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FROM KALMAN FILTERING TO SET-VALUED FILTERING FOR

DYNAMIC SYSTEMS WITH UNCERTAINTY∗

YUNMIN ZHU†

Abstract. In this paper, a brief survey is dedicated to the developments from Kalman filtering

for the stochastic dynamic systems to set-valued filtering for the dynamic systems with bounded

uncertain model biases. The former has been developed and extended for more than fifty years,

and the set-valued estimations have been proposed also for more than forty years but has received

more extensive attention than before for the dynamic systems with bounded uncertain model biases

just in the past twenty years. They are two types of estimations in terms of completely differen-

t optimization criterions to deal with different formulations of dynamic systems with uncertainty.

The main focus on this survey is to present some progress in the two filters and compare their own

advantage and weakness in order to provide some guidance for people to decide which formulation

for dynamic systems with uncertainty and the corresponding filtering method should be chosen in

practical applications.
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1. Introduction. The state estimation/filtering of a dynamic system is a very

significant problem in many practical applications, such as space technology, military

engineering, communications engineering, industrial control, meteorology, biomedical

and bioinformatics, economics and sociology, and so on. Obviously, in doing so, there

are two fundamental issues to solve: how to formulate the dynamic systems under

consideration and provide the corresponding estimation methods in an appropriate

optimization criteria. Obviously, estimating a state using all available observations

can derive globally optimal state estimate. Unfortunately, it is not realistic in real-

world applications since the resulting computational burden becomes heavier and

heavier as the observations are getting more and more along with time goes by. Thus,

available filtering methods for dynamic systems must be recursive. So far, there are

two main formulations for uncertain dynamic systems. The first one, which has been

investigated for more than fifty years, is stochastic dynamic systems with random

model noises–process and observation noises [1, 2, 9, 14, 15, 19, 20, 21, 25, 41, 46,

67, 80]. The second one, which has been proposed also for more than forty years

[5, 6, 7, 8, 12] but has received more extensive attention than before just for recent

twenty years [36, 44, 51, 52, 59, 62], is dynamic systems with bounded uncertain

model biases. For the stochastic dynamic systems, a natural optimization criterion
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to state estimation is the Mean Square Error (MSE) or its simplified version Linear

Mean Square Error (LMSE), and the optimal algorithms to the MSE (when the state

and observation are jointly Gaussian) or LMSE solutions are Kalman filtering and its

various extensions given in the above cited literature, in particular, see books [67, 80].

For the dynamic systems with bounded uncertain model biases, the set-valued filtering

based on convex optimization is developed, and then Minimizing Euclidean Error

(MEE) filtering based on the set-valued filtering has been proposed in [77, 80].

In this paper, a brief survey is dedicated to the developments form Kalman filter-

ing for the stochastic dynamic systems to set-valued filtering for the dynamic systems

with bounded but uncertain model biases. They are actually two types of filtering in

terms of completely different optimization criterions to deal with different formula-

tions of dynamic systems with uncertainty. The main focus on this survey is to present

some progress in the two filtering and compare their own advantage and weakness in

order to provide some guidance for people to decide which formulation for dynamic

systems with uncertainty and the corresponding filtering method should be chosen in

practical applications.

The rest of the paper is organized as follows. Section 2 presents the formulation

and basic results of Kalman filtering. Section 3 is dedicated to some extensions to the

dynamic systems with correlated noises, random coefficient matrices, and spurious or

negative-time observations and their some applications. In section 4, main limitations

to Kalman filtering in practice are briefly listed. Section 5.1 presents set-membership

filtering and related researches. A little more details are given here including ideas

of minimizing Euclidean estimation errors with illustrations, step-by-step formulation

and theoretical conclusions. A numerical example is provided in Section 5.2, and a

brief comparison with Kalman filtering is given in Section 5.3. Section 6 concludes

the paper.

2. Kalman Filtering Based on LMSE for Stochastic Dynamic Systems.

The first type of dynamic systems is stochastic dynamic systems modeled as

xk = Fk−1xk−1 + vk−1,(1)

yk = Hkxk +wk,(2)

where, k = 1, 2, . . . represents the time instant, xk is r × 1 vector-valued state to

be estimated at time instant k, yk is n × 1 vector-valued observation of state, Fk

and Hk are deterministic r × r and n × r matrices respectively, and {vk} and {wk}
are, respectively, process and observation noise sequences, and satisfy the following

assumptions:

1. The noise sequences {vk} and {wk} are white and uncross-correlated, i.e.,
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for any k, l = 0, 1, . . .,

E(vk) = 0, Cov(vkvl) = E(vkv
T
l ) = Var (vk)δkl,

E(wk) = 0, Cov(wkwl) = E(wkw
T
l ) = Var (wk)δkl,

Cov(vkwl) = E(vkw
T
l ) = 0;

2. The expectation and variance matrix of the initial state x0 are known, and

have the following statistical properties:

Cov(x0vk) = E(x0v
T
k ) = 0, Cov(x0wk) = E(x0w

T
k ) = 0, k = 1, 2, . . .

For any instant j > 0, we want to use all observations from beginning up to time

instant j

Yj =




y1

...

yj




to optimally estimate the state xk. It is well-known (see, e.g., [11, Theorem 9.2.1])

that the LMSE estimate of xk using Yj is given by

xk|j = E(xk) + Cov(xkYj)(Var (Yj))
†(Yj − E(Yj)),(3)

and the covariance matrix of estimation error is

Pk|j = E(xk − xk|j)(xk − xk|j)
T

= Var xk − Cov(xkYj)(Var (Yj))
†(Cov(xkYj))

T.(4)

Equation (3) and (4) provides a batch algorithm for the optimal estimate x̂ by

invoking all observations of x. For the reductions of computational complexity and

storage requirements, in many applications, especially in dynamic system, recursive

algorithms must be investigated. Kalman filtering proposed fifty years ago gives an

unbiased LMSE recursive algorithm to optimally estimate xk in (1) from noisy data

in (2) as follows.

Theorem 1 (Kalman Filtering). The LMSE estimate xk|k of the state xk using

Yk (k = 1, 2, . . .) can be recursively computed as follows:

xk|k = xk|k−1 +Kk(yk −Hkxk|k−1)

= (I−KkHk)xk|k−1 +Kkyk,(5)

where, the optimal one-step prediction of state xk is

xk|k−1 = Fk−1xk−1|k−1,(6)
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with the initial state x0|0 = Ex0, and

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Var (wk))

†,(7)

Pk|k−1 = Fk−1Pk−1F
T
k−1 +Var (vk−1),(8)

Pk = (I−KkHk)Pk|k−1

= (I−KkHk)Pk|k−1(I−KkHk)
T +KkVar (wk)K

T
k ,(9)

with the initial value P0 = Var x0.

If Var (wk),Pk|k−1 and Pk are invertible, then we can easily prove that

Kk = PkH
T
k (Var (wk))

−1,(10)

P−1
k = P−1

k|k−1 +HT
k (Var (wk))

−1Hk.(11)

The key of derivation of the above recursive algorithms is the following estimation

update lemma (see Theorem 9.2.2 in [11]):

Lemma 1. Consider the two successive observations y1 and y2, and denote the

LMSE estimates of x using y1 and y respectively by x̂1 and x̂, where

y =

[
y1

y2

]
.

Then, we have

x̂ = x̂1 + Cov(x̃1ỹ2)(Var (ỹ2))
†ỹ2,(12)

= x̂1 +K(y2 − ŷ2),(13)

where x̃1 = x− x̂1, ỹ2 = y2 − ŷ2, and

K =
(
Cov(xy2)− Cov(xy1)(Var (y1))

†Cov(y1y2)
)
(Var (ỹ2))

†.

Remark 1.

• The quadratic convex optimization criterion plays crucial role in the deriva-

tion of analytic solutions in the above LMSE (3)–(4) and Kalman filtering

(5)-(11), which give us a recursive analytic solution to be equivalent to batch

analytic solution. Hence, the computational burden and storage requirements

can be controlled so that they both do not increase with time goes to infinity.

• On the other hand, the solution of the quadratic MSE criterion strongly de-

pends on all model knowledge, including model coefficient matrices and noise

covariances. If such knowledge is incorrect or biased, the performance of

Kalman filtering becomes bad (see the example given in [52]).

3. Some Extensions of Kalman Filtering. Since Kalman filtering was pro-

posed fifty years ago, its extensions have been extensively derived, for example, see

[67, 68]. Here, only a few main extensions will be presented below.
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3.1. Kalman filtering with correlated noises. To guarantee the global op-

timality of Kalman filtering, it was assumed that the process noises and observation

noises are uncorrelated temporally, as well as, the both noises are mutually uncor-

related except at the same time instant. However, these restrictive assumptions are

not satisfied in many practical systems. For example, in the state estimation of a

moving object with own sensors, such as aircraft or missile inertial navigation sys-

tems, the process noise and observation noise may be mutually correlated at several

time instants. Much more examples for temporally correlated observation noises or

process noises are easily found in practice. In these systems, white noise is a crude

approximation to real noise owing to keeping the mathematics tractable. In general,

the theoretical optimal filtering for white noise driven systems is not optimal, even

if quite far from optimality. In fact, the real noises are wide band and white noises

are an ideal case of wide band noises (see [3, 13]). In discrete time case, the wide

band noise becomes finite-time correlated. Therefore, it is very important to develop

a method of handling and working with finitely correlated noises.

In [74] the standard Kalman filtering has been extended to Globally Optimal

Kalman Filtering with Finitely Correlated Noises in the following directions (i) multi-

step correlated process noises; (ii) multi-step correlated observation noises; and (iii)

multi-step correlated process noises and observation noises. The key technique to

implement the above purpose is to present an exactly recursive version for nonzero

observation and process prediction error terms when the noises are finite-time cor-

related. Of course, by the previous research experience, it seems impossible for the

standard Kalman recursive version to play such a role in recursively estimating the

observation prediction error and process error terms. Therefore, we must modify the

original Kalman gain by decomposing it to two recursively represented factors and

increase recursive terms (for more than one-step correlated noises). In fact, this tech-

nique can handle more complicated combination of the aforementioned three multi-

step correlated process and observation noises (see [79]). In the following, we briefly

present the key technique.

Using Lemma 1, we can prove the following theorem:

Theorem 2. No matter what the auto-correlations or cross-correlations of the

process noises and observation noises are, the optimal estimate (3) and its error

covariance matrix (4) can be equivalently given by

xk|k = xk|k−1 +Kk(yk − yk|k−1) = xk|k−1 + JkL
†
k∆yk,(14)

Pk|k = Pk|k−1 −KkJ
T
k = Pk|k−1 − JkL

†
kJ

T
k ,(15)

where Kk = JkL
†
k is a gain factor of innovation term ∆yk−1, and

Jk = E(xk − xk|k−1)(yk − yk|k−1)
T,(16)



102 YUNMIN ZHU

Lk = E(yk − yk|k−1)(yk − yk|k−1)
T,(17)

Pk|k−1 = E(xk − xk|k−1)(xk − xk|k−1)
T,(18)

∆yk = yk − yk|k−1.(19)

For the dynamic systems with specific finite-time auto- and cross-correlations of

the noises, in [74, 79] the recursions of five terms xk|k−1,∆yk,Jk,Lk and Pk|k−1 in

Theorem 2 have been given to develop the recursive algorithm for optimal filtering.

In fact, the standard Kalman filtering Theorem 1 can be also directly deduced from

recursive formulations (14) and (15) under the assumptions of uncorrelated process

and observation noises as given in the two assumptions in Theorem 1. However, for

more general correlated noise case, for example, general infinite-time correlated noise

or state-dependent noise, the five terms xk|k−1,∆yk,Jk,Lk and Pk|k−1 may not be

rewritten as recursive versions. In other words, there is no globally optimal recursive

version in terms of the LMSE criterion for more general stochastic dynamic systems.

3.2. Kalman Filtering for Random Coefficient Matrices Dynamic Sys-

tems. The standard Kalman filtering require a critical assumption that model coeffi-

cient matrices are deterministic. However, in many realistic systems and backgrounds,

the model coefficient matrices are actually random. For example, in nonlinear random

systems, the extended Kalman filter often linearizes the nonlinear system around the

random state estimate, which makes linear coefficient matrices random (see [34, 67]).In

addition, discrete systems with random coefficient matrices also arise in many areas

such as digital control of chemical processes, systems with human operators, economic

systems and stochastically sampled digital control systems (see [18]).

There have been many works involving estimation problems for dynamic systems

with random coefficient matrices in various engineering problems (see [18, 22, 32,

34, 42, 47, 63, 69, 71, 78]). Most of them are suboptimal or strongly depend on

the probability density functions (pdfs) of the states, noises and random coefficients.

Although the recursive formula in [18] is optimal and does not depend on the pdfs

of noises and random coefficients, the random coefficient matrices are temporally

independent sequences, and the problem in this case can be converted to the standard

Kalman filtering. Consider a discrete time dynamic system

xk+1 = Fkxk + vk,(20)

yk = Hkxk +wk , k = 0, 1, 2, . . . ,(21)

where xk ∈ R
r is the system state, yk ∈ R

N is the measurement vector, vk ∈ R
r is

the process noise, and wk ∈ R
N is the measurement noise. The subscript k is the

time index. Fk ∈ R
r×r and Hk ∈ R

N×r are random coefficient matrices.

Assume the system has the following statistical properties:
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i) {Fk, Hk, vk, wk, k = 0, 1, 2, . . .} are sequences of independent random vari-

ables temporally and x0 is independent of them.

ii) xk and {Fk, Hk, k = 0, 1, 2, . . .} are uncorrelated.

iii) The initial state x0, the noises vk, wk and the coefficient matrices Fk, Hk

have the following means and covariances

E(x0) = µ0, E(x0 − µ0)(x0 − µ0)
T = P0|0,(22)

E(vk) = 0, E(vkv
T
k ) = Rv

k
, E(wk) = 0, E(wkw

T
k ) = Rw

k
,(23)

E(Fk) = F̄k, Cov(fk
ij , f

k
mn) = Cfk

ij
fk
mn

,(24)

E(Hk) = H̄k, Cov(hk
ij , h

k
mn) = Chk

ij
hk
mn

,(25)

where fk
ij and hk

ij are the (i, j)-th entries of matrices Fk and Hk respectively.

Rewrite

Fk = F̄k + F̃k,(26)

Hk = H̄k + H̃k.(27)

Substituting (26) , (27) into (20) , (21), the original system is converted to

xk+1 = F̄kxk + ṽk,(28)

yk = H̄kxk + w̃k,(29)

where

ṽk = vk + F̃kxk,(30)

w̃k = wk + H̃kxk.(31)

System (28) , (29) has deterministic coefficient matrices, but the process noise

and observation noise are dependent on the state. However, we can prove that Eqs.

(28) , (29) still satisfy the well-known assumptions of the standard Kalman filtering.

Readers are referred to [69] for complete proof. Thus, [18] derives the recursive state

estimate of the new system as follows:

Theorem 3. The LMSE recursive state estimation of system (20), (21) is given

by

xk+1|k+1 = xk+1|k +Kk+1(yk+1 − H̄k+1xk+1|k),

xk+1|k = F̄kxk|k,

Pk+1|k = F̄kPk|kF̄
T
k +Rṽk

,

Kk+1 = Pk+1|kH̄
T
k+1(H̄k+1Pk+1|kH̄

T
k+1 +Rw̃k+1

)
†

,

Pk+1|k+1 = (I−Kk+1H̄k+1)Pk+1|k,
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Rṽk
= Rvk

+ E(F̃k E(xkx
T
k )F̃

T
k ),

Rw̃k+1
= Rwk+1

+ E(H̃k+1 E(xk+1x
T
k+1)H̃

T
k+1),

E(xk+1x
T
k+1) = F̄k E(xkx

T
k )F̄

T
k + E(F̃k E(xkx

T
k )F̃

T
k ) +Rvk

,

x0|0 = Ex0, P0 = Var(x0), E(x0x
T
0 ) = Ex0 Ex0

T +P0.

Compared with the standard Kalman filtering, the random coefficient matrices

Kalman filtering has one more recursion equation E(xk+1x
T
k+1). In Theorem 3, we

eventually have to compute E(F̃k E(xkx
T
k )F̃

T
k ) and E(H̃k E(xkx

T
k )H̃

T
k )). Their ana-

lytical expressions are given by

E(F̃k E(xkx
T
k )F̃

T
k )(m,n) =

r∑

i=1

Cfk
n1f

k
mi
Xk

i1 + · · ·+
r∑

i=1

Cfk
nrf

k
mi
Xk

ir,

E(H̃k E(xkx
T
k )H̃

T
k )(m,n) =

r∑

i=1

Chk
n1h

k
mi
Xk

i1 + · · ·+
r∑

i=1

Chk
nrh

k
mi
Xk

ir,

where Xk
ij is the (i, j)-th entry of Xk = E(xkx

T
k ).

3.2.1. Application to dynamic process with spurious observations . In

the classical Kalman filtering problem, the observation is always assumed to contain

the signal to be estimated. However, in practice, when the exterior interference is

strong, i.e., total covariance of the measurement noise or clutter is large, the estimator

will mistake the noise or clutter as the observation sometimes.Usually, the estimator

cannot know whether this happens or not, only the probability of two cases known.

Consider a discrete dynamic process

xk+1 = Fkxk + vk,(32)

yk = Akxk +wk , k = 0, 1, 2, . . . ,(33)

where {Fk, Ak, vk, wk, k = 0, 1, 2, . . .} satisfy the assumptions of standard Kalman

filtering. Fk and Ak are deterministic matrices. Suppose that the probability of

observation coming from above model is pk. Thus, false alarm probability of the

observation is 1− pk. Then,we can rewrite the measurement equations as follow

yk = Hkxk +wk , k = 0, 1, 2, . . . ,(34)

where the observation matrix Hk is a binary-valued random with

Pr{Hk = Ak} = pk,(35)

Pr{Hk = 0} = 1− pk.(36)

In the false alarm case, the state transition matrix is still deterministic, but the mea-

surement matrix is random. Thus the dynamic process with a false alarm probability
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is a special case of model (20), (21). We can use Theorem 3 to deal with the dynamic

system with false alarm.

Example 1. The object dynamics and measurement equations are modeled as

follows.

xk+1 = Fkxk + vk,

yk,i = Hk,ixk +wk,i, i = 1, 2, 3,

where {Fk, Hk,i, vk, wk,i, k = 0, 1, 2, . . .} satisfy the assumptions of standard Kalman

filtering. The state transition matrix Fk

Fk =

[
cos(2π/300) sin(2π/300)

− sin(2π/300) cos(2π/300)

]

is a constant. The measurement matrix is given by

Hk,i =

[
1 i

1 −i

]
, i = 1, 2, Hk,3 =

[
1 3

−1 3

]
.

The false alarm probability of the i-th sensor is given by

1− pk,1 = 0.01, 1− pk,2 = 0.02, 1− pk,3 = 0.03.

The initial state x0 =
[
50, 0

]
, P0|0,i = I. The covariance of the noises are diagonal,

given by Rvk
= 1, Rwk,i

= 2, i = 1, 2, 3. Using Monte-Carlo method of 50 runs, we

can evaluate tracking performance of an algorithm by estimating the second moment

of the tracking error, given by

E2
k =

1

50

50∑

i=1

||x(i)
k|k − xk||2.(37)

Figure 1 shows that the second moments of tracking error for three sensors Kalman

filtering fusion without considering the false alarm (i.e. standard Kalman filtering)

and three sensors random coefficient matrices Kalman filtering fusion considering the

false alarm (i.e. random coefficient matrices Kalman filtering), respectively. It can

be shown that even if the false alarm probability is very small, the distributed random

coefficient matrices Kalman filtering fusion performs much better than the standard

Kalman filtering.

3.2.2. Application to multiple-model dynamic process.

The multiple-model (MM) dynamic process has been considered by many researchers.

Although the possible models considered in those papers are quite general and can

depend on the state, no optimal algorithm in MSE sense was proposed in the past few

decades. On the other hand, when some of the MM systems satisfy the assumptions
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Fig. 1. Comparison of standard Kalman filtering fusion and random coefficient matrices

Kalman filtering fusion

in this section, they can be reduced to dynamic models with random transition matrix

and thus the optimal real-time filter can be given directly according to the random

transition matrix Kalman filtering proposed in Theorem 3.

Consider a system

xk+1 = Fk,ixk + vk with probability pk,i, i = 1, . . . , l,(38)

yk = Hkxk +wk,(39)

where Fk,i and vk,i are independent sequence, andHk is non-random. We use random

matrix Fk to stand for the state transition matrix. The expectation of Fk can be

expressed as:

F̄k =

l∑

i=1

pk,iFk,i(40)

F̃k = Fk,i − F̄k, with probability pk,i.(41)

In MM dynamic process, the measurement matrix is still deterministic, but the state

transition matrix is random. Thus it is also a special case of model (20), (21). We

can use Theorem 3 to deal with the MM dynamic process.

Example 2. In this simulation, there are three dynamic models, with the corre-

sponding probabilities of occurrence available. The object dynamics and measurement

matrix in (38) are given by

Fk,1 =

[
cos(2π/300) sin(2π/300)

− sin(2π/300) cos(2π/300)

]
with probability 0.1,
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Fk,2 =

[
cos(2π/250) sin(2π/250)

− sin(2π/250) cos(2π/250)

]
with probability 0.2,

Fk,3 =

[
cos(2π/100) sin(2π/50)

− sin(2π/50) cos(2π/100)

]
with probability 0.7,

Hk =

[
1 1

1 −1

]
.

The covariance of the noises are diagonal, given by Rvk
= 1, Rwk

= 2. In the

following, we compare our numerical results with the well-known IMM algorithm.

Since in this example, the occurrence probability of each model at every time k is

known and mutually independent, it is also the transition probability in the IMM.

Therefore, the transition probability matrix Π at each time in the IMM is fixed and

given by

Π =




0.1 0.2 0.7

0.1 0.2 0.7

0.1 0.2 0.7


 .

Π(i, j) here means the transition probability of model i to model j. This assumption

also implies that the model probability in the IMM is fixed as follows:

πk,1 = 0.1, πk,2 = 0.2, πk,3 = 0.7.

Figure 5 shows that the random coefficient matrices Kalman filtering given in this

section still works better than the IMM with the fixed transition probability and model

probability. This makes sense since the former is optimal in the MSE sense but the

latter is not.

3.2.3. Correlated random coefficient matrix sequences. In many realis-

tic systems and practical backgrounds, the model coefficient matrices are not only

random, but also correlated. For examples: 1) in the maneuvering target tracking

scenario, the targets being tracked undergo occasional maneuvers, so that the motion

of such targets is often modeled by one-order Markov random transition matrices

(see [22, 32, 34, 42, 47]); 2) in nonlinear random systems, the extended Kalman filter

often linearizes the nonlinear system around the random state estimate, which also

makes the correlated coefficient matrices (see [34, 67]); 3) [69, 78] proposed that the

combination step in the interacting multiple model (IMM) and the joint probabilistic

data association (JPDA) methods can be transformed to dynamic systems with the

correlated measurement matrices.

In paper [76], dynamic systems with only the measurement matrices correlated

was consider first. Similar to that in [18], such random dynamic systems are con-

verted to deterministic dynamic systems whose measurement noises can be proved to
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Fig. 2. Comparison of IMM and random coefficient matrices Kalman filtering

be generally one-step correlated. More detailed speaking, the original measurement

matrix was separated to be the deterministic and random parts and then the later

was combined with the original measurement noise to be a modified noise which is

proved to be temporally one-step correlated. Thus, the optimal estimation results on

finite step correlated measurement noises in [74] can be used to obtain the optimal

recursive estimation. Secondly, a class of specific dynamic systems, where both transi-

tion matrices and measurement matrices are a one-step moving average (MA) matrix

sequences driven by a common independent zero-mean random sequence. The model

is one-order Markovian, which is similar to IMM problem discussed in [22, 32, 42, 47].

To derive optimal recursive estimation, the key technique used there is to introduce

two auxiliary state variables and decompose the Kalman gain matrix into two factor

matrices to find their recursive schemes respectively. The optimal recursive estima-

tion of the state can be obtained by using the first order through the sixth order

moments of the driving sequence of the aforementioned MA matrix sequences. If only

the transition matrices are temporally correlated, the optimal filter can be given by

using the first through the fourth order moments of the driving sequence. Numeri-

cal examples show that the optimal estimation is better than the standard Kalman

filter and the random Kalman filter [18] with the correlation of coefficient matrices

ignored, specially, the new method can get better improvement over them when both

the transition matrices and the measurement matrices are temporally correlated.

Remark 2. Although the criterion here is still quadratic LMSE, the multiplica-

tive relationship between coefficient matrix and the state, in particular, the recursion

in process equation make the high order moments of the driving sequence required to

obtain the second moments of Kalman filtering. In practice, it is may be very hard
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to get high order moments of the driving sequences. This shows that the optimality

of Kalman filtering in MSE sense not only requires precise model knowledge, but also

cannot afford the trouble brought by correlations of model coefficient matrices. There-

fore, people may prefer suboptimal Kalman filtering with ignoring some correlations

in the model knowledge.

3.3. Kalman filtering with negative time correct/incorrect measure-

ments. In target tracking systems, there often exist various propagation times from

sensors to local processors or a central processor, it is clearly possible that some mea-

surements will arrive out of sequence (OOS), as discussed in [34].The early works on

the current state update with an OOS measuremnt (OOSM) in [30] and [40] presented

an approximate solution called “algorithm B” in [55]. The main result of [55] extended

the previous work to create an algorithm with optimal output, “algorithm A”. It was

also shown by numerical examples in [55] that the “algorithm B” is nearly optimal.

Subsequently, the generalized solutions for the ℓ-step-lag case, to be called “algorithm

Aℓ1” and “algorithm Bℓ1”, were derived in [57]. It was shown by numerical exam-

ples that “algorithm Aℓ1” and “algorithm Bℓ1” are only slightly suboptimal and the

corresponding numerical results are very close to those obtained by reordering and

reprocessing an entire sequence of measurements. The update for the ℓ-step-lag case

was discussed in [48] and [54], which are suboptimal and require an iteration back for

ℓ steps and considerable computational amount of storage.

For ℓ-step-lag OOSMs, the algorithms in [65] are of globally optimal recursive

algorithm. However, they require considerable amount of storage (see [65]). The other

algorithms are mostly suboptimal. The readers can also refer to [72, 73] for the optimal

centralized and distributed multisensor fusion update for the case of the correlated

measurement noises. However, all previous algorithms cannot update the entire state

trajectory which is important in some practical applications. For example, an accurate

state trajectory can certainly benefit to the identification of the aerodynamic model

(see [43]) and the state trajectory association for multi-target multisensor tracking (see

[16]). In [75] a globally optimal state trajectory update algorithm for a sequence with

arbitrary delayed OOSMs was proposed. It can update the current whole trajectory

other than only the current single state with less computationThe resulting object

tracking trajectory is a smooth state trajectory.

On the other hand, the counterpart of the OOSM update problem is the need to

remove an earlier measurement from the state trajectory (see [70]). This can happen

in multi-sensor tracking systems very often. For example, after the central tracker

received measurements/estimates from local sensors and obtained a central estimate,

a local sensor sometimes may change its mind and send a message to central tracker

that an earlier measurement should be removed from tracks because, based on its
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information, an earlier measurement is an incorrectly associated one. More practical

applications can be referred to [66]. In [75] an optimal trajectory update algorithm

with removing early incorrect measurement was also proposed as an extension of the

counterpart of the OOSM update problem.

4. Main Limitations to Kalman Filtering in Practice. Obviously, Kalman

filtering can achieve the optimal performance in the MSE sense whenever all optimal-

ity assumptions and the required precise model knowledge can be given. Besides, the

required computational burden is affordable easily. However, while the MSE crite-

rion brings us these advantages, it also yields the following drawbacks in practical

applications:

1) No Robustness. The optimal solution of the MSE needs much model knowl-

edge: precise model coefficient matrices and noise covariances. If they cannot be

known exactly, and one uses nominal model with unknown bias, the filtering per-

formance becomes bad. Unfortunately, in real world there exist great number of

uncertain systems with biased model knowledge.

2) Restrictive Optimality Conditions. If the system is essentially nonlinear,

or the uncorrelation/independence of the random sequences for the model noises and

the random coefficient matrices to be violated, it is very hard to analyze and derive the

global optimality in terms the MSE although some of nearly optimal algorithms and

nonlinear filtering have become widespread and useful in practice, for example, some

adaptive Kalman filtering [64], extended forgetting factor recursive Least Squares

algorithm [45], and the extended Kalman filtering[61], the unscented Kalman filtering,

and particle filtering (see [67]).

3) Large Error with Non-Zero Probability. In fact , many of practical

dynamic systems only can give us a signal trajectory other than so many repeated

trajectories. Hence, Kalman filtering cannot overcome such contradiction between the

MSE optimality and practical single implementation and may have arbitrary large

error with non-zero probability. Besides, some engineering problems, such as nuclear

and airspace engineering cannot tolerate large error even with very small probability.

5. Dynamic Systems with Bounded Uncertain Model Biases. To over-

come the aforementioned drawbacks of Kalman filtering, another formulation of un-

certain dynamic systems with bounded bias has been investigated in the past two

decades, in particular, developed very much based on the recently derived new results

on the convex optimization theory and high-efficient algorithms.

5.1. Set-Membership filtering. A dynamic system with bounded uncertain

model bias in fact tell us a model set of dynamic systems, where the true dynamic

system must be inside the set but one cannot know which member of the set it is. In
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this case, to cope with the uncertainty of model, naturally, set-valued filtering is an

appropriate choice of the state estimation. Set-valued state estimation–an estimation

set that is guaranteed to contain the state vector to be estimated has also been exten-

sively studied in the bounded perturbation framework. In some cases, the assumption

of the bounded noises is reasonable indeed. For example, an aircraft often has several

tons; it is acceptable that its position, velocity and acceleration have bounded inter-

fered changes. Besides, when the models are uncertain, probability density functions

(pdf) of noises are difficult to be obtained in general. Thus, measurements of too far

away are usually ignored and the measurement noises are assumed bounded. The set-

valued estimation was considered first at end of 1960s and early 1970s (see [5, 6, 8]).

These results aim to compute bounding ellipsoids which are guaranteed to contain

the state vector to be estimated given bounds on the perturbations and noises. The

idea of propagating bounding ellipsoids (or other convex sets: boxes, polytopes, sim-

plexes, parallelotopes, and polytopes) for systems with bounded noises has also been

investigated by many authors, for example, see papers [17, 23, 36, 44, 51, 52, 60, 62]

, the survey papers [29, 28], the special issues of journals [24, 33, 35], the books

[12, 31, 37, 39, 49], and references therein. The usual approaches, bounding ellipsoids

and bounding boxes, are presented in this section. Specially, [27] proposed a class of

“size” measure of an ellipsoid as the optimization objectives of the set-valued estima-

tion, which is in fact a generalized trace measure. Recent results [52] give a general

convex optimization method for uncertain linear equations and dynamical systems.

In many practical applications, one needs to know an exact estimation of error

upper bound and wants it as small as possible. For example, in some aerospace

and nuclear engineering, a large error even with very small probability may not be

allowed. However, the estimation methods derived by statistical average error (i.e.,

MSE) criterion sometimes may not satisfy practical requirements. Fortunately, the

set-valued estimate can be easily converted to point estimate by taking the central

point of estimate set. Then, the maximal Euclidean distance between such a point

estimate and boundary of the estimate set is an Euclidean error bound. Therefore,

an important issue is how to minimize the Euclidean error bound. So far, minimizing

Euclidean error estimation has not been received enough attention while the statistical

average method has been investigated extensively.

Properly using these set-valued estimation methods in terms of convex optimiza-

tion and the techniques of multisensor and multi-algorithm fusion, the practically

and theoretically significant estimation problem–minimizing the Euclidean error of

state estimation can be efficiently solved. To our best knowledge, although the el-

lipsoid/box estimation also provides an Euclidean error estimation (namely, a center

of ellipsoid/box as a required estimate, the longest semi-axis of ellipsoid/box as Eu-



112 YUNMIN ZHU

clidean estimation error) of the state, one does not figure out that the Euclidean error

of state estimation can be further minimized and the previous set-valued estimation

methods do have such potential. How to use the complementary advantages of mul-

tiple sensors and multiple algorithms to minimize Euclidean estimation error of the

state vector is what we present in this section (for more details, see [77]).

Now, we present the mathematical basis of El Ghaoui & Calafiore’s method [52]

and basic idea of multisensor and multi-algorithm estimation fusion for minimizing

Euclidean estimation error of the state vector.

Main Stages of Set-Valued Estimation

• For quite general system, derive a convex constraint condition guaranteeing

estimation coverage set must cover true state. It is in general no longer simply

quadratic constraint;

• Under such constraint, choose an objective function minimizing ”size” of the

coverage set. For example, take the sum of squares of all semi-axes lengths

as ellipsoid size, or sum of all edges as box size as ... below. They are all

convex objective functions;

• Based recent development of optimization theory, there exist some high-

efficient algorithms to solve the above convex optimization problem.

Basic Idea of Minimizing Euclidean Error

• Use multiple sensors and multiple algorithms to get many very distinct

estimation sets (ellipsoids or boxes);

• For each algorithm, choose its own objective function f(P) or g(b) (for exam-

ple, see (48) or (49)) which is a weighted sum and only gives very high weight

to a unique term of the sum to yield a prolate estimate coverage set whose

estimate error of the unique element of the state vector is as small possible;

• Use set intersection to get smaller-size set;

• Finally, Euclidian estimation error bound can be minimized.

To intuitively understand the aforementioned ideas, see the following three figures.

These results are also illustrated by a numerical example. An interesting phe-

nomenon is that the Euclidean estimation error of the entry of the state vector of

the distributed fusion algorithm is smaller than that of the centralized fusion algo-

rithm although the objective of the centralized fusion is generally smaller than that

of the distributed fusion. The main reason is that the Euclidean error of the dis-

tributed fusion is derived from more estimation ellipsoids/boxes, including the fusion

ellipsoid/box and the estimation ellipsoids/boxes (not unprocessed observation sets

in the centralized fusion) transmitted from the sensors, but the Euclidean error of

the centralized fusion is derived from a fusion ellipsoid/box only. Moreover, using

this fact and the complementary advantages of multiple algorithms, we first use mul-
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Fig. 3. Euclidean error bound based set-valued estimation

Fig. 4. Two set-valued estimate fusion from two sensor makes smaller Euclidean error bound

tiple differently weighted objectives at both the local sensors and the fusion center,

where each only emphasizes an individual entry of the estimated state vector, so as

to yield multiple estimation ellipsoids/boxes squashed along each entry of the state

vector as much as possible respectively. Then intersection fusion of these estimation

ellipsoids/boxes yields a final Euclidean-error-minimized state estimate. Obviously,

the idea in the proposed method can be utilized to other set estimation methods

to yield Euclidean-error-minimized state estimate. Numerical examples support the

above analysis and show that the new method can significantly reduce the Euclidean

estimation error of the state vector.
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Fig. 5. Two set-valued estimate fusion from two different algorithms further makes smaller

Euclidean error bound

5.1.1. Problem formulation. system with model uncertainty and bounded

noises is formulated as follows:

xk+1 = Mk(∆k)

[
xk

vk

]
(42)

yk,i = Mk,i(∆k,i)

[
xk

wk,i

]
, i = 1, . . . , L,(43)

where xk ∈ R
n is the state of system at time k; vk ∈ R

nv is a bounded uncertain

process noise taking value in a unit sphere, i.e., ‖ vk ‖≤ 1; yk,i ∈ R
ni is the measure-

ment of state xk; wk,i ∈ R
nwi is the bounded uncertain measurement noise of the i-th

sensor taking value in a unit sphere, i.e., ‖ wk,i ‖≤ 1. The uncertainty on the system

parameter matrices is assumed to be represented in linear fractional representation

(LFR) form, for any given ∆k ∈ R
np,nq , ∆k,i ∈ R

npi,nqi , i = 1, . . . , L

Mk(∆k) = [Fk Ak] + Lk∆k(I−Dk∆k)
−1[RFk

RAk
],(44)

Mk,i(∆k,i) = [Hk,i Bk,i] + Lk,i∆k,i(I−Dk,i∆k,i)
−1[RHk,i

RBk,i
],

(45)

where I is an identity matrix with compatible dimensions; Fk ∈ R
n,n, Ak ∈ R

n,nv ,

Hk,i ∈ R
ni,n, Bk,i ∈ R

ni,nwi , Lk ∈ R
n,np , Lk,i ∈ R

ni,npi , Dk ∈ R
nq,np , Dk,i ∈

R
nqi,npi , RFk

∈ R
nq,n, RAk

∈ R
nq ,nv , RHk,i

∈ R
nqi,n andRBk,i

∈ R
nqi,nwi are known

time-varying matrices. The uncertainty time-varying matrices ∆k, ∆k,i are in general

structured and bounded ∆k ∈ Ω̃k , {∆ ∈ Ωk : ||∆|| ≤ 1}, ∆k,i ∈ Ω̃k,i , {∆ ∈ Ωk,i :

||∆|| ≤ 1}, where Ωk ⊂ R
np,nq , Ωk,i ⊂ R

npi,nqi are structure subspaces. Let these
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LFRs be well-posed over Ωk and Ωk,i respectively, meaning that det(I−Dk∆k) 6= 0,

∀∆k ∈ Ω̃k, det(I−Dk,i∆k,i) 6= 0, ∀∆k,i ∈ Ω̃k,i, a sufficient condition for well-posedness

can be seen in µ analysis problems [26]. The above LFR of the uncertainty is widely

used in control theory and has great generality including the additive uncertainty of

the form Mk(∆k) = [Fk +∆F Ak +∆A] if let Lk = I, Dk = 0, ∆k = diag(∆F ,∆A),

[RFk
RAk

] = [I I] (see [26, 60]).

5.1.2. Measures of size of an ellipsoid or a box. For a given ellipsoid with

a center x̂,

E = {x ∈ R
n : (x− x̂)TP−1(x − x̂) ≤ 1}(46)

= {x ∈ R
n : x = x̂+Eu, ||u|| ≤ 1},(47)

the “size” of the ellipsoid E is a function of the shape matrix P ≻ 0, and will be

denoted by f(P), E is Cholesky factorization of P, i.e., P = EET. The lengths of the

semi-axes of E are given by
√
λi, where λi are the eigenvalues of P. It is well known

that tr(P) corresponds to the sum of squares of semiaxes lengths of E , and logdet(P)

is related to the volume of the ellipsoid (see [58]). Based on tr(P), [27] proposed a

class of objectives, which can emphasize the importance of the state-vector entry of

interest. The class of objectives of ellipsoid estimation is

f(P) = ω1P11 + ω2P22 + · · ·+ ωnPnn,(48)

where ωj is the weight coefficient, ωj > 0 and
∑n

j=1 ωj = 1. If the bound of the j-th

entry of the state vector is more important, one can give a larger weight to ωj, since

the projection bound (half of the projection length) of the ellipsoid E along the j-th

direction of the state vector is
√
Pjj where Pjj is the element in the j-th row and

j-th column of the matrix P (see [58]). In particular, if let ωj = 1
n
, j = 1, 2, . . . , n

(every entry of the state vector is treated equally), then the corresponding objective

is equivalent to the trace objective. Thus, tr(P) not only corresponds to the sum of

squares of semiaxes lengths of E , but also is the sum of squares of projection bounds

of E along all state coordinate directions. Moreover, (48) corresponds to the weighted

sum of squares of projection bounds of E along all state coordinate directions.

For a box B, one can use the perimeter or volume of a box as a measure of the size

of the box. To emphasize the importance of the interested entry of the state vector

and guarantee the convex optimization, the following weighted sum of squares of side

length of B can also be used to construct the estimation fusion of multiple algorithms

for minimizing Euclidean estimation error of the state vector:

g(b) = ω1(b(1))
2 + ω2(b(2))

2 + · · ·+ ωn(b(n))
2,(49)
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where b is the vector of the side length of the box B. The matrix diag((b(1)2 )2,

. . . , (b(n)2 )2), corresponding to the the shape matrix P of the ellipsoid E , can be

taken as the shape matrix of the box B. Moreover, the matrix diag(b(1)2 , . . . , b(n)
2 )

corresponds to the Cholesky factorization matrix E of the shape matrix P of the

ellipsoid E . In addition, the free degrees of the box shape and the ellipsoid shape are

n and n(n+1)
2 respectively, which will be used to compare the number of the decision

variables of box and ellipsoid optimization problems.

Throughout this section, f(P) defined by (48) and g(b) defined by (49) will

be the objectives of ellipsoid optimization problems and box optimization problems

respectively. In addition, they will also be used to construct the estimation fusion of

multiple algorithms for minimizing Euclidean estimation error of the state vector.

5.1.3. State bounding box estimation based on centralized fusion. Sup-

pose that the initial state x0 belongs to a given bounding ellipsoid or box:

Ex0
= {x ∈ R

n : (x− x̂0)
T(Px0

)−1(x − x̂0) ≤ 1},(50)

Bx0
= {x ∈ R

n :| x(j)− x̂0(j) |≤
bx0

(j)

2
, j = 1, . . . , n},(51)

where x̂0 is the center of ellipsoid Ex0
or the center of the box Bx0

; Px0
is the shape

matrix of the ellipsoid Ex0
which is a known symmetric positive-definite matrix; bx0

is the vector of the side length of the box Bx0
, whose entries are positive. At time k,

given that xk belongs to a current bounding ellipsoid or box:

Exk
= {x ∈ R

n : (x− x̂k)
T(Pxk

)−1(x− x̂k) ≤ 1},(52)

Bxk
= {x ∈ R

n :| x(j)− x̂k(j) |≤
bxk

(j)

2
, j = 1, . . . , n},(53)

where x̂k is the center of ellipsoid Exk
or the center of the box Bxk

; Pxk
is a known

symmetric positive-definite matrix; bxk
is the vector of the side length of the box Bxk

.

At next time k + 1, the fusion center can receive the measurements yk+1,i from the

i-th sensor, i = 1, 2, . . . , L.

For the centralized fusion system, at time k + 1, the goal of the fusion center is

to determine a fusion bounding ellipsoid Exk+1
or bounding box Bxk+1

, i.e, look for

x̂k+1,Pxk+1
or x̂k+1,bxk+1

such that the state xk+1 belongs to

Exk+1
= {x ∈ R

n : (x − x̂k+1)
T(Pxk+1

)
−1

(x− x̂k+1) ≤ 1},(54)

or Bxk+1
= {x ∈ R

n :| x(j)− x̂k+1(j) |≤
bxk+1

(j)

2
, j = 1, . . . , n},(55)

whenever i) xk is in Exk
or Bxk

, ii) the process and measurement noises vk,wk+1,i

are bounded in a unit sphere, i.e. ‖ vk ‖≤ 1, ‖ wk+1,i ‖≤ 1, i = 1, . . . , L, and iii)

(42) and (43) hold for some ∆k ∈ Ω̃k, ∆k+1,i ∈ Ω̃k+1,i. Moreover, we provide a state
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estimation ellipsoid or box by minimizing its “size”. At last, Euclidean estimation

error of the state vector and Euclidean estimation error of every entry of the state

vector are presented.

To minimize Euclidean estimation error, based on S-procedure [10] and Schur

complement, quadratic embedding [52], the multisensor centralized fusion is derived

in this section. Based on the assumptions and symbols of in this section, the L sensors

centralized1 fusion bounding ellipsoid is given as follows.

Theorem 4. At time k + 1, based on measurements yk+1,i, i = 1, 2, . . . , L, we

have

I. a centralized fusion bounding ellipsoid Exk+1
= {x : (x − x̂k+1)

T (Pxk+1
)−1(x −

x̂k+1) ≤ 1} can be obtained by solving the optimization problem in the variables Pxk+1
,

x̂k+1, S,T,G,Si,Ti,Gi, i = 1, . . . , L, nonnegative scalars τu ≥ 0, τv ≥ 0, τwi ≥ 0, i =

1, . . . , L,

min f(Pxk+1
) subject to(56)

(S,T,G) ∈ P(Ωk),S � 0,T � 0,(57)

(Si,Ti,Gi) ∈ P(Ωk+1,i),Si � 0,Ti � 0, i = 1, 2 . . . , L,(58)

− τu ≤ 0, − τv ≤ 0, − τwi ≤ 0, i = 1, 2 . . . , L,(59)

−Pxk+1
≺ 0(60)




−Pxk+1
Φ(x̂k+1)(Ψ)⊥

(Φ(x̂k+1)(Ψ)⊥)
T (Ψ)T⊥(Π− Ξ)(Ψ)⊥


 � 0.(61)

where

Φ(x̂k+1) , [ Fkx̂k − x̂k+1 FkEk Ak

... 0 0 . . . 0︸ ︷︷ ︸
L blocks, 0∈R

n,ni

... Lk

... 0 0 . . . 0︸ ︷︷ ︸
L blocks, 0∈R

n,npi

],(62)

Ek is the Cholesky factorization of Pxk
, i.e, Pxk

= Ek(Ek)
T,

Ξ , diag(1− τu − τv −
L∑

i=1

τwi ,

I∈R
n,n

︷ ︸︸ ︷
τuI, τvI,

... τw1 I, τw2 I, . . . , τwL I︸ ︷︷ ︸
I∈R

ni,ni

,

1Term centralized means that the fusion center can receive all yk,i to derive estimate coverage

set at each time k.
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...

0∈R
np,np

︷︸︸︷
0 ,

... 0 0 . . . 0︸ ︷︷ ︸
L blocks, 0∈R

npi,npi

)(63)

Π , Υ(S,T,G) +

L∑

i=1

Υi(Si,Ti,Gi)(64)

Υ(S,T,G) , (Υ̃)T

[
T G

GT −S

]
Υ̃(65)

Υ̃ ,




RFk
x̂k RFk

Ek RAk

...

L blocks, 0∈R
nq,ni

︷ ︸︸ ︷
0 0 . . . 0

...

0 0 0
... 0 0 . . . 0︸ ︷︷ ︸
L blocks, 0∈R

np,ni

...

Dk

...

L blocks, 0∈R
nq,npi

︷ ︸︸ ︷
0 0 . . . 0

I
... 0 0 . . . 0︸ ︷︷ ︸

L blocks, 0∈R
np,npi




(66)

Υi(Si,Ti,Gi) , (Υ̃i)
T

[
Ti Gi

(Gi)
T −Si

]
Υ̃i(67)

Υ̃i ,




RHk+1,i
Fkx̂k RHk+1,i

FkEk RHk+1,i
Ak

0 0 0

...

L blocks, 0∈R
nqi,ni

︷ ︸︸ ︷
0 0 . . .RBk+1,i

. . . 0
... RHk+1,i

Lk

...

L blocks, 0∈R
nqi,npi

︷ ︸︸ ︷
0 0 . . .Dk+1,i . . . 0

... 0 0 . . . 0 . . . 0︸ ︷︷ ︸
L blocks, 0∈R

npi,ni

... 0
... 0 0 . . . I . . . 0︸ ︷︷ ︸

L blocks, 0∈R
npi,npi



;(68)

(Ψ)⊥ is the orthogonal complement of Ψ, i.e, a basis of the null space of Ψ,

Ψ , [(Ψ1)
T (Ψ2)

T . . . (ΨL)
T]T(69)

Ψi , [ Hk+1,iFkx̂k − yk+1,i Hk+1,iFkEk Hk+1,iAk

... 0 0 . . .Bk+1,i . . . 0︸ ︷︷ ︸
L blocks, 0∈Rni,ni

... Hk+1,iLk

... 0 0 . . .Lk+1,i . . . 0︸ ︷︷ ︸
L blocks, 0∈R

ni,npi

];(70)



KALMAN FILTERING AND SET-VALUED FILTERING 119

II. If take different waights in objective f(Pxk+1
) given in (56) and (48), the inter-

section of the derived multiple estimate sets is a multi-algorithm fusion, and make the

derived Eucdicen error as minimal as possible.

The proof of the theorem can be found in [77].

5.2. Numerical examples. In this subsection, we give an example to evaluate

the performance of the centralized fusion C-Algorithm (for details, see Algorithm 7.2.1

in our book [80]) and the distributed fusion D-Algorithm (for details, see Algorithm

7.2.2 in our book [80]). Moreover, based on the weighted objective (48) and (49), the

fusion of multiple Algorithms is used to reduce Euclidean estimation error.

Consider a two-state tracking system (see [50, 67]) with uncertainty of time stamps

and measurements. The states consist of position, velocity, and the measurements

consist of position plus noise. Here, we assume that the noises are bounded. The

uncertain state and measurement equations are given as

xk+1 =

[
1 T + 0.2δxT

0 1

]
xk +Akvk,(71)

yk,i = [1 + 0.001δy,i 0]xk +Bk,iwk,i, i = 1, 2,(72)

where T = 1s is the sample time interval, model uncertainty parameters ||δx|| ≤ 1,

||δy,i|| ≤ 1, i = 1, 2, vk and wk,i are the process noise and the measurement noises

taking value in a unit spheres, i.e., ‖ vk ‖≤ 1, ‖ wk,i ‖≤ 1 respectively. If we denote

Qk = 32

[
T 3/3 T 2/2

T 2/2 T

]
q,(73)

Rk,i = 32R,(74)

where q = 0.5 m2/s3 is the power spectral density of the continuous time pro-

cess noise, R = 1 m2, then the matrices Ak,Bk,i are satisfied with Qk = AkA
T
k ,

Rk,i = Bk,iBk,i
T. In [?, 67], the noises are assumed to be white noise processes with

covariance Qk/3
2,Rk,i/3

2. The LFR uncertainty representation (44)–(45) specializes

to Lk = [1 0],Dk = 0,RFk
= [0 0.2T ],RAk

= [0 0], Lk,1 = 1,Dk,1 = 0,RHk,1
=

[0.001 0],RBk,1
= 0, Lk,2 = 1,Dk,2 = 0,RHk,2

= [0.001 0],RBk,2
= 0. The s-

caling subspaces are in this case described by S = T = λ (a scalar), G = 0 and

Si = Ti = λi (a scalar), Gi = 0, i = 1, 2. The uniform distribution in [−1, 1] for

uncertain parameter and noises is used in simulation.

The following simulation results are the mean of 200 Monte Carlo runs under

Matlab R2007b with YALMIP (see [56]). Figure 6 presents a comparison of the

Euclidean error bounds along position direction for sensors 1, 2 using C-Algorithm

(L = 1) respectively and for the fusion center using the centralized fusion C-Algorithm
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(L = 2) and the distributed fusion D-Algorithm respectively. The objective (48) or

(49) with (w1, w2) = (0.5, 0.5) is used. Comparisons between the ellipsoid bounding

and the box bounding are presented simultaneously in Figure 6. Figures 7–8 present

comparisons of the Euclidean error bounds along velocity direction and comparisons

of the Euclidean error bounds of the state vectors respectively.
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Fig. 6. Comparison of the Euclidean error bounds along position direction.
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Fig. 7. Comparison of the Euclidean error bounds along velocity direction.

From Figures 6–8, the following observations can be seen.

1. Performance of both the centralized fusion C-Algorithm and the distributed

fusion D-Algorithm is better than that of sensors.

2. Performance of the distributed fusion D-Algorithm is better than that of

the centralized fusion C-Algorithm except the ellipsoid bounding case for
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Fig. 8. Comparisons of the Euclidean error bounds of the state vectors.

the Euclidean error bounds of the state vectors in Figure 8. The reasons

may involve: i) the former is derived from much more estimation ellipsoids

or boxes including the fusion ellipsoid and all sensor estimation ellipsoids

or boxes (not unprocessed observation sets) with different shapes than the
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latter; ii) for the ellipsoid bounding approach, the Euclidean error bound of

the state vector is calculated by the maximum eigenvalue of the shape matrix

of the bounding ellipsoid but not based on the Euclidean error bounds along

position and velocity directions, respectively.

3. Figure 6 shows that the Euclidean error bounds along position direction based

on the box bounding are better than those based on the ellipsoid bounding.

Figures 7–8 show that the Euclidean error bounds along velocity direction

and the Euclidean error bounds of the state vectors based on the ellipsoid

bounding are better than those based on the box bounding.

5.2.1. Figures 9–11 for fusion of multiple algorithms. Figure 9 presents

a comparison of the Euclidean error bounds along position direction of the fusion of

multiple D-Algorithm between the ellipsoid bounding and the box bounding meth-

ods. For the sensors 1-2, three objectives (48) or (49) with (w1, w2) = (0.99, 0.01),

(w1, w2) = (0.01, 0.99), (w1, w2) = (0.5, 0.5) are used in C-Algorithm (L = 1). Then

the corresponding ellipsoids/boxes are sent to the fusion center. For the fusion center,

based on the received ellipsoids/boxes, three D-Algorithm with using the above three

objectives respectively are fused. Similarly, Figures 10–11 present comparisons of the

Euclidean error bounds along velocity direction and the Euclidean error bounds of

the state vectors of the fusion of multiple D-Algorithm respectively.
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Fig. 9. Comparisons of the Euclidean error bounds along position direction.

Figures 9–11 also show that the Euclidean error bounds along position direction

based on the box bounding are better than those based on the ellipsoid bounding. On



124 YUNMIN ZHU

0 2 4 6 8 10 12 14 16 18 20 22
5

5.5

6

6.5

7

7.5

Time K

E
u

c
lid

ia
n

 e
rr

o
r 

b
o

u
n

d
s
 a

lo
n

g
 v

e
lo

c
it
y
 d

ir
e

c
ti
o

n

 

 
Multiple D−Algorithm  fusion−−box bounding
Multiple D−Algorithm fusion−−ellipsoid bounding

Fig. 10. Comparisons of the Euclidean error bounds along velocity direction.
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Fig. 11. Comparisons of the Euclidean error bounds of the state vectors.

the contrary, the Euclidean error bounds along velocity direction and the Euclidean

error bounds of the state vectors based on the ellipsoid bounding are better than those

based on the box bounding.

Comparing Figures 6–8 with Figures 9–11, it can be observed that the Euclidean

estimation error of every entry of the state vector and the Euclidean estimation error

of the state vector can be significantly decreased by the fusion of multiple algorithms.
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In a summary, we have proposed the centralized fusion C-Algorithm and the

distributed fusion D-Algorithm. Their performances are better than that of sensors.

Simulations show that the Euclidean estimation error along the every state direction

of the distributed fusion D-Algorithm is smaller than those of the centralized fusion

C-Algorithm. Moreover, the Euclidean estimation error of the state vectors can be

significantly improved by estimation fusion of multiple algorithms.

5.3. Comparison with Kalman Filtering. We have the following observa-

tions in comparison with Kalman filtering:

• No close solution, more computation requirement but still can be efficiently

solved;

• No analysis on observability and controllability;

• More robust for biased models;

• Can be converted to Euclidean Error (bound) estimation and further mini-

mize it by multisensor and multi-algorithm fusion .

It follows that when the assumptions on optimality for Kalman filtering can be ful-

filled, particularly, model precise knowledge can be known, Kalman filtering is a good

choice for state estimation for dynamic systems; otherwise, one should try to find the

bias bound of model uncertainty and choose set-valued filtering. Besides, if large error

with nonzero probability can be tolerated, choose the former, otherwise, choose the

latter.

6. Conclusions. We have given a brief survey to some developments form Kal-

man filtering for the stochastic dynamic systems to set-valued filtering for the dynamic

systems with bounded but uncertain model biases. The main focus on this survey is

is to present some progress in the two filters and compare their own advantage and

weakness in order to provide some guidance for people to decide which formulation

for dynamic systems with uncertainty and the corresponding filtering method should

be chosen in practical applications. Since computational burden for Kalman filtering

is easily affordable and theoretical properties are clear, we should choose it to handle

a stochastic dynamic system while the system model knowledge can be given relevant

precisely. Otherwise, we should formulate the model to be a biased dynamic system

and adopt the minimizing Euclidean error algorithm to estimate the state. A future

work is to study the later theoretical properties although it looks very hard.
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