ) =17,

(2) (. —2)+ (y —y;)y + (2 — 2;)2 = ;75

In practice, the data 7; in (2) can be measured by the Doppler effect.
By substituting r; = /(z — 2;)% + (y — y;)® + (z — 2;)2 of (1) into (2), we get

R C )L ol et ) sl o ) AR -
(3)  Fi(v) N T 0, (j=1,..,N)
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where v = (m,y7z,:'v,y'7,é)T. Since v has 6 unknowns, it is natural to consider N =
6 in (3) with 6 measured data {i'j}?zl and a system of nonlinear equations F =

(Fy,--,Fs)" : RS — R6. Newton’s method can then be applied for its solution.

In practice, there are advantages and disadvantages for solving (3) by Newton-
type methods. It is well-known that Newton’s method converges locally and quadrati-
cally. However, to locate a “good” initial vector, in general, is crucial. It may become
difficult if the time step in the observation process is too large (see the numerical
experiments in Section 4). In addition, equations in (3) are fully nonlinear, thus the
evaluation of the Jacobian matrix in each Newton step may be costly. Therefore, in
the following sections, we are motivated to reconsider solving the original system of

polynomials in (1) and (2) in the 12 unknowns {z,vy, z,%,9, 2,71, -+ ,76}.

Historical Note. The problem of using six stations to track a moving object
was proposed by the last author Zhu and his group. Newton’s method were applied,
with its associated problems of initial guesses. In December 2011, Zhu asked Yau
whether the problem can be solved in closed form. Yau proposed the elimination
of variables, reducing the problem to the intersection of a couple polynomials. The
detail and nontrivial analysis was then carried out by the first three authors, and
the calculations were implemented by the fast polynomial system solver developed by
TY Li (Michigan State University).

2. Simplification of Systems of Polynomials. The homotopy method [1, 6]
is a very powerful tool for finding all solutions of systems of polynomial equations.
We now consider the original system of quadratic polynomials of (1) and (2) with
N =6 in 12 unknowns {z,y, 2, 4,9, 2,71, -+ ,76}, and propose a novel simplification
to reduce the 12 unknowns to three or four unknowns so that the homotopy method

can be applied more efficiently.

For given 6 positions {(z;,y;, zj)T}?:l of observation stations, and the measured
speeds {7 }?:1 by the Doppler effect in (1) and (2), we denote the following simplifying

notations. Let

2 2 2 :
r1 Y1 21 xy +y] + 27 T1 T1
2 2 2 :
Ty Y2 22 x5 + Y5 + Z5 ) T2
2 2 2 :
T3 Yz 23 T3 +y3 + 23 . T3 T3
4) V= , n= 5 s o | T= , T = ,
Ty Y4 24 Ty +ys +z; T4 T4
2 2 2 :
5 Ys 25 T+ ys + 25 Ts s
2 2 2 :
| Z6 Ys %6 | | T+ Vst 25 | L 76 | L 76 ]
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x @
(5) R =diag(¥), R =diag(r), u= ,u=| g |, ror=
z z

Subtracting the 1st equation from the jth equation (j # 1) in (2) yields

-1 1 0 0 0 0
-1 0 1 0 0 O
(6) CVou=—CRr, C=| -1 0 0 1 0 0
-1 0 0 01 O
-1 0 0 0 0 1
Similar manipulations in (1) produce
1
(7) CVou = iC(n —ror).

159

Assuming that CVj is of full rank, the matrix Vil CTCVj is invertible. Multiplying

(6) and (7) by VFCT, respectively, we have

(8) a = (V' CTCV) N (Vg CTC)(—Rr)
and
(9) u= %(VOTCTC’VO)_I(VOTCTC)(n —ror).

It is easily seen that the unknowns u = (z,y,2)" and 0 = (i,4, )" in (8) and (9)

can be represented in terms of {r; }?:1. Denote, for j =1,...,6,

(10) A= (V' CTCV) T (V' CT0), uy = (2,5, 2)",
. T 1

(11) p=(—Rr)=(p1,.-,ps) , Q= §(n—ror).

Substituting equations (8) and (9) into (2) and (1), we have, for j = 1, ...,6, the cubic

equations

(12) q" AT Ap —uj Ap = —p;,

and the quartic equations

(13) q" AT Aq - 2u] Aq+ uj u; =i %p,

in the 12 unknown {z,y, 2, &, 9, 2,71, ...,76 }-
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We now subtract the 2nd equation of (12) from the jth equation for j = 3,...,6

and get four equations

(14) (ug—uj)TAp =po —p;.
Denote
0 -1 1.0 0 0
~ 0 -1 01 0 0
(15) ¢ = ,
0O -1 0 0 1 O
0 -1 0 0 0 1

the equations in (14) can be rewritten in matrix form

(uz—us)"
—_ T o~ . ~

(16) (uz “4)T A+C | Rr=Ar=o,

(uz—us)

(uz—ug)”
where A € R*6, In fact, from the original system in (1), the rank of A can be

-~ T T

shown generically to be 2 (see Appendix A). Hence, let QT A = 01 > | be the

QR factorization [4] of A, where Q € R4** is orthogonal, Ty € R2*4 and T} € R2*2
is nonsingular. Then from (4) and (16), the unknowns {r1, 72} can be represented in

terms of r3, 14, r5 and rg:

T3

(17) [rl — ' |
T2 s

Te

Therefore, from (8), (9) and (17), we can solve the cubic equations of (12) and the

quartic equations of (13) on the (rs, 74,75, 76)-plane.

Next, we simplify equations of (12) and (13) with j = 1. From (11) and the
relation in (17), the Ist equation in (12) can be simplified to a cubic equations in
r3,74,75 and rg:

1 . . 1
(18) (ro r)TiATARr —af ARr = ri7y, W = §An —u.
Similarly, from (11), the 1st equation of (13) can be written as

q’ AT Aq — 2u{ Aq + ufu,
1 1
= E(r or)TATA(ror) — (inTAT —ulA(ror)

1

4nTATAn —ufAn + uluy)

+(
(19) =i
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From the definition 11 in (18) and the relation in (17), (19) can be simplified to

a quartic equation in rs,ry,r5 and rg :

1
(20) Z(T or)TATA(ror) —al'A(ror) + & =12,
where ¢ = (4nTATAn — uT An + ul'u).

Finally, we subtract the 2nd equation of (13) from the jth equation for j = 3, ...,6

and get four equations

(21) 2 (UQ*Uj)T Aq + u]Tujfuqu = r? — r%.
From (16), (21) can be written in the matrix form
(uy—ug)” (u,—us)”
(u27u4)T ~ (u27u4)T ~
(22) r |A+C|ror= s |A+C|n
(uy—us) (uy—us)
(uz_UG)T (u2—u6)T
=Aror = An

The matrix A is generically of rank 2 (see Appendix A). Hence, it is sufficient to

choose two linearly independent equations in (22).

6

For given positions of stations {(,fl;j,yj,Zj)T}j:l and 6 measured data {7} _,

by the Doppler effect, the radii {r; }?:1 can be computed by solving the system of 4

polynomials of degree 3, 4, 2 and 2 in 4 unknowns 73,74, 75 and r¢ :

%(r o r)TATARr — ﬁfARr—hrl =0,
%(r o r)TATA(r or)—af A(ror)+é—1r? =0,

(23)
(ug—uz)TA(ror) — r2 +r2 — uluz+uluy — (ug—u3z)7 An = 0,
(ug—uy)TA(ror) —r2 +r? —ulus+uluy — (uy—uy)"An =0,
T T
where [ T T = -T,'Ty { T3S T4 Ts T ] . The system in (23) has

48 solutions. The position (z,y,2)T and the velocity (&,7,2)T, respectively, of the

moving object are immediately obtained by

{ u=(r,y,2)7 = %A(n—ror),

24 .
(24) 9,27 = —ARr.

—~

1:1:

Furthermore, (23) can theoretically be simplified to a system of 2 polynomial
equations of degrees 12 and 16 in 2 unknowns. Compared to (23), this simplification
reduces the number of unknowns from 4 to 2. However, the number of potential
solutions is increased from 48 to 192. In practice, the 2-variable polynomial system
with higher degrees in much more troublesome than (23) when solved by the homotopy

method. We leave the tedious derivation of this simplification in Appendix B.
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3. Special Configurations of Stations. In this section we will consider sever-
al particular configurations: stations on level ground or on a sphere. It is obvious that
if the configuration of stations is collinear or degenerate (with some stations at iden-
tical coordinates), the polynomial system for the moving objects is over-determined.
Throughout this paper, we may assume that the stations are not collinear or degen-

erate.

3.1. Stations on level ground. With all stations on level ground, the original

system in (1) and (2) becomes, for j =1, ...,6,

(25) (@ =) + (y —9)* + (2 = 0)* =17,

(26) (x—zj)t+ (y —y;)y + (2 — 0)2 = r;rj,
where {(zj,yj)T,fj}?zl are the given data and {x,y, 2, %,y, 2,71, ,r¢} are the un-
knowns.

With this particular configuration we will show that the system of (25) and (26)
can be simplified to a system of 3 quadratic polynomials in 3 unknowns. Furthermore,
if all stations are on a circle, the polynomial equations will be degenerated. Later
we also consider some special configurations, with 6 stations forming: (i) a regular
pentagon and its centre, and (ii) two regular triangles. For convenience, we denote,

forj=1,---,6,

(27) _ _
T1 N xi +yi
T2 Y2 x5+ 3

N L TR A
T4 Y4 Ty +Yi Y Y Yj
5 Ys x3 +y3
| T6 Yo | | 25+ yg |

The notations r, ror, R, ¥, R and C are the same as in Section 2.

As the derivation in (8) and (9), we also have

(28) u=—(V CTCvy)~ (Vg ¢TC) (k)
= —ARr

and

(29) u= %A(n—ror),

where 1y and n are given in (27). From (28) and (29) we see that the unknown-

s {z,y,&,y} can be represented in terms of {Tj}?:r Recall that p = (—Rr) =
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(p1,...,ps)" and q = (n—ror)/2 as in (11). Substituting (28) and (29) into (25) and
(26), we get, for j = 1,...,6, the cubic equations
(30) qlAT Ap — ujTAp + 22 = —p,
and the quartic equations
(31) ql AT Aq - 2uTAq + u u; + 2% = r_2p?
We now subtract the 1st equation of (30) from the rest, yielding for j = 2,...,6:
(32) (Ulfuj)TAp =p1—Dj-
The equations in (32) can be rewritten in matrix form

u;—u2 T

( )
(U1 u3) . ~
(33) (u;—uy))? |A+C|Rr=Ar=0
( 5)
( )

u;—Us

'ﬂ

u;—Ug

where A € R®*%. When the original system is of the form as in (25), A is
generically of rank 3. Hence, it is sufficient to choose three linearly independent

equations in (33), say the first three equations, to from the system

(u;—up)” B N
(34) (u;—u3)” | A+C | Rr=Br =0,
(up—uy)”
-1 1.0 0 0 O
where C=| -1 0 1 0 0 0 | and B € R3*6 is of full row rank. Let QTE =

-1 0 01 0 O
[ T Ty } be the QR decomposition of E, where Q € R3*3 is orthogonal, T, € R3*3

and T € R3*3 is nonsingular. Thus, 7,79, 73 can be represented in terms of 74,75

and rg as
1 T4
-1
(35) ro | =Ty T2 | 75
3 T6

Therefore, we can solve the cubic equations of (30) and quartic equations of (31)

on the (ry, r5,7¢)-plane.

Next, we subtract the 1st equation of (31) from the jth equation for j = 2,...,6

and get five equations

(3) 2 (wiu))" Aq Ty =2 =
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The equations in (36) can be written in the matrix form
(37) Aror = An,

where A is defined by (33). As in (34) we also have B (ror) = Bn.
Given the data {(x;,y;)",7;}%_, the radii {7"]-}?:1 can be computed by solving

the system of 3 quadratic polynomials in 3 unknowns r4, 75 and rg:

(ug—ur)TA(ror) —rZ +r? — ufu;+ulug — (ug—u;)7 An = 0,
(38) (ug—u2)"A(ror) — r§ + 75 — ujup+uf ug — (ug—uz)" An =0,

(ug—uz)TA(ror) —r2 +r2 —uluz+ulug — (ug—u3z)" An = 0,

T T

where [ Ty ro T3 ] =T 'Ty [ Ty Ts rﬁj as in (35). The system (38)
has potentially 8 solutions. The position u = (z,y, 2)7 and the velocity u = (&, 7, )T
of the moving object are immediately obtained, respectively, by (25) and (29), as well

as, (26) and (28).

On the other hand, the system (38) can also be simplified to one equation of
degree 8 with one unknown. Expanding the first 2 equations in (38) yields

(39) { a47"i + a5r§ + agrg + 457475 + Q467476 + a567576 + ag = 0,

bzﬂ’i + b5'f’52, + bGT'g + bysrars + bagrare + bsgrsre + bg = 0.

We can rewrite them in the quadratic form: T7 AT 4+ a9 = 0 and T2 BoT + by = 0,

where
ass  a46 bas  bas
aq 2 2 by =5 2
_ ; I b
Ado=| % as g |, Bo=| e b |
ase  ase bic  bse
2 2 Us 2 5 be
T

and T = [ Ty Ts T } . Since Ay and By are symmetric, we assume that there is a

nonsingular V; such that

s 0 0 by 0 0
(40) ViAcVo=1 0 a5 0 |, Vi&BoVo=| 0 b5 0
0 0 a 0 0 bs
By changing variables
T4 S4
(41) s = ‘/O S5 9
Te S6

the system (39) becomes

(42)

548?1 —+ Eig,sg +568§ —+ ag = 0
b4SZ + b5$§ + bGS% + by = 0.
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Assume that [ aa %5 1 in (42) is invertible. Then we have the following simple
4 b5
relations
s7=c 8(23 + c2,
(43) ) 5
S = €3Sg + C4,

. Recall that the last equation in (38)

-1
c1 C2 a4 as ag ag
where = ~ =~ ~
[ C3 C4 ‘| [ b4 b5 ‘| [ bﬁ bo
is a quadratic polynomial in variables rq,75 and rg. Plugging (41) into (38), the

degrees of new equations remain the same. In fact, each of them can be written as
(44) 5491 + $592 = 845593 + gu,

where g1, g2, g3 and g4 are polynomials in s4, s5 and sg, and the exponents of s4 and

s5 in g;’s are even numbers. Squaring both sides yields
(45) 5191 + 5595 + 201925455 = 535395 + 293945455 + 93

Collecting s4s5 on one side, we have 2 (g1g2 — g394) Sas5 = s35293 + g3 — s3g5 — s2g3.
Squaring both sides of the new equation results in an equation which has variables
s4, 85 and sg, and the exponents of s4 and s5 are even numbers in all terms. Using
(43), the equation only involves the variable sg. Therefore, the system (38) can be

simplified to one equation of degree 8 with even power terms being nonzero.

Remark (i) For this case, we can reduce(30), (31) to one equation in one variable
s¢ of degree 8 which can be solved by QR algorithm [4] efficiently. However, it has too
many possibilities to transform the solutions sg back to r4,r5 and r¢ by (39) because
of the repeated squaring of (44). This is the drawback of this simplification. The
other one is the eigendecomposition in (38) may not always exist. In practice, we do
not recommend the simplification of (40).

(ii) When all stations are on a circle, the vector n is parallel to (1,-- -, 1)T. In this
case, the right hand side of (38) is a zero vector, and (41) is a system of 3 homogeneous

equations of degree 2 which is degenerated.
Example (Regular Pentagon): Given five stations lying at

ok ok
{(hcos %,hsin%,oﬂk -0, 1,2,3,4}

and the other one at origin (0,0,0)”. The equation (36) gives the relations
54V67ia,, _ ¥Brs, 4 54Vbrg

M="10 /"™~ 35 75 10 7,65
; 1+5 7 1+V5 7
(46) ro = :—;17'4 — +2f%7“5 + +2\[7TT27'67
_ 14+VB s, 1+VBrs 76
r3 = 2 o 2 T3 s + T3 T6,
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and the equation of (38) are equivalent to

h

- (10h? + 107} — 6r3 — r3 + V/5r — rf — /513
—r2 — \/57“52) -2+ \/57“623) =0,

(47) fo = 5 (1002 +10r2 = 1 + V513 — 673 — 13 +V3r
—1% = VBrZ —rg = V/5rg) =0,

fa = 35 (1012 + 1073 — 13 = V51 =13 + V513 — 13
—r§+ VB =13 — VBig) = 0.

Plugging (46) into (47), we have a system of 3 quadratic polynomials in variables

T4, T5, and rg:

(48) [(ha q2, q3]T = Oa

where

1
E(IOhQ — 72 —or2 =2 —VEr2 — 24 Vo2

((1 + \/5) T4T4 — (1 =+ \/5) r5Ts + 2T6f6)2
473

+\/5((1 + \/5) T4 — (1 + \/5) 575 +27“67'"6)2
472

N ((54 v/5) rarg — 2/Brsis + (5 + V5) T67'“6)2
1072

73 (—2T4’f‘4 + (1 + \/5) (rsris — ’I“ﬁ’f“ﬁ))2

213

q1 =

);

1
g2 = TO(lth — 1+ Vo — 12 — Vbr2 —rg — Vorg
3((1+ V) ruia — (1+ V) rsis + 2rgie)”
272
((5+ VB) rats — 257575 + (5+ V/5) reiie)”
+ >
1077
(=2rats + (14 V/5) (1575 — rerig))
472
n \/g (—27‘47;4 + (1 + \/5) (7“57"5 - T67;6>)2

-2
4rs

),
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g3 = %0(10h276r477"5+\fr5 — 72 — /512
_ ((1 + \/g) ’1"47;4 - (1 + \/g) ’I"5’f‘5 + 2T6f’6)2
473
V(L VB) rara = (14 V) s 4 2rgr)”
473
n ((5+ V5) rars — 2¢/6r575 + (5 + V) 7’67'“6)2
1072
B (=2r4ts + (L4 V5B) (rsis — 7"67;6))2
473
_ \/g (—2T4f’4 + (1 + \/5) (7’51;5 - T6’f’6))2)
472 '

Given the Doppler data {r;|j = 1,...,6}, the system of (48) has 8 solutions in general
and can be solved by the total degree homotopy method very fast (< 0.01 sec.).

Example (Two Regular Triangles): Given three stations lying at

2k 2k
{(hcosg,hsing,(mk = 0,1,2}

and the other three lying at {(2h cos 25~ 2”’“ ,2hsin <%F 2” ,0)Jk =0,1,2}. The equation (35)

gives the relations
ry = —2:—‘117"4 + :—fr5 + 2:—‘137”6,
(49) ro = 5%ry — 35575 — Hrg,
r3 = 8—7’4 5:—27"5 — 2:—27’6,
and the equations of (38) are equivalent to
f1 = 515 (—1035h2 + 60rf — 10773 + 11173 — 233r3 + 174r2 — 5r¢) =0,
(50) fo=3 (=23 +r3+2r—1%) =0

fs = 515 (—1305h2 4 240rf — 11375 + 12973 + 13§ 4 6612 — 335r3) = 0.

Plugging (49) into (50), we have a system of 3 quadratic polynomials in variables
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rg, 15, and rg:

107(-57‘47‘4 + 3r5rs + 7"67.16)2

q1 = —1035h? — 233r3 + 174r2 — 5r2 — 5

7.‘2
+60(—27’47.’4 + 7"57;'5 + 27"67.’6)2 + 111(—87’4?"4 + 57"57;'5 + 27"67.’6)2 - O
it 72 -
2(—=5ryr 3rgr )2 —8ry7 orgT 2rgre)>
(51) o = 2r2 — 2 — (=5ryrs + .72“57“5+7”67“6) + (—8ryry + 72?“5—# T676) -0,
T5 73
113(—5747 3ryr 6 )2
4s = 13052 + 1312 + 66,2 — 3352 — LBDrTa 4 3rsls o 1)
2
+240(—27"47-"4 + T57;'5 + 27“6’1;'6)2 + 129(—87"47.“4 + 57"57;‘5 + 27“6’1;'6)2 o 0
-2 ) — .
’f‘l TS

Given the Doppler data {r;|j =1, ...,6}, the system of (51) has 8 solutions and
can also be solved by the total degree homotopy method very efficient.

3.2. Stations on a Sphere. When stations lie on a sphere, the vector n is
T

parallel to [ 1 1 1 1 1 1| . Hence, the original system can be simplified to
the system
Lror)"ATARr + ul ARr—7r =0,
(52) i(ro r) " AT A(ror) + ulTA(r or)+ufu —r? =0,
(ug—uz)TA(ror) —r2 + 72 =0,
(ug—uy)TA(ror) —r3 +r2 =0,
T . T
where [ T To } =171y [ T3S T4 Ty T asin (17). Given the Doppler

data {r;|j =1,...,6}, the system of (52) has 16 solutions in general.

Example (Regular Octahedron): Given six stations lying at
{(%h,0,0),(0,£h,0),(0,0,+h)}.
The equation (17) gives the relations

_ T3 T4 T6

(53) 71*7:4173 7:,174 »,:‘176
T 75 T

T2 = 7'.:; T3 ,,'.; s ,,'.2 T6,
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and the equations of (52) are equivalent to
(54)
f1 = 1oz (367571 — 6r1 (r3 4 73 + 2rf + 12 + 1) i1 + 1Tr3vg + ror3iy + 2rorii,
— 15r9r2tg + rordig + rargis + 17r3rs + 2rarirs + rareis — 15r3rdis
+ 2r3ryry + 2rdryty + ATy 4 2rgr2iy + 2ryrdig — 15r3rsis 4 r3rsis
+ 2rfrsis 4+ 17r37s + rsrdis + rarere — 15131676 + 2rirers + rrei
+ 17rdre — 612 (rafy + r3r's + 27474 + 575 + r676)
— 16h2(2r171 + rory + 7373 + 2rary + 1575 + 167%6)) = 0,

f2 = 5sa7w (256h* + 360 + 1773 + 2r3r3 + 1705 + 4r3r? + 4r3r] + 41} — 30r3r2
+2r2r2 + 4r2r2 + 17Trd + 20302 — 300202 + Ar3r2 + 2r2r2 + 1718
— 1272 (r% +ri+2r + ¢+ 7“6)
—32h% (2r + 713 + 13 +2rF +r2 + 1)) = 0,

Substituting (53) into (54), we have a system of 4 polynomials of degrees 3, 4, 2

and 2 in unknowns r3, 74, 75, and rg:

2 2 323
Q= 37"3 (27’21"3 + 727 (T2 + 7'3)) + 4372025, + 27‘47"57’17"27’4 + 2r4r67"1r27"4 12ryr5ry

8r57"1r27"5 + 27“47“57“%7”47"5 8r51"1r5 — 27"41"67‘%7“%7‘6 — 5r5r67"fr27"6 + 37“67’17"57“6
+30T4’I“6’f‘2’l'"4’f‘6 — 47‘47“57"67;17'“47'”57;6 =+ 197‘57“67"17;57'“6 + 27‘47"67’“17;‘47;6 — 247“47“67'”27.“47'“6
—1drsrarirsia + 3rarire + 6rarare — 16h* P73 (rarfs + 1676
—H“g (27"4 ( 127"27"3 + 7"1 (7"2 + r3)) T4
— 14757373 + re (187373 + 17 (=573 + 973)) 7)
—27“47“27“37"3 (7“1 157”4) + 7“57"17“37“3 ( 57'"% + 197'"%) - 287“57"67"%7'“57*67“37'"3

—Arrar3rs (1"57'%1"5 —7rg (Tl 121"2) r6) + r6r3r3 (187"27’6 + 7] (*5@ + 9f§)) =0,

256h* + 1775 + dr3ry + dry + 2r3r2 + 4rir2 + 17r;

(=)
N
If

—307"?2,7’6 + 47’47"6 + 27%7’6 + 17r6

36(7“37“3 — 4Ty + 7’67“6)4 4 27‘%(7"37"3 —r5Ts + 7“6’/"6)2 n 47‘3(7’37'“3 —r5ts + Tﬁ’f‘G)Q

oy ) 2
T T3 T2

_307‘%(7’37'“3 —r5Ts + 7“6’/"6)2 n 27“%(7“37'“3 —r5Ts + 7‘67.“6)2 i 17(’/‘37"3 — r5Ts + T6fs)4

) 2 ey
T3 T2 )
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i . . \2
12(rsrg — rafs + 7‘67'“6)2 (r§ + 27"2 + 7“% + 7"% + (rafa=rsts+reve) T5;;5+T6T5) )
2

i

2(r3r3 — rarfy + revg)?
-2

51

_ 50n2 (g TP S

(rgivs — r5Ts + reTe)>
+ 2 =0,
3

o (rars —r5r5 + 167)2

Q3E—T§+T§_T6+ ] :Oa
)
6(rsrs — T4ty + reig)> 5(rsts — r5is + refg)?
ga =13 — 603 4 52 4 g - OIS T T oo Bt Z et Hree)” g

) 2
1 U]

4. Numerical Experiments.

4.1. Numerical Accuracy of Homotopy Method. In this section we will
show the numerical accuracy of solving the original systems and the correspond-
ing simplified systems by the homotopy continuation method [7], implemented in
HOM4PS-2.0 (available at

http://www.math.nsysu.edu.tw/ "leetsung/works/HOMA4PS soft.htm).

(Regular Pentagon): Given five stations located at

27k
2T

2k
{(200s§,2sin £ )Tk:O,1,2,3,4}

and the other one at origin (0, 0, O)T. We assume the object is at the position (2, 5, 3)T
with velocity (1,2, 4)T. Then the measured Doppler data should be

71 = 3.893314107138301
79 = 3.772968873135194
73 = 4.32328941267566

74 = 3.839796099826884
75 = 3.6039686843251832
re = 3.552946442309747.

Hence, from (1) and (2) the original polynomial system is

(x—0 Ji+(y— 0  )y+(z—0)z=3.893314107138301 - ry,

(z —2cos B)i + (y — 2sin L)y + (2 — 0)2 = 3.772968873135194 - ro,

(x —2cos Z)i + (y — 2sin 25 )y + (2 — 0)2 = 4.32328941267566 - 73,

(z —2cos 4Z)i + (y — 2sin 4F)y + (2 — 0)Z = 3.839796099826884 - 14,

(z —2cos )i + (y — 2sin &)y + (2 — 0)2 = 3.6039686843251832 - 15,
(55) (z—2cos 8)i + (y — 2sin 85)y + (2 — 0)2 = 3.552946442309747 - rg,

(=0  PH+H—-0 P+(z-072=rf,

(z—2cos )2+ (y — 2sin )2 + (2 — 0)* =13,

(x—2cos 2E)? + (y — 2sin 25)2 + (2 — 0)? =13,

(x—2cosZ)? + (y — 2sin )2 + (2 — 0)? =1},

(. —2cos )2 + (y — 2sin %) + (2 — 0)* =12,

(z—2cos 8)2 + (y — 2sin 8F)2 + (2 — 0)* = ¢,
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and from (48) the simplified system is

4 — 0.1804656849688664517 + 0.8174516089157857 475
—1.3605999657065038r2 — 0.6263091782107895r47¢
+2.00515048856452267576 — 0.7498101264961088r2 = 0,

4 — 0.4781808395962457r% + 1.34631078681550737 475
(56) —0.9485546803221847r2 — 0.091348191158748437476
+0.20127021784306717576 — 0.0058130967013134555r% = 0,

4 — 0.17058796355164318r7 — 0.0520446558776408447 475
—0.2531518755495662r2 + 0.23087742111668474747¢
+0.70337569285987067576 — 0.5553510918753413r2 = 0.

Solving (55) by the polyhedral homotopy continuation method [5, 6], HOM4PS-

2.0 [7] takes 3.5 seconds and obtains solutions

z = 1.9999999999999849
y = 4.9999999999999849
z = 2.9999999999999911
= = 0.9999999999999950
y = 2.0000000000000027

r1 = 6.1644140029689547
r9 = 5.8309518948452830
r3 = 4.5284361228902368
r4 = 6.0594084619828887
r5 = 7.7606598302495318

z = 3.9999999999999987 r6 = 7.6517314622837613,

which has 13 correct digits.

Solving (56) by the polyhedral homotopy continuation method, HOM4PS-2.0

takes less than 0.01 seconds and obtains the solution
r4 = 6.0594084619829323, 15 = 7.7606598302495700, rg = 7.6517314622837826,

which has 14 correct digits.
Note that HOM4PS-2.0 is implemented in a double precision floating point arith-

metic system (i.e. 16 significant digits), and the exact solution of (55) is

T =2 z=1 r1 = 6.164414002968976 rq = 6.059408461982912
y=2 ro = 5.830951894845301 r5 = 7.760659830249555
z = z= r3 = 4.528436122890257 re = 7.651731462283781.

Next, we consider the moving object is 10 times farther with the same station
configuration:

We assume the object is at the position (20, 50, 3O)T with the velocity (1, 2,4)T.
Then the measured Doppler data should be
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71 = 3.893314107138301
79 = 3.9000674757995495
73 = 3.9322710660446627

74 = 3.906605581821401
75 = 3.8641247950598454
76 = 3.8598600586840734.

The corresponding original polynomial system is

(z—0 Je+(y—0 g+ (z—0)% = 3.893314107138301 - 1,

(z —2cos ¥)i + (y — 2sin )y + (2 — 0)2 = 3.9000674757995495 - 5

(x — 2cos 25)i + (y — 2sin 25)g + (2 — 0) = 3.9322710660446627 -

(z —2cos 4Z)i + (y — 2sin &)y + (2 — 0)2 = 3.906605581821401 - 74

(z —2cos )i + (y — 2sin &)y + (2 — 0)2 = 3.8641247950598454 - 75
(57) (z —2cos 8)i + (y — 2sin 8 )y + (2 — 0)2 = 3.8598600586840734 - g

(-0 P+y—0 P+ (z-02=r]

(x—2cos )2+ (y — 2sin )2 + (2 — 0) =73

(x—2cos )2+ (y — 2sin 2F)2 + (2 — 0)% =}

(x—2cos )% + (y — 2sin )2 + (2 — 0)2 =1}

(x —2cos )2 + (y — 2sin )2 + (2 — 0)% = ?

(z—2cos 8)2 + (y — 2sin 8F)2 + (2 — 0)% = ¢

and the simplified system is

4 — 0.0790358729100949577 + 0.650571262653444 17475
—1.3561074212644102r2 — 0.493013930798384747 476
+2.0579262463133457r516 — 0.7812486085909165r2 = 0,

4. — 0.7755657991400302rF + 2.02551412761905077475
—1.3257723644882415r2 — 0.455147357532094577476
+0.601377661964166975716 — 0.07009692145793234r2 = 0,

(58)

4. —0.07810840035733123r% — 0.237098572301880927 475
—0.1985629638029635772 + 0.393676205509617 17476
+0.6388324706459287r516 — 0.51969842513261772 = 0.

Solving (57) by the polyhedral homotopy continuation method, HOM4PS-2.0
takes 3.5 seconds and obtains a solution

z = 1.9999999999973671
y = 4.9999999999976644
z = 2.9999999999998462
z = 0.9999999999990583
y = 2.0000000000004783
z = 3.9999999999988072

r1 = 6.1644140029661536
ro = 6.1024585209541776
r3 = 5.9908825202866510
rq = 6.1246749375685148
r5 = 6.3136981318438636
re = 6.3003888322114669,
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which has 11 correct digits.

Solving (58) by the polyhedral homotopy continuation method, HOM4PS-2.0

takes less than 0.01 seconds and obtains the solution

r4 = 61.246749375686868, 15 = 63.136981318440540, 7rg = 63.003888322117241,

which has 11 correct digits.

Note that the exact solutions of (57) are

=20 z=1 r1 = 61.644140029689765 r4 = 61.24674937571382
y =50 y=2 r9 = 61.02458520956943 r5 = 63.13698131846731
z =30 z=4 r3 = 59.908825202894555 re = 63.00388832214274.

Table 1 lists the number of correct digits for the pentagon configuration. The first
row of table is the position of the moving object. We can see that solving the original
system and the simplified system by the homotopy method achieve similar accuracy.

However, solving the simplified system saves a lot of cost.

TABLE 1

The number of correct digits for the pentagon configuration.

(2,5,3) | (20,50,30) | (2,5,3) x 10 | (2,5,3) x 10% | (2,5,3) x 10*
original 13 11 9
simplified 14 11 10

(Two Regular Triangles): Given three stations located at {(2 cos 22, 2 sin 22

0)[k = 0,1,2} and the other three located at {( cosM smM ,0)|k = O 1 2} We
assume the object is at the position (200, 500, 300) with the velocity (1,2, 4) . Then
the measured Doppler data should be

71 = 3.885974155004552 74 = 3.8961310021157534
79 = 3.8941504270435656 75 = 3.8989284653247402
73 = 3.894951626856594 76 = 3.8896389634680446.
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Hence, the original polynomial system is

(x+2)i + (y +2v3)y + (2 — 0)2 = 3.885974155004552 - r,
(x—=2)+ (y—0)y + (2 — 0)2 = 3.8941504270435656 - ro
(x—4)x + (y—0)y+ (2 — 0)2 = 3.894951626856594 - r3
(x+1)d+ (y — v3)y + (2 — 0)2 = 3.8961310021157534 - 4
(x+2) + (y — 2v3)y + (2 — 0)2 = 3.8989284653247402 - 75
(59) (z+1)i + (y+ V3)y + (2 — 0)2 = 3.8896389634680446 - ¢
(x+2) + (y +2v3)° + (2 = 0)* =17
=22+ (y—0°+(2—-0)?=r3
(x—4)2+(y—0)°+ (2 —0)> =13
(@+ 1%+ (= V3)2+ (= 0)* =1}
(@+2)°+(y—2v3)+ (2 - 0)* =73
(@+1)°+(y+2v3)° + (2 = 0)° =
and the simplified system is
(60)

—13.142857142857142 + 14.091546933694675r7 — 18.786077764507947r,75
+6.50700211030472572 — 9.3988370716387661476 + 5.7721258898991687576
+1.8142548595411274r2 = 0

3.197578108823700372 — 4.0003516018203577475 + 1.201375786990289r2
—2.39580777271882637476 + 1.59846169587013637576
+0.39874539084853212 = 0

—16.571428571428573 + 20.3528605932286237r2 — 25.090466898668697 475
+7.99903034661265472 — 15.6228145210380187476 + 9.095792878159973r576
+3.2656081881260945r2 = 0.

Table 2 lists the number of correct digits for the two-triangle configuration. The first
row of table is the position of the object. As in Table 2 we can see that solving
the original system is slightly more accurate than solving the simplified system by
the homotopy method. However, solving the simplified system is much cheaper than
solving the original system.

TABLE 2

The number of correct digits for the two triangles configuration.

(2,5,3) | (20,50,30) | (2,5,3) x 10 | (2,5,3) x 103 | (2,5,3) x 10*
original 14 12 10
simplified 13 11 9

(Regular Octahedron): Given six stations located at {(%2,0,0), (0,£2,0), (0,
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0,42)}. We assume the moving object is at the position (2000, 5000,3000)” with the
velocity (1,2, 4)T. Then the measured Doppler data should be

71 = 3.8933993124376407
79 = 3.893689806539583
73 = 3.8926308053089875

74 = 3.8932285531303217
75 = 3.8929384652559484
76 = 3.8939968805122525.

Hence, the original polynomial system is

(x—2)t+ (y—0)y + (2 — 0)2 = 3.8933993124376407 - r;

(x —0)i 4 (y — 2)7 + (2 — 0)2 = 3.893689806539583 - 1o

(x —0)d + (y — 0)y + (2 — 2)2 = 3.8926308053089875 - 3

(x+2)t+ (y—0)y+ (2 — 0)2 = 3.8932285531303217 - ry

(x+0)t+ (y+2)y+ (2 — 0)2 = 3.8929384652559484 - r5
(61) (. +0)d + (y — 0)y + (2 + 2)% = 3.8939968805122525 - ¢

(r—2)24+(y—0)2+(z—0)2=r?

(r—0)24+(y—2)2+(2—0)2 =13

(=024 (y—0)2+(2—2)2=r3

(z+2)2+(y -0+ (2-0)?=r]

(=024 (y+2)?%+(z—-0)2=r2

(=024 (y—02+(2+2)? =12

and the simplified system is shown as (62).

Solving (61) by the polyhedral homotopy continuation method, HOM4PS-2.0
takes 5.5 seconds, and solving (62) by the total degree homotopy continuation method,
HOMA4PS-2.0 takes about 0.01 seconds.

Table 3 lists the number of correct digits for the regular octahedron configuration.
The first row of table is the position of the object, and “x” indicates the computation
is out of the range that HOM4PS-2.0 can handle.

TABLE 3

The number of correct digits for the reqular octahedrons configuration.

(2,5,3) | (20,50,30) | (2,5,3) x 10 | (2,5,3) x 103 | (2,5,3) x 10*
original 13 11 10
simplified 14 12 9 X X
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(62)

—57253.72995800387r5 + 10731.495952145619r% — 17887.03497970073r27,
+25046.152777945217572 — 7156.873445635487r3 — 12518.4310258496447375
—3577.243811839096757475 + 12517.694371289494r57r2 + 3578.217077775647 472
+2.76192649634413178 — 57273.822513579241 + 19677.13747668851727¢
—39366.78805717656737476 + 25054.942444871875r2r¢
—25045.648458149586757576 — 3578.4992055077487r4r57¢
+12522.08731599397r2r6 + 19687.1829604892631372

—17900.847889941767 472 — 12527.218974045432r 572

+10740.913543932473r8 = 0

4096 — 511.8293306215535r2 + 47.96800755339812474 + 511.876486556012r574
—95.93306310294683r 1, — 511.9775448544891r2 + 175.9117274186582472r2
—95.964213256974037373 + 15.995789937200477r% + 255.880988113244487575
—47.95018761845541673r5 — 47.9661112690020572r47'5
+15.9904575658589547572r5 — 255.9506060265429r2
+51.934831684462935r2r2 4 47.979161478789855r37472
—15.99480811294973472r2 — 7.970052529113161r573 + 3.998458069823517r%
—767.9280624563597r376 + 143.9152198158011513r6 + 512.0561238785305r476
—335.9054508260394472147 + 367.950432452344 1731274
—95.997890823300767316 -+ 255.97078668144462r 51
—135.90195851620345r2r57¢ — 95.96588887754612r3747576
+15.996069237929111737576 + 95.90485185739405r3127¢
+47.99599922838588474 721 — 7.972849529823812r374

—512.0987791064762r2 + 195.95897371120447272

—336.0401770376238737472 + 176.0408328536567r212
—135.9468450894679757572

—47.999783515956557 475712 + 51.9684825149158r2r2 + 144.030288228124 17573
—96.050948320728517473 — 47.9978803988757575r3 + 48.01852431706125r¢ = 0

—0.0005438837042719413r2 — 1.9990702196347225r375 + 1.9996141095823665r2
+1.9996137284617352r31¢ — 1.9997717709487867576
+0.00015773525706852531rZ = 0

—0.0003510060768343592573 + 11.9971051536565327374 — 11.99947370752709r7
—9.995351098173611r375 + 9.998070547911833r2 — 2.00140413612705r376
+12.001315403403057r476 — 9.99885885474393r57¢

—0.0010532532514888615r2 = 0.
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From Table 1, 2 and 3 we see that simplified systems for the regular pentagon and
two regular triangle configurations are strongly recommended for solving the original
system (1) and (2). The simplified system for the regular octahedron is recommended
only when the distances between the stations and the object are not too far (less than
100 meters).

4.2. Newton’s Method vs Homotopy Method. In this subsection we will
compare the reliability of Newton’s method and the homotopy method. Suppose six

stations form a regular pentagon around a centre with radius 20 m:

= (0,0, 0) uy = (20 cos 4%, 20sin 47, 0)
(20 cos & .20 sin & 0) (20 cos &= .20 sin 8= 0)
(20 cos 2= T 20 sin 2& 0) (2() cos & T 20 sin 8¢ O)

Suppose the trajectories of the moving object and the associated velocity from

t =0 to t = 100 (seconds) are, respectively, given by

2 = 10000sin(0.05¢ — 1) & = 500 0s(0.05¢ — 1)
(63) y = 10000 cos(0.1¢ — 10) § = —1000sin(0.1¢ — 10)
z = 10exp(0.05t + 3) Z = 0.5exp(0.05¢ + 3),

where the unit of the position is meter and the unit of the velocity is m/s = 3.6
km/hr. The objects of the moving object of (63) are shown in Figure 1.

Denote v = (z,y, 2, &, §, 2). For the given data {(z;,y;, Zj)}?zl and we have, for
j=1,..,6,

(z—2)2+ (y —y;)y + (2 — 2j)2
Vi =22+ —y)2 + (2 — )%

as in Section 2, thus Newton’s method can be applied in solving (3).

Ty =

Newton’s iteration:

{ Given an approximate solution v°,

Vit :Vi—DF(Vi)ilF(Vi)7 1=0,1,2,---,

where F = (Fy,--- , Fs)" is given in (3) and DF is the Jacobian of F.

Experiment 1: Given initial solution v(0) = (x(0), y(0), 2(0), 2(0), %(0), 2(0))7,
the Doppler radar responds measured data {r; }?:1 every At seconds. The previous
solution v(t;_1) is taken as an initial vector of Newton’s iteration for computing
v(t;). Figure 2 shows the log scale plot of the relative error for At =0.1,0.2,0.3,0.4,
0.5, and 1.0. Newton’s method can trace the trajectory of the moving object for
At = 0.1,0.2,0.3. For At = 0.4 and At = 0.5, v(21) is not in the convergent region
of Newton’s iteration. When At = 1.0, Newton’s iteration converges to the other
solution at t = 4.

Homotopy Method:
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The position of the moving object

y (km) 710 -10 x (km)

The velocity of the moving object

1500

dz (m)

Fic. 1. the orbit of the moving object.

(i) Solving the polynomial system {q; = O}:;:1 as in (48) by the polyhedral ho-
motopy continuation method (Hom4ps-2.0) and get 8 solutions in variables r4,r5 and
6.

(ii) Compute the other variables {r1,r2,73,z,y, 2, &, 9, 2} by

10 7 4 5 71

_ 54574, _ 55 5+5 fg
= ’"f ‘7"5+f1o 1l
1+V5 75 1+v5 76

3 T-,27‘5+ 3 7,16

oy —
19V5 74, 145 s
2 754 2 55T

To =

Te
‘737“67

r3 = r

u=(z,y,2)7 = (VT CTCVy)~L(VFeTe)epen),
i = (2,9, )" = (V' CTCVy) 7 (V CTC)(—Frx).

Experiment 2: The Doppler radar responds measured data {r; }?:1 every At

seconds. We select the solution v(t) which is closest to v(¢;—1). Figure 3 shows the log
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F1G. 2. The log scale plot of the relative error for Newton’s method.

scale plot of the relative error for At =0.1,0.2,0.3,0.4,0.5, and 1.0. The polynomial
homotopy method can successfully trace the trajectory of the moving object in these
cases.

Remark: Newton’s method can quickly compute the position of the moving
object if the Doppler radar can quickly responds measured data. Otherwise, we will
not have a good initial vector to start with. The polynomial homotopy method does
not need any initial vectors from users. The method solves a polynomial system and
outputs all solutions. Users need to choose an appropriate solution among them. If
stations sit on a plane but do not form a circle, the polynomial system can be reduced
to 3 independent quadratic polynomials. The reduced system is numerically stable.

Although the polynomial system can be reduced to a system of 4 polynomials of de-
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F1G. 3. The log scale plot of the relative error for the polynomial homotopy method.

grees 4, 3, 2 and 2 for the cases that stations do not sit on a plane, the reduced system
may be numerical unstable. Therefore, we suggest that stations are deployed on a
plane appropriately, and combine two methods into one algorithm: at the beginning,
trace the position by Newton’s method. Whenever the iteration fails, the polynomial

homotopy method is invoked to get back solutions.

5. Conclusions. In this paper, we propose a novel simplification to reduce the
original system of a moving object to a new system of only three polynomials all
of degrees 2 in 3 unknowns when the 6 observation stations are located on a plane
but not on a circle. Numerical results show that the homotopy method is robust and

efficient for solving the simplified polynomial system when the 6 stations form a regular
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pentagon and its centre. One possible future work is to consider that whether this

particular configuration of observation stations is optimal for the homotopy method.

Appendix A. For a generic V we will show that Ain (16) has rank 2. WLOG we
may assume Vy and C'Vj are of full rank. For simplicity, the spectrum of M € R™*"
is denoted by o (M). Re-write A = —CVoA + C = C (I — VyA). Since AV =
(VEECTOVY) " HW(VECT O,y = I3, 0 (AV) = {1,1,1}. It can be shown that o (Vo A) =
{1,1,1,0,0,0} (Theorem 1.3.20 in [8]). Therefore, o (I — VoA) = {0,0,0,1,1,1}. Tt
is easily seen that three columns of V{ and the vector e = { 11 11 11 }T
are in the eigenspaces of I — VyA associated with eigenvalue 0 and 1, respectively.
Moreover, they are all in the kernel of A Therefore, romk(g) <6—-4 =2 Now
we will show that rank(g) < 2 only when us + uz + ug + us + ug = 5uy. Let
X = [ X1 Xo } whose column space col(X) is in the eigenspace of I —Vj A associated
with eigenvalue 1 but complemented with the space spanned by vector e. Then
(i) X # O and (ii) ({ —VpA) X = X. From (ii) we have VpAX = O; that is,
Vo(VECTOVY) "WV CTCX = O. Since Vo and (VFCTCOVy)~! are of full rank, we

have VFCTCX = O. Let K = CX € R°*2. Then K # Osyz due to e ¢ col(X).
T
In addition, C

= K and C{ aje ase } = O for any aj,as € R, so we can

T

write X = [ + [ aie ase } Consider

-1 100 0

SO [ o7 -1 0100
AX=C(I-VA)X=CX=C = K.

K -1 00 10

10 0 0 1

From the above matrix equality, we can see that there exists a vector xg € col(X)
~ ~ T
such that Axg = 0 (hence, rank(A) < 2) if and only if & = [ 11 1 1 1 is

in the column space of K. In this case, we have Vil CTé = 0, which is equivalent to

ug + u3z + ug + us + ug = Suy.

Appendix B. The system of (23) can be simplified to a system of 2 polynomials
of degrees 12 and 16 with 2 unknowns. Expanding the last 2 equations in (23) yields

(64) a37"§ + a4ri + a5r§ + a6r§ + agqr3rTy + azsrars + -+ asersre +ag =0
bsr3 + bary + bsr? + brg + bsarsra + bysrars + - - - + bsersre + by = 0.
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We rewrite the equations of (64) in the quadratic form: ¥7 At¥+ag = 0 and t7 Bt +by =

0, where
ass  a35  As6 bsa  bas  bse
as ) 2 bs 2 2 2
ags ass Q46 b3 bas  bag
A — 2 (4 2 2 B 5 by 3 2
0= | a a K 0= | b b bse |

35 45 a ase 035 45 b 056
2 2 5 2 2 2 5 2

ase  G46  Os56 bsg  base  bse
2 2 a6 2 2 2 be

S~

and ¥ = [ T3 T4 T5 Tg } . Since Ag and By are symmetric, we assume there is a

nonsingular Vj such that

i 0 0 0 by 0 0 0

0 @ 0 0 0 by 0 0
Vil AoVy = e . Vi BoVo = N

0 0 a 0 0 0 b5 0

0 0 0 ag 0 0 0 bg

T T
By changing variables [ r3 T4 T5 Tg } =W [ S3 S4 S5 Sg } , the system
(64) becomes

~ 2 |~ 2 |~ 2 ~ 2
a3s3 + a4s5 + assi + agsg +ag =0

Z3S§ +5482 +E5S§ -I-EGS% + by = 0.
as Gy

~ 1 is invertible. From

Without loss of generality, we assume the matrix C= [ 3
3 04

(65) follows from

(66) S% = 6358?) + 63683 + C30
$% = Cu582 + Ca68E + Cao,

€35 €36 C30 as ae Qo
C45  C46  C40 bs be bo
in (23) are polynomials in variables r3, 74,75 and rg of degree 3 and 4, respectively.

where =C! . Recall that the first two equations

By changing variables above in the 1st equation of (23), the degrees of new equations

remain the same. In fact, each of them can be written as

8391 + 8492 = S35493 + 94,

where g1, g2, g3 and g4 are polynomials in s3, s4, s5 and sg, and the exponents of sg

and sy in g;’s are even numbers. Squaring both sides yields
(67) 5297 + 5595 + 291925354 = 555595 + 293945354 + g5

Collecting s3s4 on one side, we have 2 (g1g2 — g3g4) $354 = 35393 + g7 — s3g7 — s3g2.
Squaring both sides of the new equation results in one equation which has variables
S3, 84,85 and sg, and the exponents of s3 and s; are even numbers in all terms. By
using (66), the new equation only involves s5 and sg. Therefore, the system (23) can

be simplified to a system of two polynomials of degree 12 and 16 in two unknowns.
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