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SWITCHED LINEAR SYSTEMS: STABILITY AND THE

CONVERGENCE OF RANDOM PRODUCTS

B. HANLON∗, N. WANG† , M. EGERSTEDT‡ , AND C. MARTIN§

Abstract. In this paper we provide conditions for the stability of discrete time switched linear

systems. We accomplish this by calculating the mean and covariance of the set of matrices obtained

by using all possible switching sequences. The theory of switched linear systems has received con-

siderable attention in the systems theory literature in the last two decades. However, for discrete

time switched systems the literature is much older going back to at least the early 1960’s with the

publication of the paper of Furstenberg and Kesten in the area of products of random matrices, or,

if you like, the random products of matrices. The way that we have approached this problem is to

consider the switched linear system as evolving on a partially ordered network that is, in fact, a tree.

This allows us to make use of the developments of 50 years of study on random products that exist

in the statistics literature.

1. Introduction. The theory of switched linear systems has received consider-

able attention in the systems theory literature in the last two decades and there is

a wealth of solid results concerning the stability and stabilizability of such systems.

A recent survey by Lin and Antsaklis, [14], gives a rather complete overview of the

field. The main theorem cited there on stability for discrete time switched linear sys-

tems, (their Theorem 6, [13]), requires that 2n matrix norms must be calculated. In

this paper we give a simpler calculation but one that will only hold for “almost all”

[5] switching sequences. An excellent and readable source for the general theory of

switched linear systems is the monograph by Liberzon, [12]. In his book the primary

focus is on continuous dynamics but the concepts are much the same. However, for

discrete time switched systems the literature is much older than the systems theory

literature, going back to at least the early 1960’s with the publication of the papers

of Furstenberg and Kesten, [9, 10], in the area of products of random matrices, or,

if you like, the random products of matrices. In the statistical literature on random

products “almost all” is the usual condition.

We approach the problem in the following way. We study the switched linear

system as evolving on a partially ordered network that is in fact a tree. This allows

us to make use of the developments of 50 years of study on random products that

exist in the statistics literature.
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The motivation for restudying this problem came from reading a series of papers

by S.A. Murphy, [16, 17, 18], on dynamic treatment regimes and associated dynamic

clinical trials. In fact the thesis by Wang, [22], was directly related to this topic. The

central idea behind dynamic treatments is that the treatments are switched between

two or more treatments types in hopes of producing an improvement over any single

treatment. A natural model for such a course of treatments lies in the area of switching

systems.

We extend the paper [23] by specifically studying the stochastic behavior of the

products. We characterize the convergence in term of probabilistic convergence and

give a series of examples to show that we do not have convergence for all possible

switching sequences; instead, we have convergence for all but a set of measure zero.

We begin with the stochastic preliminaries. Our goal is to prove the sequence xn

converges almost surely, for example xn
a.s.−−→0, would say the sequence converges to

0 except for possibly on a set of measure zero. In fact, this result provides an indirect

proof that the de-stabilizing sequence found in our counterexamples belongs to a set

of measure zero. Using standard probabilistic arguments, we reduce the problem of

almost sure convergence of the random vector to studying the mean and variance of

each component.

Almost sure stability has been studied in the monograph by Costo, et al [4] and

there the stability is determined in terms of the spectral radius of a certain set of

matrices. Similar results are obtained by Dai et al [7] and in fact in that paper deep

results are obtained in terms of Lyapunov exponents. In this paper the conditions

for convergence are obtained in terms of the eigenvalues of a pair of matrices. The

computation of the eigenvalues is somewhat simpler than the spectral radius calcu-

lations and the calculations for the Lyapunov exponents. The calculations for both

the spectral radius and Lyapunov exponent are known to be hard if not impossible,

[21]. Ogura and Martin, [19], have shown that the results on the spectral radius and

the results obtained in this paper are indeed related. In this paper it is noted that

the higher moments can be calculated using a technique due to Brockett, [2]. This

calculation is also very difficult for higher dimensional systems. However the stability

results of this paper do not depend on the higher moments.

The remainder of the paper is organized as follows. Section 2 provides the nec-

essary background on convergence of random elements and Section 3 computes the

related moments (mean and variance). Then, using the results developed in Sections

2 and 3, Section 4 through 9 explore the stability and convergence of the discrete

system. Finally, Section 10 concludes the paper.

2. Background on the Convergence of Random Elements.

2.1. Random Variables.

First consider the case of random variables. Throughout, this subsection (Xn :
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n ≥ 1) denotes a sequence of random variables and X denotes a random variable,

so that for each fixed ω ∈ Ω, X(ω), Xn(ω) ∈ R; if necessary we can consider the

extended real line R
∪
{−∞,∞}. The standard modes of convergence for random

variables and their relationships are discussed in [1, 5]. Our focus will be almost sure

convergence, also known as convergence with probability one. For completeness we

recall the definition here. Xn converges almost surely (a.s.) to X, denoted Xn
a.s.−−→X,

if

P
(
lim

n→∞
Xn = X

)
= 1.

A sufficient condition for almost sure convergence is found from the Borel-Cantelli

Lemma as stated here.

Proposition 2.1. Assume the following holds for all ϵ > 0,

(2.1)
∑
n≥1

P (|Xn −X| ≥ ϵ) < ∞

Then Xn
a.s.−−→X.

Remark 2.2. In general, condition (2.1) is a sufficient condition for almost sure

convergence (in fact, it is sometimes referred to as complete convergence). But if Xn

is an independent sequence of random variables then (2.1) is necessary and sufficient.

The following result gives a standard way to apply Proposition 2.1 through mo-

ment calculations.

Proposition 2.3. If either

1.
∑

n≥1 E |Xn| < ∞
or

(2) EXn → 0 and
∑

n≥1 var (Xn) < ∞.

then Xn
a.s.−−→X.

Proof. We prove that (2) is a sufficient condition the proof for (1) is almost

identical.

Let Yn = Xn − EXn. Fix ϵ > 0, by Chebyshev’s inequality we have,∑
n≥1

P (|Yn| > ϵ) =
∑
n≥1

P (|Xn − EXn| > ϵ) ≤
∑
n≥1

var(Xn)

ϵ2
< ∞,

by assumption. Therefore, by Borel-Cantelli, Yn
a.s.−−→ 0. But

Xn = Yn + EXn,

and by assumption the constant sequence EXn → 0. Therefore Xn
a.s.−−→ 0.

2.2. Extension to Random Vectors. These results are easily extended to

random vectors because convergence almost surely for random vectors can be proven

component-wise. Namely, for each n, let Xn and X be random vectors on Rm. Then

we have

Xn
a.s.−−→X iff Xnj

a.s.−−→Xj for 1 ≤ j ≤ m,
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3. Mean and Variance. In this section we think of switched linear systems as

being of the form of a bilinear stochastic control system

(3.1) xn+1 = (u1A1 + · · ·+ ukAk)xn

where the ui’s are random variables with ui ∈ {0, 1},
∑k

i=1 ui = 1 and P (ui = 1) = 1
k

and each Ai ∈ GL(n,R). We note that it is not necessary for the probabilities to be

uniformly distributed as 1
k but it simplifies the notation and is the most commonly

used distribution. We let the ui’s take value in the set {0, 1} so that they are identically

distributed but are not independent. We calculate the the first two moments–the

mean and covariance using a simple averaging process and then calculate the higher

moments using a process which is due to Brockett in his study of Volterra series

and nonlinear control, [2]. Brockett in [3] does this calculation in a slightly different

setting for other distributions. The construction that we use appears for the mean in

[8]. The context in that paper was switching between numerical methods to improve

accuracy in the numerical solution of ordinary differential equations.

Let S = {Ai : i = 1, · · · , k, Ai ∈ Gl(n,R)}. Let

Ym = XmXm−1 · · ·X0

where each Xi is a random variable taking values in S with P (Xj = Ai) =
1
k .

Now let the system be defined as

xm+1 = (δ1,mA1 + δ2,mA2 + · · ·+ δk,mAk)xm

with the property that for each i δi,m ∈ {0, 1} and

k∑
i=1

δi,m = 1.

We then have that each particular sample path is of the form

xm = Ym−1x0.

Theorem 3.1. Let

Sm = {Ym : taken over all sample paths},

then the mean value of the S′
ms, Em, is given recursively by

Em = (
1

k

k∑
i=1

Ai)Em−1.

Proof. This proof follows the proof in [8]. We will calculate the mean of Sm. Let

Sm
i = {Ym ∈ Sm : Xm = Ai}. It is clear that Sm is the disjoint union of the Sm

i .
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Let

Em =
1

km

∑
Ym∈Sm

Ym.

Decomposing this sum we have

Em =
1

km

∑
Ym∈Sm

Ym

=
1

km

k∑
i=1

∑
Ym−1∈Sm−1

AiYm−1

=
1

k

k∑
i=1

1

km−1

∑
Ym−1∈Sm−1

AiYm−1

=
1

k

k∑
i=1

AiEm−1

= (
1

k

k∑
i=1

Ai)Em−1(3.2)

Thus we have the mean of the set Sm computed recursively.

We now calculate the covariances.

Theorem 3.2. Let

Sm = {Ym : taken over all sample path},

then the covariance of the S′
ms is given by

Vm = Cm − EmE′
m

and Cm is generated recursively as

Cm+1 =
1

k

k∑
i=1

AiCmA′
i.

Proof. We now calculate the covariance. Let

Vm =
1

km

∑
Ym∈Sm

(Ym − Em)(Ym − Em)′.

Again we decompose the sum as

Vm =
1

km

∑
Ym∈Sm

(Ym − Em)(Ym − Em)′

=
1

k

k∑
i=1

1

km−1

∑
Ym−1∈Sm−1

(AiYm−1 − Em)×

(AiYm−1 − Em)′(3.3)
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On the other hand we have

(3.4) Vm =
1

km

∑
Ym∈Sm

YmY ′
m − EmE′

m

We now evaluate the sum

1

km−1

∑
Ym−1∈Sm−1

(AiYm−1 − Em)(AiYm−1 − Em)′ =

1

km−1

∑
Ym−1∈Sm−1

[AiYm−1Y
′
m−1A

′
i −

EmY ′
m−1A

′
i −AiYm−1E

′
m + EmE′

m]

=
1

km−1

∑
Ym−1∈Sm−1

[AiYm−1Y
′
m−1A

′
i]− EmE′

m

Now define

Cm =
1

km

∑
Ym∈Sm

YmY ′
m.

Thus we finally have

Vm =
1

km

∑
Ym∈Sm

YmY ′
m − EmE′

m

= Cm − EmE′
m

=
1

k

k∑
i=1

AiCm−1A
′
i − EmE′

m(3.5)

This completes the derivation.

We then have two linear recurrences that determine the mean and covariance of

the Sm under the assumption of uniform probability distribution.

Em+1 = (
1

k

k∑
i=1

Ai)Em(3.6)

Cm+1 =
1

k

k∑
i=1

AiCmA′
i(3.7)

Now let xn+1 = Axn where xn ∈ Rm and A is an m × m constant real matrix.

Let

X [p]
n =



xp
1,n

xp−1
1,n x2,n

...

xp−1
m,nxm−1,n

xp
m,n


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where this notation is intended to denote all monomials of degree p. We will show

that there exists a real constant matrix, A[p] so that

X
[p]
n+1 = A[p]X

[p]
n .

Consider the monomial

xn1
1,n+1x

n2
2,n+1 · · ·x

nm
m,n+1

where n1 + · · ·+ nm = p and each ni ≥ 0. Now

xi,n+1 = e′iAxn

and hence

xn1
1,n+1x

n2
2,n+1 · · ·x

nm
m,n+1 = (e′1Axn)

n1 · · · (e′mAxn)
nm

Each of the terms on the right is homogeneous linear and hence the product is the

sum of monomials of degree p and thus one row of the matrix A[p] is determined. We

show examples for n = 2 and p = 2 and p = 3. x2
1

x1x2

x2
2


n+1

=

 a211 2a11a12 a212

a11a21 a12a21 + a11a22 a12a22

a221 2a21a22 a222


 x2

1

x1x2

x2
2


n


x3
1

x2
1x2

x1x
2
2

x3
2


n+1

=


a311 3a211a12 3a11a

2
12 a312

a211a21 a211a22 + 2a11a21a12 a212a21 + 2a11a12a22 a212a22

a11a
2
21 a12a

2
21 + 2a11a21a22 a11a

2
22 + 2a12a21a22 a12a

2
22

a321 3a221a22 3a21a
2
22 a322

×


x3
1

x2
1x2

x1x
2
2

x3
2


n

We consider the monomials for the system 3.1. Note that

δiδj =

{
0 i ̸= j

δi i = j
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and hence if we construct the system as above we have

(3.8) X
[p]
n+1 = (δ1A[p],1 + · · ·+ δkA[p],k)X

[p]
n .

we thus have the following theorem as a direct application of theorem 3.1.

Theorem 3.3. Let

X
[p]
n+1 = (δ1A[p],1 + · · ·+ δkA[p],k)X

[p]
n

then the expected value of the p−moments is given by

E(X [p])n+1 =
A[p],1 + · · ·+A[p],k

k
E(X [p])n.

4. Stability of system. In this section we will prove the following theorem.

Theorem 4.1. If the system

xm+1 = (δ1,mA1 + δ2,mA2 + · · ·+ δk,mAk)xm

is stable for all choices of the δi,m, δi,m ∈ {0, 1}
∑

i δi,m = 1, then

Em+1 = (
1

k

k∑
i=1

Ai)Em

Cm+1 =
1

k

k∑
i=1

AiCmA′
i

are both stable.

Proof. We construct a tree from a natural partial ordering on the switching

sequences and to prove this theorem we will make essential use of König’s finitary

tree theorem, [11].

Theorem 4.2 (König). Every infinite finitary tree has an infinite branch.

We define an ordering on the set of all finite sequences of numbers 1 through k.

Let γn = (γn, γn−1, · · · , γ1) where γi ∈ {0, 1, · · · , k}. Let

Sn = {γn : over all choices of γi}.

We let S0 be the set consisting of the empty sequence which we will denote by ∅.
We will say that an element of Sn has height n. Let S = ∪nSn. Let x, y ∈ S and

suppose that the height of x is less than the height of y. We define x ≺ y if and

only if x = (γn, · · · , γ1) and y = (βk, · · · , γ1, γn, · · · , γ1). Note that ∅ ≺ x for all x

of positive height. Note that Sn is finite and has exactly kn elements. So (S,≺) is a

rooted tree and since the number of elements of height n is finite it is a finitary tree.

Now let {δim : m = 1, 2, · · · } be any infinite sequence of 1’s with correspond-

ing matrices Yn = (δ1,nA1 + δ2,nA2 + · · · + δk,nAk)(δ1,n−1A1 + δ2,n−1A2 + · · · +
δk,n−1Ak) · · · (δ1,1A1 + δ2,1A2 + · · · + δk,1Ak). We now assume that the systems is
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stable for all choices of switching sequences. Now given any fixed epsilon, ϵ > 0 here

exists a N such that ∥Yn∥ < ϵ for n > N . Let N be the smallest N that works.

Now for each m there exists a unique δi(m),m = 1 and we define a finite sequence

(i(N), i(N − 1), · · · , i(1)) ∈ SN . Then for a fixed ϵ there is a mapping from the set of

all switching sequences into S. Let the image of the set of all sequences be denoted

by R. Let R̂ be the smallest rooted tree that contains S. Thus R̂ is a finitary tree and

hence if it is infinite then it contains an infinite branch. This contradicts the fact that

the system is stable and therefore the tree must be finite. Thus there exists an N0

such so that for all Yn, n > N0 implies that ∥Yn∥ < ϵ.

Now let n > N0 and calculate the average value of Sn.

∥ 1

kn

∑
Yn∈Sn

Yn∥ ≤ 1

kn

∑
Yn∈Sn

∥Yn∥

<
1

kn

∑
Yn∈Sn

ϵ

= ϵ

Hence, for all n > N0 ∥En∥ < ϵ. The calculation for the covariance is similar to the

construction of the mean which concludes the proof.

5. Almost Sure Convergence. In this section we show that a necessary and

sufficient condition for almost sure convergence of the system 3.1 is that the matrix

A1 + · · ·+Ak

k

has all of its eigenvalues interior to the unit circle.

Theorem 5.1. The system

xn+1 = (δ1A1 + · · ·+ δkAk)xn

converges to zero almost surely if and only if every eigenvalue of the matrix

A1 + · · ·+Ak

k

lies interior to the unit circle.

Proof. The proof is a direct consequence of Theorem 3.1 and Proposition 2.3. We

need only show that ∑
n

Exn < ∞.

So suppose that the matrix has its eigenvalues interior to the unit circle. Then by the

recurrence we have

Exn =

(
A1 + · · ·+Ak

k

)n

Ex0
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and there exist matrices F1, · · · , Fk such that

Exn = (λn
1F1 + · · ·+ λn

kFk)Ex0

and so the sum can be written as∑
n

Exn =
∑
n

λn
1F1 + · · ·+

∑
n

λn
kFk)Ex0

= (
1

1− λ1
F1 + · · ·+ 1

1− λk
Fk)Ex0

< ∞

since the expected value of the vector converges so does each component. also note

that if any eigenvalue is outside the unit circle then the geometric sum with that

eigenvalue diverges to infinity. For an eigenvalue λ on the unit circle then λn does

not converge to zero and hence the sum cannot converge and further more Exn does

not converge to zero.

6. Counter examples. One is tempted to conjecture that a necessary and suffi-

cient condition for stability is that the mean and covariance are stable. In this section

we show that this not true by producing an example for k = 2 of a system for which

the mean and covariance are stable (but with eigenvalues very close to 1) and there

exists a switching sequence that renders the system unstable. In view of the failure it

is tempting to conjecture that if all of the moments converge to zero then the system

is stable for all switching sequences. We produce an example for which all of them

moments converge to zero but for which there are sequences that drive the system

away from zero. This reminiscent of the example in [6] of a system which is stable

but for which there is no quadratic Lyapunov function.

We will now give a counterexample to show that the system

xn+1 = (δnA1 + (1− δn)A2)xn

is not always stable for every sequence of {δn} even though the mean and covariance

are stable. Let

A1 =

(
0.9739 0.0098

−0.9772 0.9739

)

A2 =

(
0.9719 0.0975

−0.0975 0.9719

)

The two matrices satisfy the conditions that:

1) A−1
1 and A−1

2 exist.

2) As k → ∞, Ak
1 → 0 and Ak

2 → 0.
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Then the average of A1 and A2 is:

A1 +A2

2
=

(
0.9729 0.0536

−0.5374 0.9729

)
The corresponding eigenvalues for the average are λ1 = 0.9729 + 0.1698i, λ2 =

0.9729− 0.1698i, with absolute value of the eigenvalues 0.9876 ≤ 1.

Writing the covariance dynamics as a matrix C we have

C =

 0.9465 −1.0535 0.4838

0.0525 0.9370 −0.5268

0.0048 0.1050 0.9465


The eigenvalues of C are λ1 = 0.9948, λ2 = 0.9176 + 0.3320i, and λ3 = 0.9176 −
0.3320i, with maximum absolute value of eigenvalue 0.9948 ≤ 1. Since the maximum

eigenvalues of E and C are less than 1 both En and Cn are asymptotic stable. If for

all choice of δn, the system

xn+1 = (δnA1 + (1− δn)A2)xn

is always stable, we are expecting that the switching curve goes eventually to 0.

However, in this example, we switch between the two systems by the following manner:

We start with system A1, and switch the system to A2 when arriving at the furthest

point on the flow of A1. Then we switch the system back to A1 while it arrive at

the furthest point on the flow of system A2. Continuing with this switching method,

we are able to drive the system away from the origin.The figure below shows the

trajectory of the switched system.It is possible to calculate the exact sequence of

switches that drive the system to infinity.

Now consider the system(
x1

x2

)
n+1

=

(
δn

(
0 1

0 0

)
+ (1− δn)

(
0 0

1 0

))(
x1

x2

)
n

For this system there are exactly two switching sequences that do not result in xn = 0

for some finite n, namely the sequences δn = 1+(−1)n

2 and δn = 1+(−1)n+1

2 . Note that

A1 +A2

2
=

1

2

(
0 1

1 0

)
and the eigenvalues of this matrix are ± 1

2 and hence the means converge to 0. The

second moments are determined by the eigenvalues of the matrix

1

2

 0 0 1

0 0 0

1 0 0


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and the eigenvalues of this matrix are ± 1
2 and 0. In general the pth moments are

determined by a p + 1 × p + 1 matrix that has a 1 in the upper right hand corner

and a 1 in the lower left hand corner and zeros elsewhere. The eigenvalues of such a

matrix are ±1
2 and 0 with a multiplicity of p-1. Thus all of the moments converge to

zero but there are two sequences that do not converge to zero.

7. Lyapunov Functions. Much of the stability analysis of switching systems

has centered around the existence of Lyapunov functions. In this section, we con-

struct a sequence of rational Lyapunov functions of increasing degree. Unfortunately,

the examples of the previous section demonstrate that even when focusing on this

countable set of Lyapunov functions there is still no guarantee that the system will

be stable for all possible switching sequences.

An elementary result for linear systems theory is that the system

(7.1) xn+1 = Axn

is stable if and only if the spectrum of A is interior to the unit disk. Then, using a

conformal mapping, the system is stable if and only if the continuous time system

ẋ = (A− I)(A+ I)−1x

is stable. We know that if this system is stable, then there exists a quadratic Lyapunov

function, with positive definite matrix P so that

[(A− I)(A+ I)−1]′P + P [(A− I)(A+ I)−1] = −I.

We thus have the following theorem.

Theorem 7.1. Consider the system

xn+1 = (δnA+ (1− δn)B)xn.

The systems

EX
[p]
n+1 = (δnA[p] + (1− δn)B[p])X

[p]
n

are stable if and only if there exists a sequence of positive definite matrices Qp such

that

[(A[p] +B[p] − 2I)(A[p] +B[p] + 2I)−1]′Qp+

Qp[(A[p] +B[p] − 2I)′(A[p] +B′
[p] + 2I)−1]′ = −I.

The proof is immediate.

Because the matrices A[p] are polynomial in the entries of A, the theorem results

in a sequence of higher order Lyapunov functions for the system

xn+1 = (δnA+ (1− δn)B)xn.
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However, the second example above shows that even if this sequence of Lyapunov

functions exists, there is still no guarantee of the convergence of all switching se-

quences. This is reminiscent of the result in [6], which shows that there exist stable

continuous time switching systems for which there is no quadratic Lyapunov function.

8. Stability of En and Cn. We now assume that En and Cn are asymptotically

stable. We begin with a series of lemmas.

Lemma 8.1. The matrix Cn is positive definite.

Proof. First note that C0 = I.Assuming Cn is positive definite we have x′Cn+1x =
1
k

∑k
i=1 x

′AiCmA′
ix > 0 and the lemma follows by induction.

We are assuming that both the average and the covariance are stable and since

they are generated by a linear recurrence this implies that they are exponentially

stable. Thus we have that for some suitable norm ∥Cn+1∥ < ∥Cn∥. The adjoint of

Cn, C
∗
n is generated by the recurrence

C∗
n+1 =

1

k

k∑
i=1

A′
iC

∗
mAi.

It is more convenient to work with the adjoint than the covariance directly. We state

the following as a lemma but it is obvious.

Lemma 8.2. Let Z be any n× n matrix.

∥Z ′C∗
n+1Z∥ ≤ ∥Z ′C∗

nZ∥.

Let Yn ∈ Sn and calculate

Y ′
nC

∗
m+1Yn =

1

2k

k∑
i=1

Y ′
nA

′
iCmAiYn

=
1

2k

k∑
i=1

Y i
n

′
CmY i

n

Where the average is taken over all immediate successors of Yn. Thus we have the

important lemma.

Lemma 8.3. For all x0 ∈ Rn

x′
oY

′
nC

∗
mYnx0 ≥ 1

2k

k∑
i=1

x′
0Y

i
n

′
C∗

mY i
nx0

From the lemma we see that the system is “on the average” stable. However there

may be a sequence

Y0 ≺ Y1 ≺ · · ·

for which for every n and k

Y ′
n+1CkYn+1 > Y ′

nCkYn.

Our goal is to show that this cannot happen for a “large” set of switching sequences.
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9. Almost every sequence. Let δ be any infinite sequence δ = {δn,i}ki=0 as in

the definition of the system. We define an integer

δn = 0δn,0 + 1δn,1 + 2δn,2 + · · ·+ (k − 1)δn,k−1

and using this we define a real number as

r(δ) =
∞∑

n=1

δnk
−n.

Note that δn is an integer between 0 and k − 1. This extends to a map from the

formal sequence {
∑k−1

i=0 δn,iAi} to R. We now prove the following theorem. Given an

infinite sequence {δ} let Yn = Xn · · ·X1 where Xi =
∑k−1

j=0 δn,jAj .

Lemma 9.1. Let

S = {{δ} : lim
n→∞

Yn does not converge to 0}.

If En converges to 0 then r(S) does not contain any non empty open interval.

Proof. Suppose r(S) contains an open interval. Then for some k the interval

[a+ k−j−1, a+ k−j ] is contained in r(S) where a =
∑k−2

i=1 δik
−i. Then every number

of the form a+
∑∞

i=k δi2
−i is in the interval for every choice of δi. Thus in Sn there

are kn−j elements Yn with norm greater than ϵ. Thus

En =
1

kn

∑
Yn >

kn−j

kn
ϵ =

ϵ

kj

Since j is fixed En is bounded away from 0 and hence does not converge.

We now state an important conjecture. This conjecture is very much in the spirit

of the results in [9] and [10]. The convergence results of those papers are all of the

form convergence with probability 1. That is, there is a possibly a set of Lebesgue

measure 0 for which there is no convergence. For the counterexample we have not

calculated the set of all destabilizing sequences but it is clear that they must have a

very special form that leads us to believe that they form a set of measure 0.

Theorem 9.2 (conjecture). Let

S = {{δ} : lim
n→∞

Yn does not converge to 0}.

If En converges to 0 then r(S) does not contain any set of positive Lebesgue measure.

Some thoughts on a proof: Assume r(S) has positive Lebesgue measure, µ(r(S)) >

0. From the definition of Lebesgue measure we have that

µ(r(S)) = inf
∑
n

µ(In)

∪In ⊇ S. Thus we have that there exists n such that µ(In ∩ S) > 0. As in the proof

of the lemma there exists an open interval of the form I = (a+ k−j−1, a+ k−j) in In

and further more there must exist such an interval with the property that

µ(I ∩ S) > 0.
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The idea of the proof would be to show that there are sufficiently many sequences in

this set so that the expected value is bounded away from 0.

10. Conclusion. The theory of random products has been an important topic

in statistics and mathematical physics for the last half century. It is easy to see the

connection with the theory of switched linear systems. The two areas do not have

identical interests. In statistics and in mathematical physics much of the emphasis

has been and is on the eigenvalues of the products. This particular line has not been

of interest in the theory of switched systems. In systems theory the ideas of stability

and controllability along with ideas of how to approximate switched systems with

more easily studied systems, [20], have been the main directions. One contribution of

this paper is an attempt to use ideas from the two areas.
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