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STABILITY OF SWITCHED LINEAR SYSTEMS WITH POISSON

SWITCHING

B. HANLON∗, V. TYURYAEV† , AND C. MARTIN‡

Abstract. We examine the stability of continuous time linear switched systems when the switch-

ing times are governed by a Poisson process. We construct an infinite family of polynomial Lyapunov

functions that governs the stability of the expected value, as well as higher order moments. The anal-

ysis is accomplished by converting the problem to a stochastic process and analyzing this process.
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1. Introduction. The study of multimode systems capable of fast switching

rates is indeed very challenging. Stochastic control provides a framework for modeling

and analysis if some probabilistic data on switching patterns are available. In this

paper, we take a different path and ask the simple question: If switching between

modes is governed by a Poisson process, how can we carry out a stability analysis of

the system? Basic tools to carry out such an analysis are a prerequisite to developing

a successful theory of stabilization of switching systems whose switching times are

governed by a known probability distribution. From a heuristic viewpoint, stability

is a necessary property to accompany solutions to all control paradigms, and, in this

sense, we are taking a step to develop new control paradigms. It is our hope that

in the future we will be able to answer questions such as stabilization, trajectory

planning with closed-loop stability, and tracking.

The human muscular control system provides a canonical example of a system

with rapid switching. Most of the muscles of the body occur in opposing pairs and

only one muscle of the pair can be actively used at any one instant. In a simple

movement, such as the movement of the eye in a horizontal plane, the exterior rectus

muscle controls the temporal motion and the interior rectus controls the nasal mo-

tion. To track an object that is oscillating, using only eye movements, the control

switches between the internal and external rectus muscle. See [25] for a more complete

analysis of eye movement. In more complicated motion there may be many muscle

pairs involved that are switching between opposing muscles and even opposing muscle

groups. One only needs to watch a gymnast performing on the pommel horse to see

rapid switching between muscle groups. It is reasonably clear in the pommel horse
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that lack of coordination during switching will result in an instability. Significant

work remains in the analysis of the stability of even the simplest aspects of the hu-

man muscular control system; we expect to find that the role of the switching pattern

is very important.

Switched and multimode systems have received a fair amount of attention from

the control theory community. However, much of the work has focussed on finding

an appropriate switching strategy in order to stabilize the system; see, for example,

[18], [24], and [28]. More generally, variable structure control is a well-developed area

of research and its aim is essentially to find a stabilizing switching strategy. On the

other hand, the recent work of Branicky [2] is closely related to our work. He assumes

that a class of switching paths have been enumerated and asks, When is the system

stable for all switching paths? He has shown that if the system admits a variant of

a time-varying Lyapunov function, then it is asymptotically stable. In [5] the goal

was to determine when the system is stable for all possible switching patterns and

to construct a Lyapunov function in the case that it was stable. Our work aims at

addressing the complimentary problem of stability when the class of switching system

is assume to satisfy a probabilistic law.

Another class of problems closely related to ours is that of stabilizing a family of

linear systems in such a way that the closed-loop systems admit a common quadratic

Lyapunov function; see, for example, [1], [11], [22], [12]. The essence of this set of

work is captured in [1] where it was shown that for the family

ẋ = Aγx+Bλu, x ∈ Rn, γ ∈ Γ, λ ∈ Λ

one can reduce the problem to that of finding a common quadratic Lyapunov func-

tion for a family of uncontrolled systems on a certain subspace of Rn. Interestingly,

an example in [5] illustrates a limitation of the stabilization problem of Barmish [1],

namely that asking for a quadratic Lyapunov function may be too restrictive. In gen-

eral, one needs to ask for a Lyapunov function which may be of degree higher than

two. In this paper we establish that even if we allow arbitrary polynomial Lyapunov

functions this still may not suffice. In the early development of the geometric theory

of nonlinear control systems, it was routine to consider control inputs to be piece-

wise constant functions. Therefore, if one were to study controllability of a smooth

nonlinear control system ẋ = f(x, u), it is natural to consider the collection of vector

fields D = {f(x, u) : u ∈ U}, where U is some admissible control set, and then study

the end points of all curves obtained by concatenating integral curves of vector fields

in D. Therefore, it can be thought of as a system with a multitude of modes, each

corresponding to a vector field in D.

A recent survey by Lin and Antsaklis, [15], gives a rather complete overview of

the field. The main theorem cited there on stability for discrete time switched linear

systems, (their Theorem 6, [14]), requires that 2n matrix norms must be calculated.
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In this paper we give a simpler calculation but one that will only hold for “almost

all” switching sequences. An excellent and readable source for the general theory of

switched linear systems is the monograph by Liberzon, [13]. In his book the primary

focus is on continuous dynamics but the concepts are similar for discrete time. How-

ever, for discrete time switched systems the literature is much older than the systems

theory literature, going back to at least the early 1960’s with the publication of the

papers of Furstenberg and Kesten, [8, 9], in the area of products of random matri-

ces, or, if you like, the random products of matrices. In the statistical literature on

random products “almost all” is the standard condition.

The motivation for studying this problem came from reading a series of papers

by S.A. Murphy, [19, 20, 21], on dynamic treatment regimes and associated dynamic

clinical trials. In fact, the theses by Du and Wang, [6, 26], were directly related to

this topic. The central idea behind dynamic treatments is that the treatments are

switched between two or more treatments types in hopes of producing an improvement

over any single treatment. A natural model for such a course of treatments lies in the

area of switching systems.

In this paper we consider the switched linear system

(1.1) ẋ = (δ(t)A+ (1− δ(t))B)x

where

δ(t) ∈ {0, 1}

for all t. This system was studied by Dayawansa and Martin, [5], and they proved

that the system is stable for all switching sequences δ(t) if and only if the two systems

ẋ = Ax and ẋ = Bx

have a common Lyapunov function. They also show that for this system there exists

a pair of matrices (A,B) for which the switching system is stable but that there is

not a common quadratic Lyapunov function. This severely limits the usefulness of

that result.

In this paper we analyze the problem from the viewpoint of stochastic systems

and obtain results regarding a modified version of this problem. At the same time we

obtain results about the random products of matrix exponentials. Our primary goal

is to obtain results for pairs of matrices, but the results can be restated for any finite

number of matrices by considering the system

(1.2) ẋ = (δ1(t)A1 + · · ·+ δk(t)Ak)x,

where for each fixed t, δ(t) is a random vector in Rk which satisfies,

k∑
i=1

δi(t) = 1(1.3)

δi(t) ∈ {0, 1}.(1.4)
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In other words, for each fixed t, δ(t) is a random element chosen from the canonical

basis vectors of Rk.

In fact, throughout this paper we focus on switching sequences generated by a

Poisson process. The resulting system is given by

dx = ((z(t)A+ (1− z(t))B)dx

dz = (1− 2z(t))dN(1.5)

where N is a Poisson process of rate λ. Note that the process dz takes on only the

value of 0 or 1. This work is based on the notes of Roger Brockett, [4]. The goal of

the first part of the paper is to obtain differential equations for all of the moments of

dx. This will be done using a device that Brockett has used in the study of Volterra

systems, [3].

2. Calculating Expected Value. We rewrite the system (1.5) as

(2.1) d

(
x

z

)
=

(
(zA+ (1− z)B)x

0

)
dt+

(
0

1− 2z

)
dN.

Taking expectations we then have

(2.2)
d

dt

(
E(x)(t)

E(z)(t)

)
=

(
(A−B)E(zx)(t) +BE(x)(t)

(1− 2E(z)(t))λ

)

To evaluate this we must have an equation for the expected value of zx. To obtain

this we use the Itô rule and calculate the stochastic equation for d(zx). Recall that

for a function ψ(x) the Itô rule is

dψ(x̂) =

〈
∂ψ

∂x̂
, f(x̂)

〉
dt+ [ψ(x̂+ g(x̂))− ψ(x̂)]dN.

Here we have

x̂ =

(
x

z

)
, f(x̂) =

(
(zA+ (1− z)B)x

0

)
g(x̂) =

(
0

1− 2z

)

and

ψ(x̂) = zx.

Calculating the individual terms we have

∂ψ(x̂)

∂x̂

(
u

v

)
= lim
h→0

(x+ hu)(z + hv)− zx
h

= zu+ vx
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and so we have

(2.3)

〈
∂ψ

∂x̂
, f(x̂)

〉
= z((zA+ (1− z)B)x = Azx

since z2 = z. Thus,

(2.4) ψ(x̂+ g(x̂))− ψ(x̂) = x− zx.

Finally, we have that

(2.5) d(zx) = Azxdt+ (x− 2zx)dN

and from this we can calculate the expected values

(2.6)
d

dt
E(zx)(t) = AE(zx)(t) + (E(x)− 2E(zx))λ.

Combining equations (2.2) and (2.6) we have the linear system

(2.7)
d

dt

(
E(x)

E(zx)

)
=

(
B A−B
λI A− 2λI

)(
E(x)

E(zx)

)
.

To analyze this system, is it is best to make a change of variable(
E(x)

E(zx)

)
=

(
I I

0 I

)(
u

v

)
and, after routine manipulations, we have

(2.8)
d

dt

(
u

v

)
=

(
B − λI λI

λI A− λI

)(
u

v

)
.

We have proved the following theorem.

Theorem 2.1. Consider the system

dx = (zA+ (1− z)B)xdt

dz = (1− 2z)dN

where N is a Poisson process with rate λ. The expected value of x, Ex(t) goes to zero

for all λ if and only if the matrix(
B − λI λI

λI A− λI

)
has all of its eigenvalues in the open left half plane.

Corollary 2.2. The expected value of x(t), E(x(t)) goes to zero if and only if

there is a family of positive definite symmetric matrices(
P1(λ) P2(λ)

P2(λ) P3(λ)

)
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such that (
B′ − λI λI

λI A′ − λI

)(
P1(λ) P2(λ)

P2(λ) P3(λ)

)
+

(
P1(λ) P2(λ)

P2(λ) P3(λ)

)(
B − λI λI

λI A− λI

)
=

(
−I 0

0 −I

)
.

3. Analysis of the Expected Value. We analyze the spectrum of the matrix

M0 (λ) ≡

(
B − λI λI

λI A− λI

)
.

At λ = 0 the matrix is block diagonal and is stable if and only if both A and B are

stable. Setting λ = 0 is equivalent to saying that the that there is no switching at all.

Thus if we start at ẋ = Ax we stay with this system with probability 1. Likewise if

we start at ẋ = Bx. Since the eigenvalues lie in the open left half plane for small λ,

the system will remain stable.

M1(λ) =

(
1
λB − I I

I 1
λA− I

)
.

Taking the limit yields the following interesting matrix

lim
λ→∞

M1(λ) =

(
−I I

I −I

)
.

The spectrum of this matrix is the two point set {0,−2} with each having mul-

tiplicity n. The case of large λ corresponds to very fast switching between the two

systems. Here we have a n example that cannot occur when all switching sequences

have equal probability. Consider the case that A = 0 (scalar) and B = −ε we than

have the matrix (
−ε− 1 1

1 −1

)
.

The eigenvalues of this matrix are

1

2
[−ε− 2±

√
ε2 + 4].

Both of these values lie in the open left half plane for all positive ε. Thus for λ

sufficiently large and ε sufficiently small the expected values of x goes to zero. If the

switching is sufficiently fast then the switching is dominated by the stable system.

This example can be extended to the matrix(
a− 1 1

1 −b− 1

)
.
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We now consider when this system is stable. Here we are assuming that both a and b

are positive. After some routine calculations we have that the system is stable if and

only

ab > a− b.

In particular, if b > a then this inequality always holds. The interpretation is that

with very fast switching the system is stable provided the stable system dominates.

These argument naturally lead to the following conjecture.

Conjecture 1. Consider the system

dx = (zA+ (1− z)B)x

dz = (1− 2z)dN

where dN is a Poisson process of rate λ. If A is stable and γ ∈ Spectrum(A) and

ρ ∈ Spectrum(B) implies

|γ + γ| > |ρ+ ρ|

then the expected value of x goes to 0 with time.

Consider the control system

d

dt

(
x

z

)
=

(
−I I

I −I

)(
x

z

)
+

(
I 0

0 I

)(
u

v

)

and now ask when this system can be stabilized using restricted feedback of the form

u = Bx and v = Az. A similar problem is the stabilization of the complex system

ż = (F + iG)x+Hu

using real feedback, [7, 10]. This problem remains open which would suggest that the

above problem may also be quite difficult.

We will continue this analysis in Section 5.

4. Higher Order Moments. In this section we return to analyzing the switched

linear system represented by equation (1.1). Specifically, we proceed by finding an

equation for the homogeneous monoids of degree p. Let X[p] represent the vector of

all monoids of degree p, so that

X[p] =



xp1
xp−11 x2

...

xn−1x
p−1
n

xpn


.
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We will find matrices

A[p] and B[p]

so that

(4.1)
d

dt
X[p] = [δ(t)A[p] + (1− δ(t))B[p]]X[p].

To see the existence of these matrices consider

d

dt
xp11 x

p2
2 · · ·xpnn =

n∑
i=1

pix
pi−1
i xp11 x

p2
2 · · ·x

pi
i · · ·x

pn
n ẋi

where the “overline” indicates that term is removed and p1 + · · · + pn = p. Let Ai

indicate the ith row of the matrix A. Now

ẋi = [δ(t)Ai + (1− δ(t))Bi]x

and note that this linear in x. Thus we get

d

dt
xp11 x

p2
2 · · ·xpnn =

n∑
i=1

pix
pi−1
i xp11 x

p2
2 · · ·x

pi
i · · ·x

pn
n ẋi

=

n∑
i=1

pix
pi−1
i xp11 x

p2
2 · · ·x

pi
i · · ·x

pn
n [δ(t)Ai + (1− δ(t))Bi)]x

= δ(t)

(
n∑
i=1

pix
pi−1
i xp11 x

p2
2 · · ·x

pi
i · · ·x

pn
n Ai

)
x+

(1− δ(t))

(
n∑
i=1

pix
pi−1
i xp11 x

p2
2 · · ·x

pi
i · · ·x

pn
n Bi

)
x

= δ(t)A[p],τX[p] + (1− δ(t))B[p],τX[p]

where τ indicates the row associated with the multi-index (p1, · · · , pn). Doing the

calculation for each monoid we then have

(4.2)
d

dt
X[p] = [δ(t)A[p] + (1− δ(t))B[p]]X[p].

Now reformulating this as a stochastic process we have

(4.3) d

(
X[p]

z

)
=

(
(zA[p] + (1− z)B[p])[p]

0

)
dt+

(
0

1− 2z

)
dN

and calculating expected values as before we have

(4.4)
d

dt

(
E(X[p])

E(zX[p])

)
=

(
B[p] A[p] −B[p]

λI A[p] − 2λI

)(
E(X[p])

E(zX[p])

)
.
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To solve this system is it is best to make a change of variable(
E(X[p])

E(zX[p])

)
=

(
I I

0 I

)(
u

v

)
and after some routine manipulation we have

(4.5)
d

dt

(
u

v

)
=

(
B[p] − λI λI

λI A[p] − λI

)(
u

v

)
.

Theorem 4.1. Consider the system

dX[p] = (zA[P ] + (1− z)B[p])X[p]dt

dz = (1− 2z)dN

where N is a Poisson process with rate λ. The expected value of X[p], EX[p](t) goes

to zero for all λ if and only if the matrix(
B[p] − λI λI

λI A[P ] − λI

)
has all of its eigenvalues in the open left half plane.

Corollary 4.2. The expected value of x(t), E(x(t)) goes to zero if and only if

there is a family of positive definite symmetric matrices(
P1(λ) P2(λ)

P2(λ) P3(λ)

)
such that (

B′[p] − λI λI

λI A′[P ] − λI

)(
P1(λ) P2(λ)

P2(λ) P3(λ)

)
+

(
P1(λ) P2(λ)

P2(λ) P3(λ)

)(
B[p] − λI λI

λI A[P ] − λI

)
=

(
−I 0

0 −I

)
.

It is tempting to conjecture that the system 1.1 is stable for all possible switches

if and only if there exists a doubly indexed family of positive definite matrices, Qp,λ,(
Q1,p,λ(λ) Q2,p,λ(λ)

Q2,p,λ(λ) Q3,p,λ(λ)

)
,

such that (
B′[p] − λI λI

λI A′[P ] − λI

)(
Q1,p,λ(λ) Q2,p,λ(λ)

Q2,p,λ(λ) Q3,p,λ(λ)

)
+

(
Q1,p,λ(λ) Q2,p,λ(λ)

Q2,p,λ(λ) Q3,p,λ(λ)

)(
B[p] − λI λI

λI A[P ] − λI

)
=

(
−I 0

0 −I

)
.

We will later prove that if all of the solutions of equation (1.1) are exponentially

stable then the all of the expectations are likewise exponentially stable. However, the

converse is false as we will see in the next section.
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5. A fundamental Example. In [5] the following example was constructed.

d

dt

(
x1

x2

)
=

[
δ(t)

(
−1 −1

1 −1

)
+ (1− δ(t))

(
−1 −a
1/a −1

)](
x1

x2

)
=

(δ(t)A+ (1− δ(t))B)x

where a ≥ 1. Note that A and B have the same eigenvalues and that the orbits of

B are simply elongated orbits of A. In the paper they proved that the set of a’s for

which there exists a quadratic Lyapunov function is contained in the interval [1, 6]

and the set of a’s for which the system is exponentially stable contains the interval

[1, 10]. Thus, in the interval (6, 10) there exists a Lyapunov function but there does

not exist a quadratic Lyapunov function. We will examine this example in more detail

in this section.

We begin by determining an upper bound for the a’s for which the system is

stable for all switches. First we note that

eAt =

(
e−t cos t e−t sin t

−e−t sin t e−t cos t

)
and eBt =

(
e−t cos t ae−t sin t
−e−t sin t

a e−t cos t

)
.

Let the initial data be (0, 1)
t

and start with eBt and then switch at t = π/2 to be at(
ae−π/2

0

)
.

Now we drive the system with eAt to move along the curve(
ae−π/2e−t cos t

ae−π/2e−t sin t

)

for π/2 units to arrive at (
0

ae−π

)
.

In this example, the system started at started at (0, 1)
t
; if it is going to diverge to

infinity, then we must have that ae−π > 1. Letting a = 25 suffices. So, we have shown

that if a ∈ [25,∞) then the system is unstable.

We now consider the matrix coming from the expectation

H =


−1− λ −1 λ 0

1 −1− λ 0 λ

λ 0 −1− λ −a
0 λ 1/a −1− λ

 .
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Here our goal is to find a lower bound on the a’s such that there is a λ for which the

matrix is unstable. The eigenvalues of H are

−1− λ±
√
−1 + λ2 ± λ

√
−2− a− 1/a.

The only two of these numbers that can be positive are

−1− λ+

√
−1 + λ2 ± λ

√
−2− a− 1/a.

We calculate √
−1 + λ2 + λ

√
−2− a− 1/a = −1 + λ2 + iλc

where c =
√

2 + a+ 1/a. Now, the real part of 1−λ+
√
−1 + λ2 ± λ

√
−2− a− 1/a

is given by

g(λ, a) = −1− λ+
1√
2

√
−1 + λ2 +

√
(1− λ2)2 + λ2c2.

Therefore, the question reduces to determining the smallest value of a for which

g(λ, a) = 0 for some positive value of λ. This equation is a difficult to solve because

of extraneous roots when it is squared. However, it is easy to show that if a < 52,

then no positive λ makes the equation equal to 0. Figure 1 displays a graph of g(λ, a)

for 1 < λ < 5 and 1 < a < 52; Figure 2 displays a graph of g(λ, a) for a = 52 and

0 < λ < 5.

Thus the expected value of x goes to zero for all a ∈ [1, 52]. We collect these facts

in the following theorem.

Theorem 5.1. Consider the system

Σ1 :
d

dt

(
x1

x2

)
=

[
δ(t)

(
−1 −1

1 −1

)
+ (1− δ(t))

(
−1 −a
1/a −1

)](
x1

x2

)

and the associated stochastic process

Σ2 : d

(
x1

x2

)
=

[
z

(
−1 −1

1 −1

)
+ (1− z)

(
−1 −a
1/a −1

)](
x1

x2

)
dt

dz = (1− 2z)dN.

1. There exists a quadratic Lyapunov function for Σ1 for a ∈ [1, α] where α < 6,

[5].

2. The system Σ1 is stable for a ∈ [1, 10] and hence there is a non-quadratic

Lyapunov function for the system Σ1 in this interval, [5].

3. The system Σ1 is unstable for a ∈ [25,∞).

4. For the system Σ2 the expected value of x goes to zero with time for a ∈ [1, 52]

and for all λ.
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Fig. 1. The graph of real part of the eigenvalue

Fig. 2. The graph of g with a chosen so that the g < 0.
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5.1. Second Moments. We now calculate the second moments for the above

system. First we will compute the second moments of a pair of second order linear

systems. Let

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
.

Then we have

d

dt
x21 = 2x1ẋ1

= 2x1[δ(t)(a11x1 + a12x2) + (1− δ(t))(b11x1 + b12x2)]

= [δ(t)(2a11x
2
1 + 2a12x1x2) + (1− δ(t))(2b11x21 + 2b12x1x2)

d

dt
x1x2 = x2ẋ1 + x1ẋ2

= [δ(t)(a11x1x2 + a12x
2
2) + (1− δ(t))(b11x1x2 + b12x

2
2)] +

[δ(t)(a21x
2
1 + a22x1x2) + (1− δ(t))(b21x21 + b22x1x2)]

= δ(t)(a21x
2
1 + (a11 + a22)x1x2 + a12x

2
2) +

(1− δ(t))((b21x21 + b11 + b22)x1x2 + b12x
2
2)

and

d

dt
x22 = 2x2ẋ2

= 2x2[δ(t)(a21x1 + a22x2) + (1− δ(t))(b21x1 + b22x2)]

= [δ(t)(2a21x1x2 + 2a22x
2
2) + (1− δ(t))(2b21x1x2 + 2b22x

2
2)].

We can now write down the system

d

dt

 x21

x1x2

x22

 =

δ(t)
 2a11 2a12 0

a21 a11 + a22 a12

0 2a21 2a22

 +

(1− δ(t))

 2b11 2b12 0

b21 b11 + b22 b12

0 2b21 2b22



 x21

x1x2

x22

 .(5.1)

Now for the example above we have

A[2] =

 −2 −2 0

1 −2 −1

0 2 −2

 and B[2] =

 −2 −2a 0

1/a −2 −a
0 2/a −2

 .

It is easy to see that the characteristic polynomial of B[2] is independent of a and

hence is the same as A[2].
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Fig. 3. Showing a lower bound for a.

We are now concerned with the stability of the 6× 6 matrix

H(a, λ) =



−2− λ −2 0 λ 0 0

1 −2− λ −1 0 λ 0

0 2 −2− λ 0 0 λ

λ 0 0 −2− λ −2a 0

0 λ 0 1/a −2− λ −a
0 0 λ 0 2/a −2− λ


.

Because the matrix is 6×6, Maple (or other symbolic packages) will no longer work to

find the eigenvalues as explicit functions of a and λ; we therefore utilize a numerical

program to find the values of a for which the matrix is stable for every value of λ. We

define a function

maxR(a, λ) = max{Real(γi(a, λ)) : i = 1, · · · , 6},

where the γi(a, λ) are the 6 eigenvalues of H(a, λ). We have not attempted to find

the exact value of a but from the graphs in Figures 3 and 4 we see that the value is

between 21 and 24. Thus the second moments converge to zero whenever a ≤ 21. We

could continue to calculate the higher moments but we do not expect to see anything

very dramatic.

6. Analysis of the Expected value of the Example. The expected value of

x is controlled by the eigenvalues

−1− λ±
√
−1 + λ2 ± λ

√
−2− a− 1/a



POISSON SWITCHING 321

Fig. 4. Showing an upper bound for a.

and the stability is controlled by the real part

g(λ, a) = −1− λ+
1√
2

√
−1 + λ2 +

√
(1− λ2)2 + λ2(a+ 1/a+ 2).

We have seen that the system is stable for a ∈ [1, 52] but note that for any fixed λ

the system is unstable for a sufficiently large. However, for any fixed a the system is

stable for λ sufficiently large. Thus we have the system is stable for

λ ∈ [0, α] ∪ [β,∞)

for some value of α and β. We have seen above that the second moments are stable

for a ∈ [1, 21] and as for the expected value that for fixed a there is an α′ and β′ such

that for λ ∈ [0, α′) ∪ (β′,∞) the second moments converge to zero. It is beyond the

scope of this paper to calculate the entire probability distribution.

7. Stability. In this section we collect some results on the stability of the system.

We first note that for the system given by equation (1.1) that if it is stable for all

possible switching sequences then all moments converge to zero. We state this a

theorem.

Theorem 7.1. Assume that A and B are such that the system

ẋ(t) = (δ(t)A+ (1− δ(t))b)x(t)

is uniformly asymptotically stable for all possible switching sequences δ(t). Then for

every p and every λ ≥ 0 the expected value,

EX[p] → 0.
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The proof is immediate.

Now we consider the system

d

dt

(
u

v

)
=

(
B[p] − λI λI

λI A[p] − λI

)(
u

v

)
.

For p = 1 the system is stable for λ = 0 and hence is stable for some interval containing

0. We will now prove that this holds for all p. We begin with a technical result.

Theorem 7.2. Let A be an n × n matrix such that γ ∈ Spec(A) implies that

γ + γ < 0 and suppose that there exists an invertible matrix Q such that Q−1AQ is

diagonal. Then for very positive integer p, A[p] is diagonalizable and its spectrum lies

in the open left half plane.

We first prove a critical lemma.

Lemma 7.3. Let Pz = x x ∈ Rn and P an invertible matrix mapping Rn to Rn.

Let Vk be the space of all homogeneous polynomials of degree k. Then the matrix P[k]

mapping V[k] to V[k] is an invertible matrix.

Proof. We define a mapping via its actions on a basis.

P[k](z
p1
1 · · · zpnn ) = (P1z)

p1 · · · (Pnz)pn

where Pi is the ith row of P . Now suppose that there exist constants γ(p1,··· ,pn) such

that ∑
(p1,··· ,pn)

γ(p1,··· ,pn)(P1z)
p1 · · · (Pnz)pn = 0.

Now choose a nonzero vectors z0 so that

Piz0 6= 0

and for j 6= i

Pj(z0) = 0.

Let

r(z1, · · · , zn) =
∑

(p1,··· ,pn)

γ(p1,··· ,pn)(z1)p1 · · · (zn)pn .

Now evaluate

P[k](z0) = γ(0,··· ,0,p,0··· ,0)(Piz0)p = 0

and hence we have for every i, γ(0,··· ,0,p,0··· ,0) = 0.
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Now choose a family of vectors zt,s such that Pizt.s = t, Pjzt,s = s and for every

m 6= i or j, Pmzt,s = 0. Then evaluating we have

P[k](zt,s) =

k−1∑
ρ=1

γρ(Pizt,s)
ρ(Pjzt,s)

k−ρ

=

k−1∑
ρ=1

γρt
ρsk−ρ

= 0.

Now set t = 1 and we have a polynomial in s. this polynomial is identically zero and

hence its coefficients, γρ = 0. Thus we have removed all of the terms that involve

one or two variables. Assume that we have shown that any term that involves less

than m terms has a zero coefficient. Now choose a vector z0 such that Pi1z0 =

t1, Pimz0 = tm and if τ not in {i1, · · · , im} then Pτz0 = 0. Then evaluating P[k](z0)

we have a polynomial in the variables t1, · · · , tm that is identically zero and hence the

corresponding coefficients are zero. thus we have shown that if

P [k](r(z)) = 0

then r(z) = 0 thus the mapping is one to one. But any linear mapping from RN to

RN that is one to one is also onto and hence the matrix P[k] is invertible. �

Proof of Theorem: Let Q be such that Q−1AQ = D where D is a diagonal matrix

with dii + dii < 0. Let V[p](x̂) be the vector space of all homogeneous polynomial of

degree p in the variables x1, · · · , xn. Let x̂ = (x1, · · · , xn)′ and define a new set of

variables by ẑ = Qx̂. Let X[p] be the vector of all homogeneous monoids of degree

p. Then we define a map Q[p] from V[p](x̂) → V[p](ẑ) in a natural manner. For the

monoid we have

xp11 · · ·xpnn → (Q1ẑ)
p1 · · · (Qnẑ)pn .

Now we have proved in the lemma that Q̂[p] is invertible and so we have that

Q̂−1A[p]Q̂[p] = D[p].

It only remains to show that D[p] is diagonal. But D[p] is constructed by taking the

derivative of

xp11 · · ·xpnn
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in doing so we have

d

dt
xp11 · · ·xpnn =

n∑
i=1

pix
p1
1 · · ·x

pi−1

i−1 x
pi−1
i x

pi+1

i+1 · · ·x
pn
n ẋi

=

n∑
i=1

pix
p1
1 · · ·x

pi−1

i−1 x
pi−1
i x

pi+1

i+1 · · ·x
pn
n dixi

=

n∑
i=1

pidix
p1
1 · · ·x

pi−1

i−1 x
pi
i x

pi+1

i+1 · · ·x
pn
n

=

(
n∑
i=1

pidi

)
xp11 · · ·xpnn .

Thus D[p] is diagonal with the entries being
∑n
i=1 pidi. Now the pi are non-negative

integers and the di all have negative real parts and hence the sum has negative real

part. This finishes the proof of the theorem. �

Thus we now have the following.

Theorem 7.4. Consider

d

(
X[p]

z

)
=

(
(zA[p] + (1− z)B[p])[p]

0

)
dt+

(
0

1− 2z

)
dN.

For every p the expected values EX[p] → 0 and EzX[p] → 0 for

λ ∈ [0, αp)

for some αp > 0.

8. Relation to Random Products of Matrices. Let

SA = {eAα : α ∈ R+}

and let

SB = {eBβ : β ∈ R+}.

Both SA and SB are semigroups. The solutions of the system (1.1) are then of the

form

x(t) =
∏
i=1

Xix(0),

where

Xi ∈ SA ∪ SB .

For the associated stochastic process we select an element Xi based on a Poisson

process on the real numbers α and β. This process is very much of the flavor of the
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seminal work of Furstenberg and Keston, [8, 9]. The main difference is that they

typically assume that the Xi come from a single semigroup and here we are assuming

that we are sampling from a union of two semigroups. The second major difference

is that we are interested in the case that the products converge to zero, where as

in the “products of random matrices” literature the goal is either convergence or to

determine the limiting values of the eigenvalues.

9. Conclusion. In this paper we have extended the work on continuous switch-

ing system to include the case that switching sequence is governed by a probability

distribution. The extension was made by converting the problem to stochastic system

and analyzing the stochastic system. Particular attention was paid to an example

taken from [5]. Brockett’s treatment of stochastic systems with a jump process was

fundamental to this work. we produced an infinite series of higher order Lyapunov

functions that must be satisfied if the system is stable for all choices of the switching

sequence. It remains an open problem to determine if this sequence is necessary and

sufficient.
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